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Rigorous Dynamics of
Expectation-Propagation-Based Signal Recovery

from Unitarily Invariant Measurements
Keigo Takeuchi, Member, IEEE

Abstract—Signal recovery from unitarily invariant measure-
ments is investigated in this paper. A message-passing algorithm
is formulated on the basis of expectation propagation (EP). A
rigorous analysis is presented for the dynamics of the algorithm
in the large system limit, where both input and output dimensions
tend to infinity while the compression rate is kept constant. The
main result is the justification of state evolution (SE) equations
conjectured by Ma and Ping. This result implies that the EP-
based algorithm achieves the Bayes-optimal performance that
was originally derived via a non-rigorous tool in statistical physics
and proved partially in a recent paper, when the compression rate
is larger than a threshold. The proof is based on an extension of
a conventional conditioning technique for the standard Gaussian
matrix to the case of the Haar matrix.

Index Terms—Compressed sensing, expectation propagation,
unitarily invariant measurements, state evolution, Haar matrices.

I. INTRODUCTION

A. Motivation

C
ONSIDER the recovery problem of an N -dimensional

signal vector x from a compressed noisy measurement

vector y ∈ CM (M ≤ N ) [2], [3],

y = Ax+w. (1)

In (1), A ∈ CM×N denotes a known measurement matrix. The

signal vector x is an unknown sparse1 vector that is composed

of independent and identically distributed (i.i.d.) elements. The

noise vector w ∈ CM is independent of the other random

variables. The goal of compressed sensing is to recovery the

sparse vector x from the knowledge about y and A, as well

as the statistics of all random variables.

A breakthrough for signal recovery is to construct message-

passing (MP) that is Bayes-optimal in the large system limit,

where the input and output dimensions N and M tend to

infinity while the compression rate δ = M/N is kept constant.
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1 In this paper, a signal x ∈ R is called sparse if the Rényi information
dimension [4] of x is smaller than 1. If x is zero with probability 1− p, the
information dimension is at most p. If x is discrete, it is zero.

The origin of this approach dates back to the Thouless-

Anderson-Palmer (TAP) equation [5] in statistical physics.

Motivated by the TAP approach, Kabashima [6] proposed

an MP algorithm based on approximate belief propagation

(BP) in the context of code-division multiple-access (CDMA)

systems with i.i.d. zero-mean measurement matrices. When the

compression rate is larger than the so-called BP threshold [7],

the BP-based algorithm was numerically shown to achieve

the Bayes-optimal performance in the large system limit,

which was originally conjectured by Tanaka [8] via the replica

method—a non-rigorous tool in statistical physics, and proved

in [9], [10] for i.i.d. zero-mean Gaussian measurements. How-

ever, Kabashima [6] presented no rigorous analysis on the

convergence property of the BP-based algorithm.

In order to resolve lack of a rigorous proof, approximate

message-passing (AMP) was proposed in [11] and proved in

[12] to achieve the optimal performance for i.i.d. zero-mean

Gaussian measurements, when the compression rate is larger

than the BP threshold. Spatially coupled measurement matrices

are required for achieving the optimal performance in the

whole regime [7], [13]–[15]. However, it is recognized that

AMP fails to converge when the i.i.d. zero-mean assumption

of measurement matrices is broken [16], unless damping [17]

is employed.

As solutions to this convergence issue, since Opper and

Winther’s pioneering work [18, Appendix D], as well as

[19], several algorithms have been proposed on the basis

of expectation propagation (EP) [20], expectation consistent

(EC) approximations [18], [21], [22], S-transform [23], vec-

tor AMP [24], or turbo principle [25]–[28]. The EP-based

algorithm [20] is systematically derived from Minka’s EP

framework [29] by approximating the posterior distribution

of x with factorized Gaussian distributions. The EC-based

algorithms [18], [21], [22] are iterative algorithms for solving

a fixed point (FP) of the EC free energy. An algorithm in [23]

is derived via the S-transform of AHA. Rangan et al. [24]

considered an EP-like approximation of the BP algorithm on

a factor graph with vector-valued nodes. The algorithms [25]–

[28] based on turbo principle are derived from a few heuristic

assumptions. Interestingly, the algorithms in [18], [20], [22],

[24], [27] are essentially equivalent, with the exception of [21],

[23]. In this paper, these algorithms for signal recovery are

simply referred to as EP-based algorithms, since we follow

the EP-based derivation in [20].
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Ma et al. [26], [27] derived state evolution (SE) equations

of an EP-based algorithm under two heuristic assumptions.

By investigating the properties of the SE equations, they

conjectured that, for unitarily invariant measurement matrices,

the FPs of the SE equations are the same as the extrema

of an asymptotic energy function that describes the Bayes-

optimal performance in the large system limit. The energy

function was originally derived in [30], [31] via the replica

method, and proved for bounded signals in [32]. In other

words, the EP-based algorithm was conjectured to achieve

the optimal performance in the large system limit, when the

compression rate is larger than the BP threshold. Since the

algorithm attempts to solve the minimum of the EC free

energy [18], it is conjectured that the extrema of the EC

free energy correspond to those of the Bayes-optimal one for

unitarily invariant measurement matrices. The purpose of this

paper is to present a rigorous proof for the conjecture.

B. Proof Strategy

The proof strategy is based on a conditioning technique used

in [12], originally proposed by Bolthausen [33]. A challenging

part in the proof is to evaluate the distribution of an estimation

error in each iteration conditioned on estimation errors in all

preceding iterations. Bayati and Montanari [12] evaluated the

conditional distribution via the distribution of the measurement

matrix A conditioned on the estimation errors in all preceding

iterations. When linear detection is employed as part of MP,

the conditional distribution of A can be regarded as the poste-

rior distribution of A given linear, noiseless, and compressed

observations of A, determined by the estimation errors in all

preceding iterations. For i.i.d. Gaussian measurement matrices,

it is well known that the posterior distribution is also Gaussian.

The proof in [12] heavily relies on this well-known fact.

In order to present our proof strategy, assume M = N ,

and that A is a Haar matrix [34], [35], which is uniformly

distributed on the space of all possible N×N unitary matrices.

Under appropriate coordinate rotations in the column spaces

of A, it is possible to show that the linear, noiseless, and

compressed observation of A is equivalent to observing part

of the columns in A. Since any Haar matrix is bi-unitarily

invariant [34], the distribution of A after the coordinate

rotations is the same as the original one. Thus, evaluating

the conditional distribution of A reduces to analyzing the

conditional distribution of a Haar matrix given part of its

columns. This argument was implicitly used in [12].

Evaluation of this conditional distribution is an important

part in this paper, while this part is not required for i.i.d.

Gaussian measurements. For simplicity, let N = 3 and fix the

first column of a Haar matrix A = (a1,a2,a3). Evaluation of

the conditional distribution is equivalent to characterizing a2

and a3 for given a1. The two vectors must be on a plane

perpendicular to a1. From the orthonormality between a2

and a3, the two vectors are on a unit circle that has the

center at the intersection of the plane and ca1 for c ∈ C.

Intuitively, a2 and a3 should be Haar-distributed on this unit

circle. Generalizing this intuition, we find that A given its first

t columns should have degrees of freedom that are equal to

those of an (N − t) × (N − t) Haar matrix. On the basis of

this intuition, we evaluate the conditional distribution of A.

C. Related Work

A similar paper [36] was posted on the arXiv a few months

before posting the first version [37] of this paper. Short

versions of the two papers were published in [1], [24]. The

posted paper [36] addressed real-valued systems, while we

consider complex-valued systems. Interestingly, the two papers

share the common proof strategy based on [12]. However,

there is a mathematically critical difference between them.

The main difference is in mathematical treatments on almost

sure convergence. An empirical convergence based on pseudo-

Lipschitz functions was considered in [36]. The approach

allows us to analyze general Lipschitz-continuous decision

functions and general pseudo-Lipschitz performance measures,

as considered in [12]. However, Rangan et al. [36] omitted

the proof of an important part on almost sure convergence—

required in establishing the empirical convergence based on

pseudo-Lipschitz functions—as pointed out in Appendix A-B.

In this paper, we present a rigorous proof of the part on

almost sure convergence. Our approach relies on advanced

results in probability theory, such as the strong law of large

numbers for dependent random variables [38] and statistical

properties of a Haar matrix. While this paper considers a

Bayes-optimal decision function and the mean-square error

(MSE), the part on almost sure convergence is proved in a

general form, as considered in [36]. Thus, combining [36]

and this paper establishes a rigorous proof of SE for general

decision functions and general performance measures.

D. Contributions

The main contribution is the rigorous justification of the

SE equations for the EP-based algorithm, conjectured in [27].

More precisely, we derive SE equations for individual elements

of the signal vector in the large system limit. This implies the

achievability of the Bayes-optimal performance proved in [32],

when the compression rate is larger than the BP threshold,

while the converse theorem is partially open, i.e. there are no

algorithms outperforming the EP-based algorithm in the large

system limit when unbounded signals are considered.

The technical novelty is in an extension of the conditioning

technique in [12] for i.i.d. Gaussian measurement matrices to

the case of Haar matrices. This paper presents a construc-

tive proof for the conditional distribution of a Haar matrix.

The proposed conditioning technique is applicable to any

MP algorithm for signal recovery from unitarily invariant

measurements, such as the AMP, unless the algorithm con-

tains nonlinear processing in the measurement vector y, e.g.

quantization [28]. However, whether the obtained SE becomes

simple depends on the MP algorithm and the statistics of

A [39]. Thus, it is an important future work to design a low-

complexity MP algorithm such that simple SE equations are

obtained for unitarily invariant measurements.
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E. Organization

The remainder of this paper is organized as follows: Af-

ter summarizing the notation used in this paper, Section II

presents the definition of unitarily invariant matrices and

technical results associated with Haar matrices. In Section III,

we introduce assumptions used throughout this paper, and then

formulate an EP-based algorithm. The main result is presented

in Section IV, and proved in Section V. Several technical

results are proved in appendices.

F. Notation

The notation o(1) denotes a vector of which the Euclidean

norm converges almost surely toward zero in the large system

limit. For a vector v ∈ CN , we write the nth element of v

as vn. For a subset N ⊂ {1, . . . , N}, the vector xN consists

of the elements {xn : n ∈ N}, while x\N is obtained by

eliminating {xn : n ∈ N} from x. For a scalar function

f : C → C, we introduce a convention in which f(v) denotes

the vector obtained by the component-wise application of f
to v, i.e. [f(v)]n = f(vn).

For a complex number z ∈ C and a matrix M ∈ CM×N ,

the complex conjugate, transpose, and the conjugate transpose

are denoted by z∗, MT, and MH. We write the (m,n)th
element of M as Mmn. When M is Hermitian, λmin(M )
represents the minimum eigenvalue of M . For M ≥ N ,

UM×N denotes the space of all possible M×N matrices with

orthonormal columns, while UM×N for M < N represents the

space of all possible M ×N matrices with orthonormal rows.

When M = N holds, UM×N is written as UN , which is the

space of all possible N ×N unitary matrices.

We write the singular-value decomposition (SVD) of M as

M = ΦM (ΣM ,O)ΨH
M (2)

for M ≤ N , with ΦM ∈ UM and ΨM ∈ UN . Furthermore,

ΣM is an M ×M positive semi-definite diagonal matrix. The

unitary matrix ΨM is partitioned as ΨM = (Ψ
‖
M ,Ψ⊥

M ), in

which Ψ
‖
M ∈ UN×M is composed of the first M columns

of ΨM , while Ψ
⊥
M ∈ UN×(N−M) consists of the remaining

columns. For M > N , we write the SVD of M as

M = ΦM

(

ΣM

O

)

Ψ
H
M , (3)

with ΦM ∈ UM and ΨM ∈ UN . Furthermore, ΣM is an

N × N positive semi-definite diagonal matrix. The unitary

matrix ΦM = (Φ
‖
M ,Φ⊥

M ) is partitioned in the same manner

as for M ≤ N .

When M is full rank, the pseudo-inverse of M is de-

noted by M † = (MHM )−1MH ∈ CN×M for M > N .

Let P
‖
M denote the orthogonal projection matrix onto the

space spanned by the columns of M . We have P
‖
M =

Φ
‖
M (Φ

‖
M )H = MM †. The projection matrix P⊥

M onto

the orthogonal complement is given by P⊥
M = IM − P

‖
M .

For M ≤ N , we define M † = MH(MMH)−1, P
‖
M =

Ψ
‖
M (Ψ

‖
M )H = M †M , and P⊥

M = IN − P
‖
M .

The proper complex Gaussian distribution with mean m

and covariance Σ is denoted by CN (m,Σ). The expectation

and variance of a random variable X is denoted by E[X ] and

V[X ], respectively. The notation X
a.s.
= Y means that X is

almost surely equal to Y . Similarly,
a.s.→ ,

a.s.
≥ , and

a.s.
≤ indicate

that →, ≥, and ≤ hold almost surely. The notation X ∼ Y
means that X follows the same distribution as Y . The notation

X |Y indicates that we focus on the conditional distribution of

X given Y .

II. PRELIMINARIES

A. Definitions

The purpose of this section is to present the strong law of

large numbers for a Haar matrix. The result corresponds to

[12, Lemma 2] for an i.i.d. Gaussian matrix. We first present

several definitions.
Definition 1: A unitary random matrix U ∈ Un is called a

Haar matrix if U is uniformly distributed on Un.
An important property of a Haar matrix is bi-unitary invari-

ance [35]—used throughout this paper.
Definition 2: A random matrix M is said to be bi-unitarily

invariant if M ∼ UMV holds for all deterministic unitary

matrices U and V .

In this paper, the functions z∗f(x+ z) and |x− f(x+ z)|2
of x ∈ C and z ∈ C are considered for a Lipschitz-continuous

function f : C → C. To characterize these functions, we

follow [12] to define pseudo-Lipschitz functions.
Definition 3: For k ≥ 1, we say that a function f : Cn →

C is pseudo-Lipschitz of order k if there is some Lipschitz

constant L > 0 such that

‖f(x)− f(y)‖ ≤ L‖x− y|(1 + ‖x‖k−1 + ‖y‖k−1) (4)

holds for all x,y ∈ Cn.
Note that any pseudo-Lipschitz function of order 1 is

Lipschitz-continuous. A pseudo-Lipschitz function f(x) of

order k is O(‖x‖k) as‖x‖ → ∞.

The following proposition is used for further evaluation of

the upper bound (4) throughout this paper.
Proposition 1: For any k ≥ 1, there is some constant C > 0

such that

(a+ b)k ≤ C(ak + bk) (5)

holds for all a ≥ 0 and b ≥ 0.
Proof: The inequality follows from a general upper bound

‖ · ‖1 ≤ 21−1/k‖ · ‖k on C2.

B. Results

We consider an array {XN ∈ CN}∞N=1 of dependent ran-

dom variables XN = (X1,N , . . . , XN,N)T. An array {XN}
allows the distribution of each element Xn,N to change as

N grows, while the distribution of each element is fixed in a

sequence X ∈ CN . We first present the strong law of large

numbers for an array {XN ∈ C
N}∞N=1 of dependent random

variables.
Theorem 1 (Lyons [38]): Let {XN} denote an array of

complex random variables with finite second moments, and

define SN =
∑N

n=1 Xn,N . If the following assumption holds:

∞
∑

N=1

√

V[SN ]

N2
< ∞, (6)
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the strong law of large numbers for TN = (SN − E[SN ])/N
holds, i.e. limN→∞ TN

a.s.
= 0.

Proof: Lyons [38, Theorem 6] proved Theorem 1 for a

sequence of complex random variables, i.e. Xn,N = Xn,N ′

for all N 6= N ′. However, the proof is applicable to the array

case with no changes, by defining Xn,N = 0 for n > N .

Thus, Theorem 1 holds.

The condition (6) is satisfied when V[SN ] = O(Nα) holds

for some α < 2. In particular, we have α = 1 when {Xn,N}
are uncorrelated random variables. We next present the strong

law of large numbers associated with a Haar matrix.

Lemma 1: For t′ ∈ N, suppose that fn : Ct′+1 → C denote a

pseudo-Lipschitz function of order k with a Lipschitz constant

Ln > 0. Let ǫN = (ǫ1,N , . . . , ǫN,N)T ∈ CN denote a vector

that satisfies

lim
N→∞

1

N

N
∑

n=1

Ln|ǫn,N |2 a.s.
= 0, (7)

lim sup
N→∞

1

N

N
∑

n=1

Ln|ǫn,N |2k−2 a.s.
< ∞. (8)

Suppose that aτ,N = (aτ,1,N , . . . , aτ,N,N)T ∈ CN for τ =
0, . . . , t′ satisfies

lim sup
N→∞

1

N

N
∑

n=1

Li
n|aτ,n,N |2k−2 a.s.

< ∞ for i = 1, 2. (9)

For t > 0, let EN = (eT
1,N , . . . , eTN,N)T ∈ CN×t denote a

matrix that satisfies

lim sup
N→∞

1

N

N
∑

n=1

Ln‖en,N‖max{2,2k−2} a.s.
< ∞, (10)

lim inf
N→∞

λmin

(

1

N
EH

NEN

)

a.s.
> C (11)

for some constant C > 0. Suppose that {XN ∈ CN} is an

array of unitarily invariant random variables conditioned on

ǫN , {aτ,N}, and EN , i.e. ΦXN ∼ XN conditioned on ǫN ,

{aτ,N}, and EN for any deterministic unitary matrix Φ ∈ UN .

For some v > 0, postulate the following:

lim
N→∞

1

N
‖XN‖2 a.s.

= v > 0. (12)

Let z ∼ CN (0, IN ) denote a standard complex Gaussian

random vector. Then, the following two properties hold:

1) Postulate the following assumptions:

• ǫN has finite (2k−2)th moments and vanishing second

moments, i.e. E[|ǫn,N |2] → 0 as N → ∞.
• aτ,N has finite (2k − 2)th moments.

• EN has finite max{2, 2k − 2}th moments.

• XN has finite (max{2, 2k − 2} + ǫ)th moments for

some ǫ > 0.

Then, for any t ≥ 0

lim
N→∞

E

[

fn(an,0,N , . . ., an,t′−1,N ,

an,t′,N + ǫn,N + [Φ⊥
EN

XN−t]n)
]

= E

[

fn(an,0,N , . . ., an,t′−1,N , an,t′,N +
√
vzn)

]

,(13)

where the convention Φ
⊥
EN

= IN is introduced for t = 0.

2) If the sequence of Lipschitz constants satisfies

1

N

N
∑

n=1

L2
n < ∞, (14)

then for t ≥ 0

lim
N→∞

1

N

N
∑

n=1

{

fn(an,0,N , . . . , an,t′−1,N ,

an,t′,N + ǫn,N + [Φ⊥
EN

XN−t]n)

−Ezn [fn(an,0,N , . . . ,an,t′−1,N , an,t′,N +
√
vzn)]

}

a.s.
= 0.

(15)

Proof: See Appendix A.
Lemma 1 is used repeatedly to prove the main theorem of

this paper. Finally, we prove the following corollary that is

used in the derivation of the EP-based algorithm.
Corollary 1: Let a ∈ CN denote a vector that satisfies

limN→∞ N−1‖a‖2 a.s.
= 1. Suppose that D ∈ CN×N is

a Hermitian matrix with limN→∞ N−1Tr(Di)
a.s.
= di for

i = 1, 2. Let V ∈ UN denote a Haar matrix independent

of a and D. Then,

lim
N→∞

1

N
aHV HDV a

a.s.
= d1. (16)

Proof: Without loss of generality, we can assume that D

is diagonal since V is a Haar matrix. For XN = V a, we

have
1

N
aHV HDV a =

1

N

N
∑

n=1

fn(Xn,N), (17)

with fn(z) = Dn|z|2, in which Dn denotes the nth diagonal

element of D. Since fn is a pseudo-Lipschitz function of

order 2 with the Lipschitz constant |Dn|, the assumptions on

a and D imply that all assumptions in Lemma 1 are satisfied

with v = 1. Thus, we use Lemma 1 to arrive at

1

N
aHV HDV a

a.s.
=

1

N

N
∑

n=1

DnE[|zn|2] + o(1)
a.s.→ d1 (18)

as N → ∞, which implies Corollary 1.

III. SYSTEM MODEL

A. Assumptions

Assumptions on the measurement model (1) are presented.

Assumption 1: The signal vector x is composed of zero-

mean i.i.d. non-Gaussian elements with unit variance and finite

(2 + ǫ)th moments for some ǫ > 0.

From the strong law of large numbers [40], Assumption 1

implies that N−1‖x‖2 converges almost surely to 1 as N →
∞. The i.i.d. assumption for x is implicitly used in the

derivation of an EP-based algorithm. We require no additional

assumptions for the prior distribution of each element to

prove the main theorem, whereas it is practically important to

postulate some prior distribution indicating the sparsity of x.
Definition 4: A Hermitian random matrix M is said to be

unitarily invariant if M ∼ UMUH holds for any determin-

istic unitary matrix U .
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Assumption 2: The measurement matrix A has the following

properties:

• AHA is unitarily invariant.

• The empirical eigenvalue distribution of AAH converges

almost surely to a deterministic distribution ρ(λ) with a

compact support in the large system limit.

We write the SVD of A as

A = U(Σ,O)V H, (19)

with U ∈ UM and V ∈ UN . Furthermore, Σ is an M × M
positive semi-definite diagonal matrix. From Assumption 2, V

is a Haar matrix and independent of UΣ [35].

Assumption 3: The noise vector w has finite (2 + ǫ)th
moments for some ǫ > 0. Let D ∈ CM×M denote any

Hermitian matrix such that D is independent of UHw, and

that M−1Tr(D2) converges almost surely as M → ∞. Then,

lim
M→∞

1

M

{

wHUDUHw − σ2Tr(D)
}

a.s.
= 0. (20)

Assumption 3 implies that σ2 corresponds to the noise

power σ2 a.s.
= limM→∞ M−1‖w‖2 per element, by selecting

D = IM . Assumption 3 is satisfied if w is unitarily invariant,

e.g. w ∼ CN (0, σ2IM ), or if U is a Haar matrix.

B. Expectation Propagation

We start with an MP algorithm proposed in [27]. Let the

detector postulate that the noise vector w in (1) is a circularly

symmetric complex Gaussian (CSCG) random vector with

covariance σ2IM . This postulation needs not be consistent

with the true distribution of w.

As derived in Appendix B, the MP algorithm for this case

is based on EP and composed of two modules. In iteration t, a

first module—called module A—calculates the extrinsic mean

xt
A→B and variance vtA→B of the signal vector x from xt

B→A

and vtB→A provided by the other module—called module B.

xt
A→B = xt

B→A + γtW
t(y −Axt

B→A), (21)

vtA→B = γt − vtB→A. (22)

In the initial iteration t = 0, the prior mean x0
B→A = 0 and

variance v0B→A = N−1E[‖x‖2] = 1 are used.

In (21), the linear minimum mean-square error (LMMSE)

filter W t ∈ CN×M is given by

W t = AH
(

σ2IM + vtB→AAAH
)−1

. (23)

The normalization coefficient2 γt in (21) is defined as

1

γt
= lim

M=δN→∞

1

N
Tr(W tA)

a.s.
=

1

γ(vtB→A)
(24)

due to Assumption 2, with

1

γ(v)
=

∫

δλ

σ2 + vλ
dρ(λ), (25)

where ρ(λ) denotes the asymptotic eigenvalue distribution of

AAH in the large system limit. The coefficient γt keeps the

orthogonality between estimation errors in the two modules.

2 γ
−1
t = N−1Tr(W tA) may be used in practical situations.

On the other hand, module B computes the minimum mean-

square error (MMSE) estimator and the posterior variance of

x

η̃t(x
t
A→B) = E[x|xt

A→B], (26)

vt+1
B =

1

N

{

E[‖x‖2|xt
A→B]− ‖η̃t(xt

A→B)‖2
}

, (27)

given the virtual additive white Gaussian noise (AWGN)

observation,

xt
A→B = x+ zt, zt ∼ CN (0, vtA→BIN ). (28)

If a termination condition is satisfied, module B outputs

η̃t(x
t
A→B) as an estimate of x. Otherwise, module B feeds

the extrinsic mean xt+1
B→A and variance vt+1

B→A of x back to

module A, given by

xt+1
B→A = ηt(x

t
A→B), (29)

1

vt+1
B→A

=
1

vt+1
B

− 1

vtA→B

, (30)

where the extrinsic decision function ηt : C → C is defined

as

ηt(z) = vt+1
B→A

(

η̃t(z)

vt+1
B

− z

vtA→B

)

. (31)

Remark 1: The extrinsic decision function (31) is zero if

x ∼ CN (0, IN ) holds. We have postulated Assumption 1 to

avoid a constant decision function.

It is not trivial whether the posterior variance (27) is

bounded. Therefore, we postulate the following assumption:

Assumption 4: Each posterior variance E[|xn|2|xt
n,A→B]−

|η̃t(xt
n,A→B)|2 is almost surely bounded.

Assumption 4 is a necessary condition for utilizing the EP-

based algorithm in practical situations. The author believes that

Assumption 4 can be proved without additional conditions.

We present important properties of the Bayes-optimal deci-

sion function η̃t in module B. We start with the definition of

the Wirtinger derivative of a complex function.

Definition 5 (Wirtinger derivative): For a complex number

z = x+ iy, the Wirtinger derivative is defined as

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

. (32)

For a complex function f : C → C, we write (∂/∂z)(ℜ[f ] +
iℑ[f ]) as ∂f/∂z.

Lemma 2 (Ma and Ping [27]): Suppose that z ∼
CN (0, vtA→B) is a CSCG random variable with variance vtA→B

and independent of xn. Then, the decision function η̃t is

Lipschitz-continuous and satisfies

Ez [z
∗η̃t(xn + z)] = vtA→BEz

[

∂η̃t
∂z

(xn + z)

]

, (33)

E [z∗η̃t(xn + z)] = MMSE(vtA→B) (34)

for any n, where MMSE(vtA→B) denotes the MMSE based

on an AWGN observation, given by

MMSE(vtA→B) = E
[

|xn − η̃t(xn + z)|2
]

. (35)

Proof: See Appendix C for the proof based on [27].
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Lemma 2 is used to prove the orthogonality between es-

timation errors in the two modules. The identity (33) is a

generalization of Stein’s lemma [41] to the complex-valued

case.

Remark 2: As considered in [24], [27], we can replace the

decision function η̃t with another suboptimal function. Such a

replacement may be important when the true prior distribution

of the signal elements is unknown. Nonetheless, for simplicity,

we only consider the optimal decision function η̃t. See [24]

for a generalization of the decision function.

C. Error Recursion

An error recursion for the EP-based algorithm is formulated

to analyze the convergence property. Let ht = xt
A→B−x and

qt = xt
B→A −x denote the estimation errors for the extrinsic

estimates in modules A and B, respectively. Substituting the

system model (1) into the update rule (21) of xt
A→B, and using

the SVD (19) and the update rule (29) of xt
B→A, we obtain

the error recursion

bt = V Hqt, (36)

mt = bt − γtW̃ t{(Σ,O)bt − w̃}, (37)

ht = V mt, (38)

qt+1 = ηt(x+ ht)− x, (39)

with w̃ = UHw. In (37), the linear filter W̃ t is given by

W̃ t = (Σ,O)H
(

σ2IM + vtB→AΣ
2
)−1

. (40)

Furthermore, we define η−1(·) = 0 to obtain q0 = −x.

In analyzing the convergence property, we focus on the

distribution of the estimation error ht conditioned on the

preceding iteration history. Thus, it is useful to represent the

error recursion in the matrix form. Define

Qt =(q0, . . . , qt−1) ∈ C
N×t,

Bt =(b0, . . . , bt−1) ∈ C
N×t,

M t =(m0, . . . ,mt−1) ∈ C
N×t,

Ht =(h0, . . . ,ht−1) ∈ C
N×t. (41)

The error recursion is represented as

V HQt = Bt, (42)

M t = Gt(Bt, w̃), (43)

V M t = Ht, (44)

Qt+1 = F t(Ht,x), (45)

where the τ th columns of Gt(Bt, w̃) and F (Ht,x) are equal

to the right-hand sides (RHSs) of (37) and (39) for t = τ ,

respectively.

The random vectors defined in Section III may have ele-

ments of which the distributions change as N grows. Thus,

the subscript N should have been added in terms of the math-

ematical notation. Nonetheless, we have omitted the subscript

N for notational simplicity.

IV. MAIN RESULT

Ma and Ping [27] conjectured that the following SE equa-

tions describe the dynamics of the EP-based algorithm in the

large system limit:

v̄tA→B = γ
(

v̄tB→A

)

− v̄tB→A, (46)

1

v̄t+1
B→A

=
1

MMSE(v̄tA→B)
− 1

v̄tA→B

, (47)

with v̄0B→A = 1, in which γ(·) and MMSE(·) are given in

(25) and (35), respectively. The following theorem justifies

their conjecture.

Theorem 2: Define v̄tA→B and v̄tB→A via the SE equa-

tions (46) and (47). Then, the following results hold in the

large system limit:

lim
M=δN→∞

1

N
‖xt

A→B − x‖2 a.s.
= v̄tA→B, (48)

lim
M=δN→∞

1

N
‖η̃t(xt

A→B)− x‖2 a.s.
= MMSE(v̄tA→B), (49)

lim
M=δN→∞

1

N
‖ηt(xt

A→B)− x‖2 a.s.
= v̄t+1

B→A. (50)

The update rules (22) and (30) in the EP-based algorithm

have the same representation as that in the SE equations (46)

and (47). This implies that the EP-based algorithm predicts the

exact dynamics of the extrinsic variances in the large system

limit. The FPs of the SE equations were proved in [27] to

correspond to those of an asymptotic energy function that

describes the Bayes-optimal performance [30]–[32]. Thus, the

Bayes-optimal performance is achievable when the SE equa-

tions have a unique FP, or equivalently when the compression

rate δ is larger than the BP threshold.

The following theorem justifies the SE equations (46) and

(47) in terms of individual MSEs.

Theorem 3: Define v̄tA→B and v̄tB→A via the SE equa-

tions (46) and (47). Then, for any n

lim
M=δN→∞

E[|η̃t(xt
n,A→B)− xn|2] = MMSE(v̄tA→B), (51)

lim
M=δN→∞

E[|ηt(xt
n,A→B)− xn|2] = v̄t+1

B→A. (52)

Remark 3: For simplicity, the individual MSE for the extrin-

sic estimate in module A is not analyzed in this paper. Further-

more, we have assumed the i.i.d. property of the elements of

the signal vector x. However, our proof strategy can be applied

to justifying that the individual MSE E[|xt
n,A→B − xn|2]

for module A converges to v̄tA→B in the large system limit.

Furthermore, the assumption on x can be relaxed to the case

of independent but non-identically distributed signals.

We shall introduce several notations to present a general

theorem, of which corollaries are Theorems 2 and 3. The

random variables in the error recursions (42)–(45) are divided

into three groups: V , Θ = {Σ, w̃,x}, and

Xt,t′ =
{

Qt+1,Bt′ ,M t′ ,Ht

∣

∣

∣
BH

t′M t = QH
t′Ht,

M t′ = Gt′(Bt′ , w̃),Qt+1 = F t(Ht,x)
}

, (53)
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TABLE I
NOTATIONAL CONVENTIONS FOR t = 0.

X0,0 = {Q1}, X0,1 = {Q1,B1,M1|M1 = G1(B1, w̃)},

Q0 = O, B0 = O, M0 = O, H0 = O, M
†
0 = O, Q

†
0 = O,

α0 = 0, β0 = 0, Φ⊥
O

= I , Φ⊥
(M ,O) = Φ

⊥
M

for any M .

for t′ = t or t′ = t + 1, while we define X0,0 = {Q1} and

X0,1 = {Q1,B1,M 1|M1 = G1(B1, w̃)}. See Table I for

the notational conventions used in this paper.

The set Θ is fixed throughout this paper. Thus, conditioning

on Θ is omitted. The set Xt,t describes the history of all

preceding iterations just before updating (36), while Xt,t+1

represents the history just before updating (38). Note that the

condition BH
t′M t = QH

t′Ht is a constraint imposing V ∈ UN ,

and follows from (42) and (44). In order to investigate the

dynamics of the error recursions, the distribution of the Haar

matrix V conditioned on Xt,t′ is analyzed.

Let m⊥
t = P⊥

Mt
mt. Since m

‖
t = mt − m⊥

t is in the

space spanned by the columns of M t, we have (m
‖
t )

Hm⊥
t =

0. Furthermore, m
‖
t is represented as m

‖
t = M tαt, with

αt = M
†
tmt ∈ Ct. Similarly, we define q⊥

t′ = P⊥
Qt′

qt′ and

q
‖
t′ = qt′ − q⊥

t′ = Qt′βt′ , with βt′ = Q
†
t′qt′ ∈ Ct′ .

For notational convenience, we define the conventions listed

in Table I, which imply P⊥
O = I , m⊥

0 = m0, and q⊥
0 = q0.

Theorem 4: Let D = diag{D1, . . . , DN} denote any N×N
real diagonal matrix that is a function of Σ. For some ǫ >
0, suppose that N−1Tr(Dk) converges almost surely for all

k ∈ [0, 4 + ǫ) as N → ∞. Then, the following properties for

module A hold for each iteration τ = 0, 1, . . .:

(A1) Define

b̃τ = Bτβτ +Mτo(1)+Bτo(1)+Φ
⊥
(Bτ ,Mτ )zτ , (54)

with

zτ = Ṽ
H
(Φ⊥

(Qτ ,Hτ ))
Hqτ , (55)

where Ṽ ∈ UN−2t is a Haar matrix and independent of

Θ and Xτ,τ . Then, we have

bτ |Θ,Xτ,τ
∼ b̃τ (56)

conditioned on Θ and Xτ,τ in the large system limit, with

lim
M=δN→∞

1

N

{

‖zτ‖2 − ‖q⊥
τ ‖2

} a.s.
= 0. (57)

(A2) For all τ ′ ≤ τ ,

lim
M=δN→∞

1

N
bHτ ′DW̃ τ w̃

a.s.
= 0, (58)

lim
M=δN→∞

1

N

{

bHτ ′Dbτ − Tr(D)

N
qH
τ ′qτ

}

a.s.
= 0, (59)

lim
M=δN→∞

1

N
bHτ ′mτ

a.s.
= 0, (60)

where W̃ τ is given by (40).

(A3) Define v̄τA→B in the SE equations (46) and (47), Then,

lim
M=δN→∞

vτA→B
a.s.
= v̄τA→B, (61)

lim
M=δN→∞

1

N
‖mτ‖2 a.s.

= v̄τA→B. (62)

(A4) For some ǫ > 0 and C > 0,

lim
M=δN→∞

E
[

|mτ,n|2+ǫ
]

< ∞, (63)

lim sup
M=δN→∞

1

N
mH

τ Dmτ

a.s.
< ∞, (64)

lim inf
M=δN→∞

λmin

(

1

N
MH

τ+1M τ+1

)

a.s.
> C. (65)

The following properties hold for module B:

(B1) Define

h̃τ = Hτατ +Qτ+1o(1) +Hτo(1) +Φ
⊥
(Qτ+1,Hτ )z̃τ ,

(66)

with

z̃τ = Ṽ (Φ⊥
(Bτ+1,Mτ ))

Hmτ , (67)

where Ṽ ∈ UN−(2t+1) is a Haar matrix and independent

of Θ and Xτ,τ+1. Then, we have

hτ |Θ,Xτ,τ+1
∼ h̃τ (68)

conditioned on Θ and Xτ,τ+1 in the large system limit,

with

lim
M=δN→∞

1

N

{

‖z̃τ‖2 − ‖m⊥
τ ‖2

} a.s.
= 0. (69)

(B2) For all τ ′ ≤ τ ,

lim
M=δN→∞

1

N
hH
τ qτ ′+1

a.s.
= 0. (70)

(B3) Define v̄τA→B and v̄τ+1
B→A in the SE equations (46) and

(47), Then,

lim
M=δN→∞

vτ+1
B

a.s.
= MMSE(v̄τA→B), (71)

lim
M=δN→∞

vτ+1
B→A

a.s.
= v̄τ+1

B→A, (72)

lim
M=δN→∞

1

N
‖η̃t(x+ ht)− x‖2 a.s.

= MMSE(v̄τA→B),

(73)

lim
M=δN→∞

1

N
‖qτ+1‖2

a.s.
= v̄τ+1

B→A. (74)

(B4) For some ǫ > 0 and C > 0,

lim
M=δN→∞

E
[

|qτ+1,n|2+ǫ
]

< ∞, (75)

lim inf
M=δN→∞

λmin

(

1

N
QH

τ+2Qτ+2

)

a.s.
> C. (76)

(B5) Define v̄τA→B and v̄τ+1
B→A in the SE equations (46) and

(47), Then,

lim
M=δN→∞

E[|η̃τ (xn + hτ,n)− xn|2] a.s.
= MMSE(v̄τA→B),

(77)

lim
M=δN→∞

E[|qτ+1,n|2] a.s.= v̄τ+1
B→A. (78)

Proof: See Section V.

Ma and Ping [27, Assumption 1] postulated that z̃τ in (66)

has independent CSCG elements. The assumption is too strong

to be justified. In fact, the references [42], [43] imply that the

assumption is not correct, while the assumption holds only
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for finite subsets of the elements of z̃τ . However, the weaker

property (B1) is sufficient to prove Theorem 4.

Proof of Theorem 2: The property (48) follows from the

definition (38) of ht and (62). Furthermore, (49) and (50) are

due to (73) and (74), respectively.

Proof of Theorem 3: Theorem 3 follows from (77) and

(78).

V. PROOF OF THEOREM 4

A. Technical Lemma

We need to evaluate the two distributions p(mt, bt|Θ,Xt,t)
and p(qt+1,ht|Θ,Xt,t+1). The former distribution represents

the error recursions (36) and (37) conditioned on the history

of all preceding iterations, while the latter describes the error

recursions (38) and (39). We follow the proof strategy in [12]

to evaluate the two distributions via the conditional distribution

p(V |Θ,Xt,t′) for t′ = t or t′ = t+1. See Section I-B for the

main idea in analyzing the conditional distributions.

The following lemma provides a useful representation of

V ∈ UN conditioned on Θ and Xt,t′ , and corresponds to [12,

Lemma 10]. See Section I-F for the notation.

Lemma 3: Suppose that Y ∈ CN×t is full-rank for 0 <
t < N , and consider the noiseless and compressed observation

X ∈ CN×t of V given by

X = V HY . (79)

Then, the conditional distribution of the Haar matrix V given

X and Y satisfies

V |X,Y ∼ Y (Y TY )−1XH +Φ
⊥
Y Ṽ (Φ⊥

X)H, (80)

where Ṽ ∈ UN−t is a Haar matrix independent of X and Y .

Proof: See Appendix D.

Proposition 2: Let a ∈ Ct and M = (m0, . . . ,mt−1) ∈
CN×t. If N−1‖mτ‖2 is bounded for any τ as N → ∞, then

lim sup
N→∞

1

N
aHMHMa < ∞. (81)

Proof: Proposition 2 follows from N−1‖mτ‖2 < ∞ and

‖Ma‖2 ≤ ‖M‖2‖a‖2.

We are ready to prove Theorem 4. The proof is by induction.

We first prove the properties of modules A and B for τ = 0.

Then, the properties are proved for τ = t under the induction

hypotheses for all τ < t.

B. Module A for τ = 0

Property (A1) for τ = 0: Property (A1) for τ = 0 is

trivial from the definition (36) of b0, because of the notational

convention.

Eq. (58)–(60) for τ = 0: We first prove (58) and (59)

for τ = 0. Let XN = b0 and fn(z) = z∗[DW̃ 0w̃]n to have

the representation

1

N
bH0 DW̃ 0w̃ =

1

N

N
∑

n=1

fn(b0,n). (82)

From Property (A1) for τ = 0, XN is unitarily invariant. The

definition (36) of b0, q0 = −x, and Assumption 1 imply the

condition (12) with v = 0. Since fn is Lipschitz-continuous

with the Lipschitz constant Ln = |[DW̃ 0w̃]n|, we need to

prove the condition (14) to use Lemma 1. Using the definition

w̃ = UHw and Assumption 3 yields

1

N

N
∑

n=1

L2
n =

1

N
w̃HW̃

H

0 D
2W̃ 0w̃

a.s.
=

σ2

N
Tr
(

D2W̃ 0W̃
H

0

)

+ o(1)

≤σ2

{

Tr(D4)

N

}1/2
{

Tr{(W̃ 0W̃
H

0 )
2}

N

}1/2

+ o(1)

a.s.
<∞ (83)

in the large system limit, where the first inequality follows

from the Cauchy-Schwarz inequality, and where the bounded-

ness is due to the definition of D, the definition (40) of W̃ 0,

and Assumption 2. Thus, we can use Lemma 1 to obtain (58)

for τ = 0. Similarly, we use Lemma 1 for fn(z) = Dn|z|2 to

have (59) for τ = 0.
We next prove (60) for τ = 0. Let k ∈ [0, 4 + ǫ). We use

Hölder inequality for any p ∈ (1, (4 + ǫ)/k) to obtain

1

N
Tr

{

(

DW̃ 0(Σ,O)
)k
}

≤ 1

N

{

Tr(Dkp)
}1/p

{

Tr

[

(

W̃ 0(Σ,O)
)kq
]}1/q

a.s.
<∞ (84)

as N → ∞, with q−1 = 1 − 1/p, where the boundedness is

obtained by repeating the proof of the boundedness in (83).

Thus, we use (58) and (59) for τ = 0 to have
γ0
N

bH0 DW̃ 0 {(Σ,O)b0 − w̃}

a.s.
= γ0

Tr(DW̃ 0(Σ,O))

N

1

N
qH
0 q0 + o(1). (85)

In particular, for D = IN we use the definition (24) of γ0
to obtain

γ0
N

Tr
{

W̃ 0(Σ,O)
}

a.s.
= 1 + o(1). (86)

Applying (86) to (85), we find

γ0
N

bH0 W̃ 0 {(Σ,O)b0 − w̃} a.s.
=

1

N
qH
0 q0 + o(1). (87)

From the definition (37) of m0, (59) with D = IN for τ = 0,

and (87), we arrive at (60) for τ = 0.
Eqs. (61)–(65) for τ = 0: The almost sure conver-

gence (61) for τ = 0 follows from the update rule (22) of

v0A→B, the definition (24) of γ0, the SE (46) for module A,

and v0B→A = v̄0B→A = 1.
Let us prove (64) for τ = 0, before proving (62). Using the

definition (37) of m0, (85), and Assumption 3, as well as (59)

for τ = 0, we have

mH
0 Dm0

N

a.s.
=

Tr(D)

N

qH
0 q0

N
− 2γ0

Tr(DW̃ 0(Σ,O))

N

qH
0 q0

N

+
γ2
0Tr(D̃)

N

qH
0 q0

N
+

σ2γ2
0

N
Tr
(

W̃
H

0 DW̃ 0

)

+ o(1) (88)
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in the large system limit, with

D̃ =

(

Σ

O

)

W̃
H

0 DW̃ 0(Σ,O). (89)

It is straightforward to confirm the boundedness of (88). Thus,

(64) holds for τ = 0.

In particular, for D = IN we have

Tr(D̃) = Tr
{

(

σ2IM + v0B→AΣ
2
)−2

Σ
4
}

, (90)

Tr
(

W̃
H

0 W̃ 0

)

= Tr
{

(

σ2IM + v0B→AΣ
2
)−2

Σ
2
}

. (91)

Applying these results, (86), and N−1‖q0‖2 = N−1‖x‖2 a.s.→
v0B→A = 1 to (88), we obtain (62) for τ = 0.

To prove the moment property (63) for τ = 0, we observe

that b0 has finite (2 + ǫ)th moments, by using the defini-

tion (36) of b0, q0 = −x, and Assumption 1. Thus, the

moment property (63) for τ = 0 follows from the defini-

tion (37) of m0, the definition (40) of W̃ 0, Assumption 2,

and Assumption 3.

Finally, (65) for τ = 0 is equivalent to N−1‖m0‖2 a.s.
=

v̄0A→B > 0, which follows from (62) for τ = 0.

C. Module B for τ = 0

Property (B1) for τ = 0: We prove (68) for τ = 0.

Applying Lemma 3 with X = b0 and Y = q0 to the

definition (38) of h0 yields

h0 ∼ bH0 m0

‖q0‖2
q0 +Φ

⊥
q0
Ṽ (Φ⊥

b0
)Hm0 (92)

conditioned on Θ and X0,1, in which Ṽ ∈ UN−1 is a Haar

matrix and independent of Θ and X0,1. From q0 = −x,

Assumption 1, and (60) for τ = 0, we find

h0 ∼ q0o(1) +Φ
⊥
q0
Ṽ (Φ⊥

b0
)Hm0 (93)

in the large system limit, which implies (68) for τ = 0,

because of the notational convention.

In order to complete the proof, we shall prove (69) for τ =
0. Define

ν0 =
1

N
mH

0 P
⊥
b0
m0. (94)

Applying P⊥
b0

= IN − ‖b0‖−2b0b
H
0 to (94), and using (59)

and (60) for τ = 0, we have

ν0
a.s.
=

1

N
mH

0 m0 + o(1)
a.s.
= v̄0A→B + o(1) (95)

in the large system limit, where the last equality follows from

(62) for τ = 0. In particular, we have the convention m⊥
0 =

m0 to find (69) for τ = 0. Thus, Property (B1) holds for

τ = 0.

Let XN = z̃0 given in (67), a0,N = x, ǫN = q0o(1),
and EN = q0. For k = 1 or k = 2, we prove that all

conditions in Lemma 1 with v = v̄0A→B are satisfied for any

pseudo-Lipschitz function fn : C2 → C of order k with an

n-independent Lipschitz constant L > 0. Thus,

E [fn(xn, h0,n)]
a.s.
= E [fn(xn, z̃0,n)] + o(1), (96)

1

N

N
∑

n=1

fn(xn, h0,n)
a.s.
=

1

N

N
∑

n=1

Ez̃0,n [fn(xn, z̃0,n)] + o(1)

a.s.
=

1

N

N
∑

n=1

E [fn(xn, z̃0,n)] + o(1) (97)

in the large system limit, with z̃0 ∼ CN (0, v̄0A→BIN ), where

the latter equality follows from Assumption 1.

The conditions (7), (8), (9), and (10) follow from q0 = −x,

Assumption 1, and Theorem 1. The condition (11) is due to

N−1‖q0‖2
a.s.→ 1. The condition (12) with v = v̄0A→B follows

from (62) and (69) for τ = 0, as well as the convention m⊥
0 =

m0. The moment conditions of aN , ǫN , and EN are due to

q0 = −x and Assumption 1. The moment condition of X

follows from the definition (67) of z̃0 and (63) for τ = 0.

Thus, all conditions in Lemma 1 are satisfied.

Eqs. (71) and (72) for τ = 0: We first prove (71) for

τ = 0. From the definition (27) of the posterior variance v1B,

we have

v1B =
1

N

N
∑

n=1

fn(xn, h0,n), (98)

with fn(x, z) = V[xn|x0
n,A→B = x+z] defined via the virtual

AWGN observation (28). From Assumption 4, the posterior

variance V[xn|x0
n,A→B] is bounded, so that fn(x, z) is a

Lipschitz-continuous function with a Lipschitz constant L > 0.

We use (97) to arrive at

v1B
a.s.
= MMSE(v̄0A→B) + o(1) (99)

in the large system limit, where we have used the fact that

the expectation of the posterior variance is equal to the

MMSE (35). Thus, (71) holds for τ = 0.

We next prove (72) for τ = 0. From (61) and (71) for τ = 0,

we observe that v1B→A given in (30) converges almost surely

to v̄1B→A given in (47) in the large system limit. Thus, (72)

holds for τ = 0.

Eq. (70) for τ = 0: The Lipschitz-continuity of η̃0 proved

in Lemma 2 implies that fn(xn, z) = z∗η̃0(xn + z) is a

pseudo-Lipschitz function of order 2 with an n-independent

Lipschitz constant L > 0. From (97), we obtain

1

N
hH
0 η̃0(x+ h0)

a.s.
= E

[

z̃∗0,nη̃0(xn + z̃0,n)
]

+ o(1) (100)

in the large system limit. Using Lemma 2 yields

1

N
hH
0 η̃0(x+ h0)

a.s.
= MMSE(v̄0A→B) + o(1) (101)

in the large system limit. Similarly, we obtain

1

N
hH
0 x

a.s.→ 0 (102)

in the large system limit.

We use the definition (39) of q1, the definition (31) of η0,

(72) for τ = 0, and (102) to obtain

1

N
hH
0 q1

a.s.
= v̄1B→A

(

hH
0 η̃0(x+ h0)

NMMSE(v̄0A→B)
− ‖h0‖2

Nv̄0A→B

)

+ o(1)

a.s.
= o(1) (103)
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in the large system limit, where the last equality follows from

the definition (38) of h0, (62) for τ = 0, and (101). Thus,

(70) holds for τ = 0.

Eqs. (73) and (74) for τ = 0: We first prove (73) for

τ = 0. By repeating the proof of (70) for τ = 0, we find

1

N
‖η̃0(x+ h0)− x‖2 a.s.

= E
[

|η̃0(xn + z̃0,n)− xn|2
]

+ o(1)

(104)

in the large system limit. Since the variance of z̃0.n is equal

to v̄0A→B, from the definition (35) of the MMSE function, we

arrive at (73) for τ = 0.

We next prove (74) for τ = 0. Using the definition (39)

of q1 and the definition (31) of η0, and the definition (47) of

v̄1B→A, as well as (61), (71), and (72) for τ = 0, we have

q1 =
v̄1B→A{η̃0(x+ h0)− x}

MMSE(v̄tA→B)
− v̄1B→A

v̄0A→B

h0. (105)

Applying (70) and (73) for τ = 0, as well as (101), (102), and

N−1‖h0‖2 a.s.→ v̄0A→B obtained from the definition (38) of h0

and (62) for τ = 0, we have

1

N
‖q1‖2

a.s.
=

(v̄1B→A)
2

MMSE(v̄0A→B)
− (v̄1B→A)

2

v̄0A→B

+ o(1)
a.s.→ v̄1B→A

(106)

in the large system limit, where the last equality follows from

the definition (47) of v̄1B→A. Thus, (74) holds for τ = 0.

Eq. (75) for τ = 0: From the definition (39) of q1 and

Proposition 1, we have

E[|q1,n|2+ǫ] < C
(

E[|η0(xn + h0,n)|2+ǫ] + E[|xn|2+ǫ]
)

(107)

for some constant C > 0. Since Assumption 1 implies the

boundedness of the second term, it is sufficient to prove that

η0(xn + h0,n) has a finite (2 + ǫ)th moment for some ǫ > 0.

From Lemma 2 η̃0 is Lipschitz-continuous, so that η0 given

by (31) is so. Thus, we use Proposition 1 to have

E
[

|η0(xn + h0,n)|2+ǫ
]

≤ L
(

1 + E[|xn|2+ǫ] + E[|h0,n|2+ǫ]
)

,
(108)

for some L > 0. The boundedness of E[|h0,n|2+ǫ] follows

from the definition (38) of h0 and (63) for τ = 0. Thus, (75)

holds for τ = 0.

Eq. (76) for τ = 0: If lim infM=δN→∞ N−1‖q⊥
1 ‖2

converges almost surely to a strictly positive constant, (76)

holds for τ = 0 [12, Lemmas 8 and 9]. Using (74) for τ = 0,

we have

‖q⊥
1 ‖2
N

=
qH
1 P

⊥
q0
q1

N

a.s.
=

E[‖q1‖2]
N

−
∣

∣

∣

∣

∣

√
N(Φ‖

q0
)Hq1

N

∣

∣

∣

∣

∣

2

+o(1),

(109)

where q1 in the first term is given by q1 = η0(x+ z̃0)− x.

Let fn(xn, z) =
√
N [Φ‖

q0
]∗n{η(xn+z)−xn}. The function

fn is a Lipschitz-continuous function with the Lipschitz con-

stant Ln = L
√
N |[Φ‖

q0
]n| for some L > 0. The normalization

‖Φ‖
q0
‖2 = 1 implies N−1

∑N
n=1 L

2
n = L, so that we can use

(97) to obtain
√
N(Φ‖

q0
)Hq1

N

a.s.
=

E{(Φ‖
q0
)HEz̃0

[q1]}√
N

+ o(1). (110)

Using the Cauchy-Schwarz inequality yields
∣

∣

∣
E

[

(Φ‖
q0
)HEz̃0

[q1]
]∣

∣

∣
≤ E {‖Ez̃0

[q1]‖} ≤ E [‖q1‖] , (111)

where the latter inequality follows from Jensen’s inequality.

Thus, we obtain

‖q⊥
1 ‖2
N

a.s.
≥ 1

N

{

E[‖q1‖2]− (E [‖q1‖])2
}

+ o(1) (112)

which is strictly positive in the large system limit. Thus, (76)

holds for τ = 0.

Eqs. (77) and (78) for τ = 0: From (73) and (74) for

τ = 0, we may conclude (77) and (78) for τ = 0, since x and

h0 have identically distributed elements in the large system

limit. Nonetheless, we present a generic proof applicable to

the non-identically-distributed case.

We only prove (77) for τ = 0, since (78) can be proved in

the same manner. Lemma 2 implies that |η̃0(xn+h0,n)−xn|2
is a pseudo-Lipschitz function of order 2. We use (96) to have

E[|η̃0(xn + h0,n)− xn|2] → MMSE(v̄0A→B) (113)

in the large system limit.

We have proved that Theorem 4 holds for τ = 0. Next, we

assume that Theorem 4 is correct for all τ < t, and prove that

Theorem 4 holds for τ = t.

D. Module A by Induction

Property (A1) for τ = t: We prove (56) for τ = t.
Let Y = (Qt,Ht) and X = (Bt,M t) in Lemma 3. The

induction hypotheses (65) and (76) τ < t imply that M t

and Qt are full rank. From the definition (44) of Ht and the

induction hypothesis (70) for τ < t, we find that Y is full

rank. Using the definition (36) of bt and Lemma 3 yields

bt ∼ (Bt,M t)(Qt,Ht)
†qt +Φ

⊥
(Bτ ,Mτ )zt (114)

conditioned on Θ and Xt,t, with zt defined in (55).

We evaluate the first term on the RHS of (114). Using the

induction hypothesis (70) for τ < t yields

(Qt,Ht)
† =

1

N

(

N−1QH
t Qt N−1QH

t Ht

N−1HH
t Qt N−1HH

t Ht

)−1(
QH

t

HH
t

)

a.s.
=

(

Q
†
t + o(N−1)HH

t

H
†
t + o(N−1)QH

t

)

. (115)

Substituting (115) into the first term, and using the same

induction hypothesis again, we obtain

(Bt,M t)(Qt,Ht)
†qt

a.s.
= Btβt+Bto(1)+M to(1), (116)

which implies (56) for τ = t.
We next prove (57) for τ = t. Repeating the derivation of

(116) with (115) yields

1

N
‖zt‖2 =

1

N
qH
t P

⊥
(Qt,Ht)qt

a.s.
=

qH
t

N

{

P⊥
Qt

− P
‖
Ht

+ o(1)
QtH

H
t

N
+ o(1)

HtQ
H
t

N

}

qt

a.s.
=

1

N
‖q⊥

t ‖2 + o(1), (117)
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where the last equality follows from the induction hypothe-

sis (70) for τ < t. Thus, (57) holds for τ = t.
Let XN = zt, and ǫN = Bto(1) + M to(1), a1,N =

Btβt, and EN = (Bt,M t) in Lemma 1. We prove that,

for k = 1 or k = 2, all conditions in Lemma 1 with v =
µt = limM=δN→∞ N−1‖q⊥

t ‖2 are satisfied for any pseudo-

Lipschitz function fn of order k with a Lipschitz-constant Ln,

in which limN→∞ N−1
∑N

n=1 L
2
n < ∞ holds for k = 1 and

in which limN→∞ N−1
∑N

n=1 L
4
n < ∞ holds for k = 2, so

that

1

N

N
∑

n=1

fn(bt,n)

a.s.
=

1

N

N
∑

n=1

E [fn([Btβt]n + zt,n)|Θ,Xt,t] + o(1) (118)

conditioned on Θ and Xt,t in the large system limit, with

zt ∼ CN (0, µtIN).

The conditions (7) and (10) follow from Proposition 2, the

induction hypotheses (59), (64), and (74) for τ < t. For

k = 1, the conditions (8) and (9) are trivial. For k = 2,

the condition (8) is due to (7). The condition (9) follows from

Proposition 2, the induction hypotheses (59), (74) for τ < t,
as well as from the boundedness of ‖βt‖,

‖βt‖2 =
qH
t Qt

N

(

1

N
QH

t Qt

)−2
QH

t qt

N

a.s.
< C

∥

∥

∥

∥

1

N
QH

t qt

∥

∥

∥

∥

2

≤ C

N

t−1
∑

τ=0

‖qτ‖2
‖qt‖2
N

a.s.
< ∞ (119)

for some constant C > 0, where the first two inequalities

follow from the induction hypothesis (76) for τ = t − 2 and

from the Cauchy-Schwarz inequality, respectively, and where

the boundedness is due to the induction hypothesis (74) for

τ < t.
The condition (11) follows from the induction hypotheses

(60), (65), and (76) for τ < t, as well as the definition (42)

of Bt. The condition (12) with v = µt follows from (57) for

τ = t. We have proved all assumptions in Lemma 1. Thus,

(118) holds.

Eqs. (58)–(60) for τ = t: We first prove (58) for

τ = t. Define the Lipschitz-continuous function fn(z) =
z∗[DW̃ tw̃]n. We note that W̃ t given in (40) is independent

of vtB→A in the large system limit, because of the induction

hypothesis (72) for τ = t − 1. Repeating the proof of (83),

we find that N−1‖DW̃ tw̃‖2 is almost surely bounded as

N → ∞. Thus, we can use (118) to obtain

1

N
bHτ DW̃ tw̃

a.s.
=

1

N
βH
τ B

H
τ DW̃ tw̃ + o(1)

a.s.→ 0, (120)

where the last convergence follows from the induction hypoth-

esis (58) for all τ < t. Thus, (58) holds for τ = t.

We next prove (59) for τ = t. From (118) for fn(z) =
Dn|z|2, we have

1

N
bHτ Dbt

a.s.
=

1

N
E

[

bHτ D(Btβt + zt)
∣

∣

∣
Θ,Xt,t

]

+ o(1)

(121)

in the large system limit for all τ ≤ t, where bτ is replaced

by Btβt + zt for τ = t. For τ < t, we have

1

N
bHτ Dbt

a.s.
=

1

N
bHτ DBtβt + o(1). (122)

Using the induction hypothesis (59) for τ < t, q
‖
t = Qtβt,

and qH
τ ′q⊥

t = 0 yields (59) for τ = t and τ ′ < t.
For τ = t, we obtain

1

N
bHt Dbt

a.s.
=

1

N
βH
t B

H
t DBtβt +

µt

N
Tr(D) + o(1) (123)

in the large system limit. The induction hypothesis (59) for

τ < t implies that the fist term converges almost surely

to limM=δN→∞ N−1‖q‖
t ‖2N−1Tr(D). Thus, (59) holds for

τ = τ ′ = t.
Finally, we prove (60) for τ = t. Repeating the proof of

(84) yields the boundedness of N−1Tr{(DW̃ t(Σ,O))k} for

k ∈ [0, 4 + ǫ). Thus, we can use (58) and (59) to find

γt
N

bHτ DW̃ t {(Σ,O)bt − w̃}

a.s.
= γt

Tr{DW̃ t(Σ,O)}
N

1

N
qH
τ qt + o(1). (124)

In particular, for D = IN we find that the almost sure

convergence (60) for τ = t follows from the definition (24) of

γt, the definition (40) of W̃ t, and Assumption 2, as well as the

boundedness of N−1qH
τ qt, obtained from the Cauchy-Schwarz

inequality and the induction hypothesis (74) for τ < t.
Eqs. (61)–(65) for τ = t: The almost sure conver-

gence (61) for τ = t follows from the definition (22) of vtA→B,

the definition (24) of γt, the definition (46) of v̄tA→B, and the

induction hypothesis (72) for τ = t− 1.
The properties (62) and (64) for τ = t are obtained by

repeating the proofs of (62) and (64) for τ = 0. The moment

property (63) for τ = t follows from the definition (37) of mt,

the definition (40) of W̃ t, Assumption 2, and Assumption 3,

since we have already proved the boundedness of the (2+ǫ)th
moments of bt.

Finally, we prove (65) for τ = t. The induction hypoth-

esis (65) for τ < t implies that (65) holds for τ = t
if lim infM=δN→∞ N−1‖m⊥

t ‖2 converges almost surely to

a strictly positive constant. We use the definition (37) of

mt, (62), and (118) for fn(z) = [
√
N(Φ

‖
Mt

)H{IN −
γtW̃ t(Σ,O)}]τ,nz for τ < t to obtain

‖m⊥
t ‖2
N

a.s.
=

Ezt
[‖mt‖2]
N

−
∥

∥

∥

∥

Ezt

[

(Φ
‖
Mt

)H
mt√
N

]∥

∥

∥

∥

2

+ o(1).

(125)

By repeating the proof of (76) for τ = 0, we arrive at

‖m⊥
t ‖2
N

a.s.
≥ 1

N

(

Ezt
[‖mt‖2]− ‖Ezt

[mt]‖2
)

+ o(1), (126)

which is strictly positive in the large system limit. Thus, (65)

holds for τ = t.

E. Module B by Induction

Property (B1) for τ = t: Let us prove (68) for τ = t.
Using (38) and Lemma 3 with Y = (Qt+1,Ht) and X =
(Bt+1,M t) yields

ht ∼ (Qt+1,Ht)(Bt+1,M t)
†mt +Φ

⊥
(Qt+1,Ht)z̃t (127)
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conditioned on Θ and Xt,t+1, with z̃t given in (67), where we

have used the identity XHX = Y HY . Repeating the proof

of Property (A1) for τ = t, we arrive at Property (B1) for

τ = t.

Let XN = z̃t given in (67), a0,N = x, aτ+1,N = hτ for

τ < t, at+1,N = Htαt, ǫN = Qt+1o(1) + Hto(1), and

EN = (Qt+1,Ht). For k = 1 or k = 2, let fn : Ct+2 →
C denote a pseudo-Lipschitz function of order k with an n-

independent Lipschitz constant L > 0. We shall prove

E[fn(xn, h0,n, . . . , ht,n)]
a.s.
=E[gn(xn, h0,n, . . . , ht−1,n)] + o(1), (128)

1

N

N
∑

n=1

fn(xn, h0,n, . . . , ht,n)

a.s.
=

1

N

N
∑

n=1

gn(xn, h0,n, . . . , ht−1,n) + o(1) (129)

conditioned on Θ and Xt,t+1 in the large system limit, with

gn(xn, h0,n, . . . , ht−1,n)

=Ez̃t,n [fn(xn, h0,n, . . . , ht−1,n, [Htαt]n + z̃t,n)] ,(130)

where z̃t ∼ CN (0, νtIN ) is a CSCG vector with νt =
limM=δN→∞ N−1‖m⊥

t ‖2.

It is sufficient to confirm that all conditions in Lemma 1

hold. The conditions (7) and (10) follow from the defini-

tion (38) of ht, the induction hypotheses (62), (74) for τ < t,
and Proposition 2. The conditions (8) and (9) are trivial

for k = 1. For k = 2, the condition (8) is due to (7).

The condition (9) follows from Assumption 1 when τ = 0,

the definition (38) of hτ and the induction hypothesis (62)

when τ = 1, . . . , t − 1, and from the boundedness of ‖αt‖2
when τ = t, obtained by repeating the proof of (119) with

the induction hypotheses (62) and (65) for τ < t. The

condition (11) is due to the induction hypotheses (65), (70),

and (76) for τ < t− 1, as well as the definition (44) of Ht.

The condition (12) follows from (69) for τ = t.

The moment conditions of ǫN , aτ,N , and EN follow from

Assumption 1, the induction hypothesis (75) for τ < t, and

the boundedness of the (2 + ǫ)th moments of hτ for τ < t,
of which the last is due to the definition (38) of hτ and the

induction hypothesis (63) for τ < t. The moment condition

of XN is due to (63) for τ = t and the definition (67) of z̃t.

Thus, all conditions in Lemma 1 hold.

Define hG
τ recursively as

hG
τ = HG

τ ατ + z̃τ , (131)

with HG
τ = (hG

0 , . . . ,h
G
τ−1), where {z̃τ ∼ CN (0, νtIN )}

are independent CSCG vectors. By definition, hG
τ condi-

tioned on {ατ} and {ντ} is a CSCG vector. Comparing

the definition (66) of h̃τ and the definition (131) of hG
τ ,

from the definition (38) of ht and (62) for τ = t we find

N−1E[‖hG
t ‖2] → v̄tA→B in the large system limit.

It is straightforward to confirm that the function (130) is

pseudo-Lipschitz of order k with an n-independent Lipschitz

constant. Thus, we can repeat the argument in (128) and (129)

to arrive at

E[fn(xn, h0,n, . . . , ht,n)]
a.s.
= E[fn(xn, h

G
0,n, . . . , h

G
t−1,n)] + o(1), (132)

1

N

N
∑

n=1

fn(xn, h0,n, . . . , ht,n)

a.s.
=

1

N

N
∑

n=1

E
[

fn(xn,N , hG
0,n, . . . , h

G
t,n)
]

+ o(1). (133)

Eqs. (71) and (72) for τ = t: Repeating the proofs of

(71) and (72) for τ = 0 with (133), we arrive at (71) and (72)

for τ = t.
Eq. (70) for τ = t: For τ < t, we use the definition (36)

of bt and the definition (38) of ht to obtain

1

N
hH
t qτ+1 =

1

N
mH

t bτ+1
a.s.→ o(1) (134)

in the large system limit, where the last convergence follows

from (60) for τ = t and τ ′ = τ + 1 ≤ t.
For τ = t, we use (133) for the pseudo-Lipschitz function

fn(xn, ht,n) = h∗
t,n{ηt(xn + ht,n)− xn} of order 2 to have

1

N
hH
t qt+1

a.s.
=

1

N
E

[

(hG
t )

Hηt(x+ hG
t )
]

+ o(1) (135)

in the large system limit. Since hG
t has independent CSCG

elements with variance v̄tA→B, we repeat the proof of (70) for

τ = 0 to obtain (70) for τ = τ ′ = t.
Eqs. (73)–(75) for τ = t: Repeat the proofs of (73), (74),

and (75) for τ = 0 with (133).

Eq. (76) for τ = t: Repeat the proof of (65) for τ = t
with (129).

Eqs. (77)–(78) for τ = t: Repeat the proofs of (77)–(78)

for τ = 0 with (132).

APPENDIX A

PROOF OF LEMMA 1

A. Technical Results

Consider t = 0. Since XN ∈ CN is unitarily invariant,

we use the SVD of XN to obtain XN = Φ
‖
XN

‖XN‖, in

which Φ
‖
XN

∈ UN×1 is Haar-distributed and independent of

the singular value ‖XN‖ [35]. Furthermore, u ∼ CN (0, IN )
is unitarily invariant, so that its SVD is given by u = Φ

‖
u‖u‖,

in which Φ
‖
u ∈ UN×1 is Haar-distributed and independent

of ‖u‖. Since Φ
‖
XN

∼ Φ
‖
u holds, we have the following

representation:

ǫN +XN ∼ ǫN +
‖XN‖
‖u‖ u. (136)

Let N = {1, . . . , t} for t > 0. We repeat the same argument

to obtain

ǫN +Φ
⊥
EN

XN−t ∼ǫN +
‖XN−t‖
‖u\N ‖ Φ

⊥
EN

u\N

=ǫ̃N +
‖XN−t‖
‖u\N ‖ z, (137)
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with z = ΦEN
u ∼ CN (0, IN ), ǫ̃N = ǫN −ENδN , and

δN =
‖XN−t‖
‖u\N ‖ (EH

NEN )−1EH
NΦ

‖
EN

uN . (138)

Introducing the convention u\N = u, ǫ̃N = ǫN , and ΦEN
=

IN for t = 0, we arrive at the unified representation (137) for

t ≥ 0.

We first prove that ‖δN‖2 given in (138) converges almost

surely to zero as N → ∞. From the assumption (12) and

(N − t)−1‖u\N ‖2 a.s.→ 1, we have

‖δN‖2 a.s.
= vuH

N (Φ
‖
EN

)HEN (EH
NEN )−2EH

NΦ
‖
EN

uN +o(1).
(139)

Using EN = Φ
‖
EN

ΣEN
Ψ

H
EN

and the assumption (11) yields

‖δN‖2 a.s.
=

v

N
uH
N

(

1

N
Σ

2
EN

)−1

uN + o(1)
a.s.
<

C

N
‖uN ‖2

(140)

for some constant C > 0. For any a > 0, we utilize

Chebyshev’s inequality to obtain

∞
∑

N=t+1

Pr

(‖uN ‖2
N

> a

)

≤ E[‖uN ‖4]
a2

∞
∑

N=t+1

1

N2
< ∞.

(141)

Thus, the Borel-Cantelli lemma implies that ‖δN‖2 converges

almost surely to zero as N → ∞.

Before proving Lemma 1, we prove several technical results.

Proposition 3: Let z ∼ CN (0, IN ). For any k ≥ 0,

E
[

‖z‖−k
]

≤ 1 + o(1)

Nk/2
as N → ∞. (142)

Proof: By definition, 2‖z‖2 follows the chi-square dis-

tribution with 2N degrees of freedom. Let Γ(x) denote the

gamma function. For N > k/2, we use the probability density

function of the chi-square distribution to have

E

[

1

‖z‖k
]

= 2k/2
∫ ∞

0

1

xk/2

xN−1e−x/2

2NΓ(N)
dx

=

∫ ∞

0

xN−k/2−1e−x

Γ(N)
dx =

Γ(N − k/2)

Γ(N)
, (143)

where the last equality follows from the definition of the

gamma function. Using Γ(x + 1) = xΓ(x) and Gautschi’s

inequality Γ(x + s)/Γ(x) ≤ xs for all x > 0 and s ∈ [0, 1],
we have

E

[

1

‖z‖k
]

=
Γ(N − k/2)

(N − 1) · · · (N − ⌈k/2⌉)Γ(N − ⌈k/2⌉)

≤ 1

Nk/2

N ⌈k/2⌉

∏⌈k/2⌉
i=1 (N − i)

(144)

for N > ⌈k/2⌉. Since the latter factor tends to 1 as N → ∞,

Proposition 3 holds.

Proposition 4: Let z ∼ CN (0, IN ). For any k ≥ 0,

E

[

∣

∣N − ‖z‖2
∣

∣

k
]

= O(Nk/2) as N → ∞. (145)

Proof: Let ZN = N−1/2
∑N

n=1(|zn|2−1). By definition,

we have

1

Nk/2
E

[

∣

∣N − ‖z‖2
∣

∣

k
]

= E
[

|ZN |k
]

. (146)

The central limit theorem implies that ZN converges in

distribution to a zero-mean Gaussian random variable Z as

N → ∞. Furthermore, the sequence {|ZN |k} is uniformly

integrable [44] since the (k+1)th moment of ZN is bounded.

Thus, we arrive at

lim
N→∞

1

Nk/2
E

[

∣

∣N − ‖z‖2
∣

∣

k
]

= E[|Z|k] < ∞, (147)

which implies Proposition 4.

Proposition 5: Let vN = ‖XN‖2/N , and postulate (12)

and the moment assumption on XN in Lemma 1. For some

any ǫ > 0,

lim
N→∞

E
[∣

∣

√
vN −√

v
∣

∣

ρ]
= 0 (148)

for any ρ ∈ [0,max{2, 2k− 2}+ ǫ).
Proof: From (12),

√
vN converges almost surely to

√
v as

N → ∞. Furthermore, (N−1‖XN‖)ρ is uniformly integrable

for all ρ ∈ [0,max{2, 2k−2}+ǫ′] with any ǫ′ ∈ (0, ǫ), because

of the moment assumption on XN . Thus, Proposition 5 holds.

Note that Proposition 5 implies the convergence of the ρth

moment

lim
N→∞

E

[

v
ρ/2
N

]

= vρ/2. (149)

B. Discussion

From the almost sure convergence ‖δN‖2 a.s.→ 0, as well as

‖XN‖2/‖u‖2 a.s.→ v, Rangan et al. [36, Proof of Lemma 5]

concluded Lemma 1. However, what they have proved should

be regarded as not the almost sure convergence but as the

convergence in probability.

For simplicity, we assume t = 0, fn(z) = z, and

ǫN = 0. Furthermore, let SN = N−1
∑N

n=1 Xn,N and

S̃N = (‖XN‖/‖u‖)N−1
∑N

n=1 un. From (136), for any

ǫ > 0 and ǫ′ > 0 we have

Pr (|SN | > ǫ) =Pr(EN,ǫ′)Pr
(

|S̃N | > ǫ
∣

∣

∣
EN,ǫ′

)

+Pr(E∁
N,ǫ′)Pr

(

|S̃N | > ǫ
∣

∣

∣
E∁
N,ǫ′

)

,(150)

with

EN,ǫ′ =

{∣

∣

∣

∣

‖XN‖2
‖u‖2 − v

∣

∣

∣

∣

≤ ǫ′
}

. (151)

The almost sure convergence ‖XN‖2/‖u‖2 a.s.→ v implies that

the second term tends to zero as N → ∞. Using Chebyshev’s

inequality for the first term yields

Pr(EN,ǫ′)Pr
(

|S̃N | > ǫ
∣

∣

∣
EN,ǫ′

)

<
ǫ′ + v

Nǫ2
→ 0. (152)

Thus, we arrive at the convergence in probability Pr(|SN | >
ǫ) → 0 as N → ∞.

However, it is not straightforward to prove the almost sure

convergence. To construct a simple counterexample, suppose

that pN,ǫ = Pr(|S̃N | > ǫ) is O(N−1). Then, we find

∞
∑

N=1

Pr (|SN | > ǫ) =

∞
∑

N=1

pN,ǫ = ∞. (153)

While we do not introduce any statistical properties of {XN}
with respect to N , we assume the independence of {SN}
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to construct a counterexample. Then, from the second Borel-

Cantelli lemma we can conclude that SN does not converge

almost surely to zero. This counterexample implies that we

need information about the convergence speed of pN,ǫ to

establish the almost sure convergence in (15). Instead of

evaluating the actual convergence speed of pN,ǫ, we use

Theorem 1 to prove the almost sure convergence directly.

C. Proof of (13)

Since ǫN has vanishing second moments and finite (2k −
2)th moments and since EN has finite max{2, 2k − 2}th

moments, the almost sure convergence ‖δN‖2 a.s.→ 0 implies

that ǫ̃N = ǫN −ENo(1) has vanishing second moments and

finite (2k − 2)th moments. Furthermore, we only prove the

case t′ = 1 with an,1,N = 0 since an extension of the proof to

the general case is straightforward. For notational simplicity,

we write XN−t and an,0,N as X and an,N .

Let

Y 1
n,N =fn

(

an,N , ǫn,N + [Φ⊥
EN

X]n

)

−fn

(

an,N , ǫ̃n,N + v
1/2
N−tzn

)

, (154)

Y 2
n,N = fn

(

an,N , ǫ̃n,N + v
1/2
N−tzn

)

− fn

(

an,N , v
1/2
N−tzn

)

,

(155)

Y 3
n,N = fn

(

an,N , v
1/2
N−tzn

)

− fn

(

an,N , v1/2zn

)

, (156)

with vN−t = ‖XN−t‖2/N . It is sufficient to prove

E
[
∣

∣Y 1
n,N

∣

∣

]

= O
(

Ln√
N

)

, (157)

E
[
∣

∣Y 2
n,N

∣

∣

]

= o(Ln), (158)

E
[
∣

∣Y 3
n,N

∣

∣

]

= o(Ln) (159)

as N → ∞.

Let E = {‖X‖,aN , ǫN ,EN}. We first evaluate the con-

ditional expectation E[|Y 1
n,N ||E ] to prove (157). Using the

representation (137), the pseudo-Lipschitz property of fn, and

Proposition 1 yields

E
[
∣

∣|Y 1
n,N |

∣

∣ E
]

≤LnE

[

∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

‖X‖|zn|
{

1 + |an,N |k−1

+ |ǫ̃n,N |k−1 +
‖X‖k−1|zn|k−1

‖u\N ‖k−1
+ v

k−1

2

N−t|zn|k−1

}∣

∣

∣

∣

E
]

(160)

for some Ln > 0. Using the following upper bound:
∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

=
|N − t− ‖u\N ‖2|

‖u\N ‖
√
N − t(

√
N − t+ ‖u\N ‖)

<
|N − t− ‖u\N ‖2|

N − t

1

‖u\N ‖ , (161)

we have

E

[∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

‖X‖|zn||an,N |k−1

∣

∣

∣

∣

E
]

<v
1/2
N−t|an,N |k−1

E

[ |N − t− ‖u\N ‖2|√
N − t

|zn|
‖u\N ‖

∣

∣

∣

∣

E
]

.(162)

To evaluate the conditional expectation, we use the Cauchy-

Schwarz inequality repeatedly to obtain

E

[ |N − t− ‖u\N ‖2|√
N − t

|zn|
‖u\N ‖

∣

∣

∣

∣

E
]

≤
{

E

[ |N − t− ‖u\N ‖2|2
N − t

]}1/2{

E

[ |zn|2
‖u\N ‖2

∣

∣

∣

∣

E
]}1/2

≤C

{

E

[ |N − t− ‖u\N ‖2|2
N − t

]}1/2{

E

[

1

‖u\N ‖4
]}1/4

=O(N−1/2) (163)

for some C > 0, where the last follows from Propositions 3

and 4.
We repeat the same argument in evaluating the remaining

terms in (160). We only present evaluation of the fourth term,

since the other terms can be bounded in the same manner.

Applying the upper bound (161) and the Cauchy-Schwarz

inequality, we obtain

E

[
∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

‖X‖k|zn|k
‖u\N ‖k−1

∣

∣

∣

∣

E
]

<
v
k/2
N−t√
N − t

E

[ |N − t− ‖u\N ‖2|√
N − t

(N − t)k/2|zn|k
‖u\N ‖k

∣

∣

∣

∣

E
]

<
Cv

k/2
N−t√

N − t

{

E

[ |N − t− ‖u\N ‖2|2
N − t

]}

1
2
{

E

[

(N − t)2k

‖u\N ‖4k
]}

1
4

a.s.
=O(v

k/2
N N−1/2), (164)

for some C > 0, where the last follows from Propositions 3

and 4. Evaluating the remaining terms on the RHS of (160)

in the same manner, we arrive at

E
[

|Y 1
n,N |

∣

∣ E
] a.s.
= O

{

Lnv
1/2
N√
N

(1 + |an,N |k−1

+|ǫ̃n,N |k−1 + v
(k−1)/2
N )

}

. (165)

Using the Cauchy-Schwarz inequality to evaluate the expec-

tation over E , we obtain

E
[

|Y 1
n,N |

]

=O
(

Ln√
N

{

E[v
1/2
N ] +

(

E[vN ]E[|an,N |2k−2]
)1/2

+
(

E[vN ]E[|ǫ̃n,N |2k−2]
)1/2

+ E[v
k/2
N ]

})

,(166)

which reduces to (157), because of Proposition 5 and the

moment properties of an,N and ǫ̃n,N .
We next prove (158). Using the definition (155) of Y 2

n,N ,

the pseudo-Lipschitz property of fn, and Proposition 1 yields

E[|Y 2
n,N ||E ]
Ln

≤|ǫ̃n,N |
(

1 + |an,N |k−1 + |ǫ̃n,N |k−1
)

+v
(k−1)/2
N−t |ǫ̃n,N |E

[

|zn|k−1
]

(167)

for some Ln > 0. Using the Cauchy-Schwarz inequality and

Proposition 2, we have

E[|Y 2
n,N |]
Ln

a.s.
≤C

(

E
[

|ǫ̃n,N |2
])1/2

·
(

E
[

1 + |an,N |2k−2 + |ǫ̃n,N |2k−2
])1/2

+C
(

E[vk−1
N−t]E

[

|ǫ̃n,N |2
])1/2

(168)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , 15

for some C > 0. Since |ǫ̃n,N | has a vanishing second moment

and finite (2k − 2)th moment and since |an,N | has a finite

(2k − 2)th moment, we use Proposition 5 to arrive at (158).

Finally, we prove (159). Using the definition (156) of Y 3
n,N ,

the pseudo-Lipschitz property of fn, and Proposition 1 yields

∣

∣Y 3
n,N

∣

∣ ≤Ln

∣

∣

∣
v
1/2
N−t −

√
v
∣

∣

∣
|zn|
{

1 + |an,N |k−1

+v
(k−1)/2
N−t |zn|k−1 + v(k−1)/2|zn|k−1

}

. (169)

Evaluating the conditional expectation yields

E
[

|Y 3
n,N |

∣

∣ E
] a.s.
≤CLn

∣

∣

∣
v
1/2
N−t −

√
v
∣

∣

∣

·(1 + |an,N |k−1 + v
(k−1)/2
N−t ) (170)

for some C > 0. Using the Cauchy-Schwarz inequality to

evaluate the expectation of the second term, we have

(

E

[∣

∣

∣
v
1/2
N−t −

√
v
∣

∣

∣
|an,N |k−1

])2

≤E

[

∣

∣

∣
v
1/2
N−t −

√
v
∣

∣

∣

2
]

E
[

|an,N |2k−2
]

→ 0, (171)

where the convergence follows from Proposition 5 and the

moment assumption of an,N . For the last term, we let ǫ′ ∈
(0, ǫ/k) to have

E

[

{∣

∣

∣
v
1/2
N−t −

√
v
∣

∣

∣
v
(k−1)/2
N−t

}1+ǫ′
]

<E

[

v
k(1+ǫ′)/2
N−t

]

+ v
1+ǫ′

2 E

[

v
(k−1)(1+ǫ′)/2
N−t

]

< ∞, (172)

where the boundedness follows from Proposition 5. In other

words, the last term on the upper bound (170) is uniformly

integrable over ‖X‖. Thus, we use the assumption (12) to

arrive at (159).

D. Proof of (15)

Since ǫN satisfies the assumptions (7) and (8), and since

EN satisfies the assumption (10), the almost sure convergence

‖δN‖2 a.s.→ 0 implies that ǫ̃N = ǫN −ENo(1) satisfies (7) and

(8) with ǫN replaced by ǫ̃N . Furthermore, we only prove the

case t′ = 1 with an,1,N = 0 since an extension of the proof to

the general case is straightforward. For notational simplicity,

we write XN−t and an,0,N as X and an,N , and omit the tilde

on ǫ̃n,N .

From the definitions (154) and (155) of Y 1
n,N and Y 2

n,N , we

need to prove

lim
N→∞

1

N

N
∑

n=1

Y 1
n,N

a.s.
= 0, (173)

lim
N→∞

1

N

N
∑

n=1

Y 2
n,N

a.s.
= 0, (174)

lim
N→∞

1

N

N
∑

n=1

{

fn

(

an,N , v
1/2
N−tzn

)

−Ezn

[

fn
(

an,N ,
√
vzn
)]} a.s.

= 0. (175)

Let us prove the first convergence (173). From the repre-

sentation (137) and Theorem 1, it is sufficient to prove that

Y 1
n,N given in (154) satisfies

lim
N→∞

1

N

N
∑

n,n′=1

E
[

|Y 1
n,NY 1

n′,N |
∣

∣ E
] a.s.
< ∞, (176)

with E = {‖X‖,aN , ǫN ,EN}.

Repeating the derivation of (160), we have

E[|Y 1
n,N ||Y 1

n′,N ||E ]
LnLn′

≤ E

[

∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

2

·‖X‖2|zn||zn′ |
{

1 + |an,N |k−1 + |ǫn,N |k−1 + v
k−1

2

N−t|zn|k−1

+
‖X‖k−1|zn|k−1

‖u\N ‖k−1

}{

1 + |an′,N |k−1 + |ǫn′,N |k−1

+
‖X‖k−1|zn′ |k−1

‖u\N ‖k−1
+ v

(k−1)/2
N−t |zn′ |k−1

}∣

∣

∣

∣

E
]

. (177)

Let

An,n′ = LnLn′

∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

2 ‖X‖2k|zn|k|zn′ |k
‖u\N ‖2k−2

,

(178)

Bn,n′ = LnLn′

∣

∣

∣

∣

1

‖u\N ‖ − 1√
N − t

∣

∣

∣

∣

2

‖X‖2|zn||zn′ |

·(|an,N |k−1 + |ǫn,N |k−1)(|an′,N |k−1 + |ǫn′,N |k−1).(179)

We only evaluate the conditional expectation of An,n′ and

Bn,n′ , since the other terms can be evaluated in the same

manner. Using the upper bound (161) yields

E[An,n′ |E ] <LnLn′vkN−tE

[ |N − t− ‖u\N ‖2|2
(N − t)2

· (N − t)k
|zn|k|zn′ |k
‖u\N ‖2k

∣

∣

∣

∣

E
]

. (180)

Repeating the proof of (163), we find that the last factor is

O(N−1). Thus, we obtain

1

N

N
∑

n,n′=1

E[An,n′ |E ] a.s.= O







vkN

(

1

N

N
∑

n=1

Ln

)2






a.s.
= O(1),

(181)

because of the assumptions (12) and (14).

Similarly, we use the upper bound (161) to have

E[Bn,n′ |E ]
<Ln(|an,N |k−1 + |ǫn,N |k−1)Ln′(|an′,N |k−1 + |ǫn′,N |k−1)

·vN−tE

[ |N − t− ‖u\N ‖2|2
N − t

|zn||zn′ |
‖u\N ‖2

∣

∣

∣

∣

E
]

. (182)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , 16

We repeat the proof of (163) to find that the last factor is

O(N−1). Thus, we arrive at

1

N

N
∑

n,n′=1

E[Bn,n′ |E ]

a.s.
=O







vN

(

1

N

N
∑

n=1

Ln(|an,N |k−1 + |ǫn,N |k−1)

)2






a.s.
=O







vN

(

1

N

N
∑

n=1

Ln(|an,N |2k−2 + |ǫn,N |2k−2)

)2






=O(1), (183)

where the second equality follows from the Cauchy-Schwarz

inequality and the assumption (14), and where the last is due to

the assumptions (8), (9), and (12). Evaluating the conditional

expectation of the other terms in (177) in the same manner,

we arrive at (176). Thus, (173) holds.

We next prove the second convergence (174). Repeating the

proof of (167) yields

1

N

N
∑

n=1

|Y 2
n,N |≤ 1

N

N
∑

n=1

Ln|ǫn,N |
{

1 + |an,N |k−1

+ |ǫn,N |k−1 + v
(k−1)/2
N−t |zn|k−1

}

. (184)

Using the Cauchy-Schwarz inequality for the second term

yields

(

1

N

N
∑

n=1

Ln|ǫn,N ||an,N |k−1

)2

≤ 1

N

N
∑

n=1

Ln|ǫn,N |2 1

N

N
∑

n=1

Ln|an,N |2k−2 a.s.→ 0 (185)

as N → ∞, because of the assumptions (7) and (9). Similarly,

we find that the third term converges almost surely to zero as

N → ∞.

We use the Cauchy-Schwarz inequality for the last term on

the upper bound (184) to obtain

v
(k−1)/2
N−t

N

N
∑

n=1

Ln|ǫn,N ||zn|k−1 ≤
(

1

N

N
∑

n=1

Ln|ǫn,N |2
)1/2

·v
k−1

2

N−t

(

1

N

N
∑

n=1

Ln|zn|2k−2

)

1
2

. (186)

The assumptions (7) and (12) imply that the first and second

factors converge almost surely to zero and v(k−1)/2 as N →
∞, respectively. Furthermore, from the assumption (14) we

use Theorem 1 to find

1

N

N
∑

n=1

Ln|zn|2k−2 a.s.
=

E[|z1|2k−2]

N

N
∑

n=1

Ln + o(1) < ∞.

(187)

Thus, the last term on the upper bound (184) converges almost

surely to zero as N → ∞. Since the almost sure convergence

of the remaining terms to zero can be proved in the same

manner, we arrive at (174).

Finally, we prove the last convergence (175). We observe

that {fn(an,N , v
1/2
N−tzn)} are conditionally independent given

E . Furthermore, we use the pseudo-Lipschitz property of fn
to obtain

1

N

N
∑

n=1

V

[

fn

(

an,N , v
1/2
N−tzn

)∣

∣

∣
E
]

≤vN−t

N

N
∑

n=1

L2
nEzn,Z

[

|zn − Z|2
(

1 + |an,N |2k−2

+vk−1
N−t|zn|2k−2 + vk−1

N−t|Z|2k−2
)
∣

∣ E
] a.s.
< ∞, (188)

where Z is a standard complex Gaussian random variable

and independent of zn, and where the boundedness follows

from the assumptions (9), (12), and (14). Thus, we can use

Theorem 1 to find

lim
N→∞

1

N

N
∑

n=1

{

fn

(

an,N , v
1/2
N−tzn

)

−E

[

fn

(

an,N , v
1/2
N−tzn

)∣

∣

∣
E
]}

a.s.
= 0. (189)

To obtain (175), from the definition (156) of Y 3
n,N we need

to prove N−1
∑N

n=1 E[Y
3
n,N |E ] a.s.→ 0 as N → ∞. Using (170)

yields
∣

∣

∣

∣

∣

1

N

N
∑

n=1

E
[

Y 3
n,N

∣

∣ E
]

∣

∣

∣

∣

∣

a.s.
≤ C

∣

∣

∣
v
1/2
N−t −

√
v
∣

∣

∣

· 1
N

N
∑

n=1

Ln(1 + |an,N |k−1 + v
(k−1)/2
N−t ), (190)

which converges almost surely to zero as N → ∞, because

of the assumptions (9), (12), and (14). Thus, (175) holds.

APPENDIX B

DERIVATION OF MESSAGE-PASSING

EP [20], [29] provides a framework for deriving MP

algorithms that calculate the marginal posterior distribution

p(xn|y,A) =
∫

p(x|y,A)dx\n, in which x\n is the vector

obtained by eliminating xn from x. We consider the large

system limit to derive an MP algorithm, which coincides with

the algorithm derived in a heuristic manner [27].

We approximate the marginal posterior distribution

p(xn|y,A) by a tractable probability density function (pdf)

qA(xn) =
∫

qA(x)dx\n, given by

qA(x) ∝ p(y|A,x)
N
∏

n=1

qB→A(xn). (191)

In (191), the notation f(x) ∝ g(x) means that there is a pos-

itive constant C such that f(x) = Cg(x) holds. Furthermore,

qB→A(xn) is a conjugate prior to the likelihood p(y|A,x).
When the noise vector w in (1) is regarded as a CSCG random

vector with covariance σ2IM , the conjugate prior qB→A(xn)
is proper complex Gaussian,

qB→A(xn) ∝ exp

(

−|xn − xn,B→A|2
vB→A

)

, (192)
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where xn,B→A and vB→A are the mean and variance of

qB→A(xn), respectively. In order to derive the MP algorithm

proposed in [27], we have selected the identical variance vB→A

for all n, while Céspedes et al. [20] selected different values

for different n to improve the performance for finite-sized

systems.

We first evaluate the marginal pdf qA(xn) in the large

system limit, defined via (191). Since the conjugate prior (192)

has been selected, the joint pdf qA(x) is also Gaussian.

qA(x) ∝ exp
{

−(x− xA)
HV −1

A (x− xA)
}

, (193)

where the mean and covariance are given by

xA = xB→A +
1

σ2
V AA

H(y −AxB→A), (194)

V A =

(

1

vB→A
IN +

1

σ2
AHA

)−1

, (195)

respectively. Using the matrix inversion lemma, it is possible

to show that (194) and (195) reduce to

xA = xB→A + vB→AA
H
Ξ

−1(y −AxB→A), (196)

[V A]n,n = vB→A − aH
nΞ

−1anv
2
B→A, (197)

respectively, with

Ξ = σ2IM + vB→AAAH. (198)

We shall prove that aH
nΞ

−1an converges almost surely to

γ(vB→A)
−1 in the large system limit for all n, in which

γ(vB→A) is given by (25). Applying the SVD (19) to

aH
nΞ

−1an, defined via (198), we have

aH
nΞ

−1an = eHnV DV Hen, (199)

with

D =

(

Σ

O

)

(

σ2IM + vB→AΣ
2
)−1

(Σ,O). (200)

In (199), en denotes the nth column of IN . Thus, Corollary 1

and Assumption 2 imply that aH
nΞ

−1an converges almost

surely to γ(vB→A)
−1 in the large system limit.

This observation indicates that for any n the diagonal

element (197) converges almost surely to

vA = vB→A − γ−1(vB→A)v
2
B→A (201)

in the large system limit. Thus, the marginal pdf qA(xn) =
∫

qA(x)dx\n is the proper complex Gaussian pdf with mean

xn,A = [xA]n and variance vA, i.e.

qA(xn) ∝ exp

(

−|xn − xn,A|2
vA

)

. (202)

In order to present a crucial step in EP, we define the

extrinsic pdf of xn as

qA→B(xn) ∝
qA(xn)

qB→A(xn)
. (203)

Let xn,B and vn,B denote the mean and variance of xn with

respect to the pdf pB(xn) ∝ qA→B(xn)p(xn). The crucial step

in EP is to update the message qB→A(xn) so as to satisfy the

moment matching conditions [29],

EqB [xn] = xn,B, (204)

VqB [xn] =
1

N

N
∑

n=1

vn,B ≡ vB, (205)

where the expectations are taken with respect to

qB(xn) ∝ qA→B(xn)q
new
B→A(xn). (206)

In (206), the updated pdf qnewB→A(xn) is given by

qnewB→A(xn) ∝ exp

(

−
|xn − xnew

n,B→A|2
vnewB→A

)

. (207)

We first derive module A. Using (192) and (202), we find

that the extrinsic pdf (203) reduces to

qA→B(xn) ∝ exp

(

−|xn − xn,A→B|2
vA→B

)

, (208)

with

xn,A→B = vA→B

(

xn,A

vA
− xn,B→A

vB→A

)

, (209)

1

vA→B
=

1

vA
− 1

vB→A
. (210)

Substituting (201) into (210) yields

vA→B = γ(vB→A)− vB→A, (211)

which results in the update rule (22). Similarly, Applying

(196), (201), (210), and (211) to (209), we arrive at

xA→B = xB→A + γ(vB→A)A
H
Ξ

−1(y −AxB→A), (212)

which implies the update rule (21).

We next evaluate the moment matching conditions (204)

and (205) to derive module B. Substituting (207) and (208)

into (206) yields

qB(xn) ∝ exp

(

−|xn − x̃n,B|2
ṽB

)

, (213)

with

x̃n,B = ṽB

(

xn,A→B

vA→B
+

xnew
n,B→A

vnewB→A

)

, (214)

1

ṽB
=

1

vA→B
+

1

vnewB→A

. (215)

Using the moment matching conditions (204) and (205), we

arrive at the update rules (29) and (30) in module B,

xnew
B→A = vnewB→A

(

xB

vB
− xA→B

vA→B

)

, (216)

1

vnewB→A

=
1

vB
− 1

vA→B
. (217)
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APPENDIX C

PROOF OF LEMMA 2

We utilize the following technical lemma:

Lemma 4: We define the cumulant generating function χt :
C → R of the posterior distribution of xn as

χt(z) =
vtA→B

2
lnExn

[

exp

(

−|z − xn|2
vtA→B

)]

+
|z|2
2

. (218)

Then, χt is twice continuously differentiable with respect to

ℜ[z] and ℑ[z], and satisfies

∂χt

∂ℜ[z] = ℜ[η̃t(z)],
∂χt

∂ℑ[z] = ℑ[η̃t(z)], (219)

vtA→B

2

∂2χt

∂ℜ[z]2 = E
[

(ℜ[xn]−ℜ[η̃t(z)])2
∣

∣ z
]

, (220)

vtA→B

2

∂2χt

∂ℑ[z]2 = E
[

(ℑ[xn]−ℑ[η̃t(z)])2
∣

∣ z
]

, (221)

vtA→B

2

∂2χt

∂ℜ[z]∂ℑ[z] = E [ℜ[xn]ℑ[xn]| z]−ℜ[η̃t(z)]ℑ[η̃t(z)].
(222)

Proof: The former statement follows from Assumption 1

and the dominated convergence theorem. The latter statement

is obtained by calculating the derivatives of χt directly.
We first prove the Lipschitz-continuity of η̃t. We need to

prove that all first-order derivatives of ℜ[η̃t] and ℑ[η̃t] are

bounded. From Assumption 4 and Lemma 4, it is sufficient

to confirm that (222) is almost surely bounded. Using the

Cauchy-Schwarz inequality yields

(E [ℜ[xn]ℑ[xn]| z]−ℜ[η̃t(z)]ℑ[η̃t(z)])2

=(E [ (ℜ[xn]− ℜ[η̃t(z)])(ℑ[xn]−ℑ[η̃t(z)])| z])2

≤E
[

(ℜ[xn]−ℜ[η̃t(z)])2
∣

∣ z
]

E
[

(ℑ[xn]−ℑ[η̃t(z)])2
∣

∣ z
]

,

(223)

which is almost surely bounded, because of Assumption 4.

Thus, η̃t is Lipschitz-continuous.

We next prove (33) and (34). For notational convenience,

we write η̃t(xn + z) as η̃. By definition, we have

z∗η̃ = ℜ[z]ℜ[η̃] +ℑ[z]ℑ[η̃] + i(ℜ[z]ℑ[η̃]−ℑ[z]ℜ[η̃]). (224)

Since ℜ[z] and ℑ[z] are independent Gaussian random vari-

ables with zero-mean and variance vtA→B/2, using Stein’s

lemma [41] yields

Ez [z
∗η̃] =

vtA→B

2
Ez

[

∂ℜ[η̃]
∂ℜ[z] +

∂ℑ[η̃]
∂ℑ[z]

]

+
ivtA→B

2
Ez

[

∂ℑ[η̃]
∂ℜ[z] −

∂ℜ[η̃]
∂ℑ[z]

]

=vtA→BEz

[

∂

∂z
(ℜ[η̃] + iℑ[η̃])

]

, (225)

where ∂/∂z denotes the Wirtinger derivative (32). This implies

that (33) holds. Furthermore, applying Lemma 4 to the former

expression in (225), we obtain

Ez [z
∗η̃] = Ez

[

|xn − η̃t(xn + z)|2
]

. (226)

Taking the expectation of both sides over xn, we arrive at

Lemma 2.

APPENDIX D

PROOF OF LEMMA 3

For V̂ = V ΦX ∈ UN , we first prove the identity

V̂ =
(

Φ
‖
Y ,Φ⊥

Y Ṽ
)

, (227)

with some unitary matrix Ṽ ∈ UN−t.

Since V is unitary, using the constraint (79) yields XHX =
Y HY . This implies that X and Y have identical singular

values and right-singular vectors, i.e. X = ΦX(ΣX ,O)TΨH
X

and Y = ΦY (ΣY ,O)TΨH
Y with ΣX = ΣY and ΨX =

ΨY . Since ΣX = ΣY is assumed to be invertible, applying

these SVDs to the constraint (79) yields

Φ
‖
Y = V ΦX

(

It

ON×(N−t)

)

. (228)

Consider the partition V̂ = (V̂ 0, V̂ 1), with V̂ 0 ∈ C
N×t

and V̂ 1 ∈ CN×(N−t). From (228) we have V̂ 0 = Φ
‖
Y . Thus,

the orthogonality between the columns of V̂ 0 and V̂ 1 implies

the structure (227) with some matrix Ṽ ∈ C(N−t)×(N−t).

Furthermore, from the orthonormality between the columns of

V̂ 1 we find that Ṽ is a unitary matrix. Thus, (227) is correct.

We next prove that (227) is equivalent to the RHS of (80).

Substituting (227) into V = V̂ Φ
H
X yields

V = Φ
‖
Y (Φ

‖
X)H +Φ

⊥
Y Ṽ (Φ⊥

X)H. (229)

It is straightforward to confirm that the first term on the RHS

of (80) reduces to Φ
‖
Y (Φ

‖
X)H, by using the SVDs of X and

Y with ΣX = ΣY and ΨX = ΨY .

To complete the proof of Lemma 3, we prove that Ṽ ∈
UN−t is a Haar matrix independent of X and Y . Since the

Haar matrix V is bi-unitarily invariant, we have V ΦX ∼ V .

Thus, without loss of generality, (228) allows us to assume

X = (It,O)T in the constraint (79). Under this assumption,

conditioning on X and Y is equivalent to conditioning the

first t columns V 0 of V .

Consider the following structure:

V =
(

V 0,Φ
⊥
V 0

Ṽ
)

. (230)

We prove that V is Haar-distributed if and only if Ṽ is a Haar

matrix and independent of V 0. Since X and Y depend on V

only through V 0, we arrive at Lemma 3.

For any deterministic unitary matrix Φ ∈ UN , it is known

that the left-invariance ΦV ∼ V induces the Haar measure on

the unitary group of dimension N satisfying V ∼ V H, so that

we have the right-invariance V Ψ ∼ V H
Ψ = (ΨHV )H ∼

V H ∼ V for any deterministic Ψ ∈ UN . Thus, we only

consider the left-invariance ΦV ∼ V .

There is some unitary matrix UV 0
∈ UN−t such that

ΦΦ
⊥
V 0

= Φ
⊥
ΦV 0

UV 0
holds, because of

ΦΦ
⊥
V 0

(ΦΦ
⊥
V 0

)H = Φ(IN − V 0V
H
0 )Φ

H = P⊥
ΦV 0

. (231)

This implies that (230) satisfies

ΦV =
(

ΦV 0,Φ
⊥
ΦV 0

UV 0
Ṽ
)

, (232)
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which indicates that ΦV ∼ V holds if and only if

(ΦV 0,UV 0
Ṽ ) ∼ (V 0, Ṽ ) is satisfied. Since V 0 is Haar-

distributed, ΦV ∼ V holds if and only if Ṽ is a Haar matrix

independent of V 0. Thus, Lemma 3 holds.
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