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Abstract—This paper studies the problem of accurately recov-
ering a structured signal from a small number of corrupted sub-
Gaussian measurements. We consider three different procedures
to reconstruct signal and corruption when different kinds of prior
knowledge are available. In each case, we provide conditions for
stable signal recovery from structured corruption with added
unstructured noise. The key ingredient in our analysis is an
extended matrix deviation inequality for isotropic sub-Gaussian
matrices.

Index Terms—Corrupted sensing, compressed sensing, signal
separation, sub-Gaussian, Gaussian width, extended matrix de-
viation inequality.

I. INTRODUCTION

Corrupted sensing concerns the problem of recovering a

structured signal from a relatively small number of corrupted

measurements

y = Φx⋆ + v⋆ + z, (1)

where Φ ∈ R
m×n is the sensing matrix with m≪ n, x⋆ ∈ R

n

is the structured signal, v⋆ ∈ R
m is the structured corruption,

and z ∈ R
m is the unstructured observation noise. The goal

is to estimate x⋆ and v⋆ from given knowledge of y and Φ.

This problem has received increasing attention recently with

many interesting practical applications as well as theoretical

consideration. Examples of applications include face recogni-

tion [1], subspace clustering [2], sensor network [3], and so

on. Examples of theoretical guarantees include sparse signal

recovery from sparse corruption [4], [5], [6], [7], [8], [9], [10]

and structured signal recovery from structured corruption [11].

It is worth noting that this model (1) also includes the signal

separation (or demixing) problem [12] in which v⋆ might

actually contain useful information and thus is necessary to

be recovered. In particular, if there is no corruption (v⋆ = 0),
this model (1) reduces to the standard compressed sensing

problem.

Since this problem is generally ill-posed, recovery is pos-

sible when both signal and corruption are suitably structured.

Let f(·) and g(·) be suitable norms which promote structures

for signal and corruption respectively. We consider three

different convex optimization approaches to disentangle signal

and corruption when different kinds of prior information are

available. Specifically, when prior knowledge of either signal

f(x⋆) or corruption g(v⋆) is available and the noise level δ
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(in terms of ℓ2-norm) is known, it is natural to consider the

following constrained convex recovery procedures

min
x,v

f(x), s.t. g(v) ≤ g(v⋆), ‖y −Φx− v‖2 ≤ δ (2)

and

min
x,v

g(v), s.t. f(x) ≤ f(x⋆), ‖y −Φx− v‖2 ≤ δ. (3)

When only the noise level δ is known, it is convenient to use

the partially penalized convex recovery procedure

min
x,v

f(x) + λ · g(v), s.t. ‖y −Φx− v‖2 ≤ δ, (4)

where λ > 0 is a tradeoff parameter. When there is no prior

knowledge available, it is practical to utilize the fully penalized

convex recovery procedure

min
x,v

1

2
‖y −Φx− v‖22 + τ1 · f(x) + τ2 · g(v), (5)

where τ1, τ2 > 0 are some tradeoff parameters.

This paper considers the problem of recovering a structured

signal from corrupted sub-Gaussian measurements. The con-

tribution of this paper is threefold:

(1): First, we consider sub-Gaussian measurements in model

(1). Specifically, we assume that each row Φi of the

sensing matrix Φ is independent, centered, and sub-

Gaussian random vector with

‖Φi‖ψ2
≤ K/

√
m and EΦ

T
i Φi = In/m, (6)

where ‖ · ‖ψ2
denotes the sub-Gaussian norm and In is

the n-dimensional identity matrix.

(2): Second, the unstructured noise z is assumed to be

bounded (‖z‖2 ≤ δ) or be a random vector with

independent centered sub-Gaussian entries satisfying

‖zi‖ψ2
≤ L and Ez2

i = 1. (7)

(3): Third, under the above conditions, we establish perfor-

mance guarantees for all three convex recovery proce-

dures.

It is worth noting that in [12] only the constrained convex

recovery procedures ((2) and (3)) were considered under

random orthogonal measurements (m = n) and noise-free

case (δ = 0). In [11], both the constrained convex recovery

procedures ((2) and (3)) and the partially penalized convex

recovery procedure (4) were analyzed under Gaussian mea-

surements and bounded noise case. The results in this paper

solve a series of open problems in [11] (e.g., allowing non-

Gaussian measurements and stochastic unstructured noise in
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model (1) and analyzing the fully penalized convex recovery

procedure (5)).

II. PRELIMINARIES

In this section, we review some preliminaries that underlie

our analysis.

The subdifferential of f at x is the set of vectors

∂f(x) = {u ∈ R
n : f(x+d) ≥ f(x)+〈u,d〉 for all d ∈ R

n}.
The tangent cone of f at x is defined as the set of descent

directions of f at x

Tf = {u ∈ R
n : f(x+ t ·u) ≤ f(x) for some t > 0}. (8)

The Gaussian width of a subset C ⊂ R
n is defined as

ω (C) = E sup
u∈C

〈g,u〉 , where g ∼ N (0, In).

While the Gaussian complexity for a subset C ⊂ R
n is defined

as

γ(C) = E sup
u∈C

| 〈g,u〉 |, where g ∼ N (0, In).

These two geometric quantities are closely related, in partic-

ular,

γ(C) ≤ 2w(C) + ‖u‖2 for any point u ∈ C. (9)

The Gaussian squared distance η2(C) of a subset C ⊂ R
n is

defined as

η2(C) := E inf
u∈C

‖g − u‖22, where g ∼ N (0, In).

A random variable X is called a sub-Gaussian random

variable if the Orlicz norm

‖X‖ψ2
= inf{t > 0 : E exp(X2/t2) ≤ 2} (10)

is finite. The sub-Gaussian norm of X , denoted ||X ||ψ2
, is

defined to be the smallest t in (10). A random vector x ∈
R
n is called a sub-Gaussian random vector if all of its one-

dimensional marginals are sub-Gaussian random variables and

its ψ2-norm is defined as

‖x‖ψ2
:= sup

y∈Sn−1

∥

∥ 〈x,y〉
∥

∥

ψ2
. (11)

A random vector x ∈ R
n is isotropic if it satisfies ExxT =

In.

The key ingredient in our proofs is the following extended

matrix deviation inequality which implies the extended re-

stricted eigenvalue condition for the sub-Gaussian sensing

matrix.

Proposition 1 (Extended Matrix deviation inequality, [13]).

Let A be an m× n random matrix whose rows are indepen-

dent, centered, isotropic, and sub-Gaussian random vectors

with maxi ‖Ai‖ψ2
≤ K . For any bounded subset T ⊂

R
n × R

m and t ≥ 0, the event

sup
(a,b)∈T ∩Sn+m−1

∣

∣‖Aa+
√
mb‖2 −

√
m
∣

∣

≤ CK2[γ(T ∩ S
n+m−1) + t] (12)

holds with probability at least 1− exp{−t2}.

III. MAIN RESULTS

In this section, we present our main results. We use

c, C, C′, C′′, and ǫ to denote generic absolute constants.

A. Recovery via Constrained Optimization

We start with analyzing the constrained convex recovery

procedures (2) and (3). Our first result shows that, with high

probability, approximately

CK4ω2(Tf (x⋆) ∩ S
n−1) + CK4ω2(Tg(v⋆) ∩ S

m−1) (13)

corrupted measurements suffice to recover (x⋆,v⋆) exactly in

the absence of noise and stably in the presence of noise, via

either of the procedures (2) or (3).

Before stating our result, we need to define the error set

E1(x⋆,v⋆) := {(a, b) ∈ R
n × R

m :

f(x⋆ + a) ≤ f(x⋆) and g(v⋆ + b) ≤ g(v⋆)},

in which the error vector (x̂ − x⋆, v̂ − v⋆) lives. By the

convexity of f and g, E1(x⋆,v⋆) belongs to the following

convex cone

C1(x⋆,v⋆) := {(a, b) ∈ R
n × R

m : 〈a,u〉 ≤ 0

and 〈b, s〉 ≤ 0 for any u ∈ ∂f(x⋆) and s ∈ ∂g(v⋆)},

which is equivalent to

{(a, b) ∈ R
n × R

m : a ∈ Tf (x⋆) and b ∈ Tg(v⋆)}.

Then we have the following results.

Theorem 1 (Constrained Recovery). Let (x̂, v̂) be the solution

to either of the constrained optimization problems (2) or (3).

If the number of measurements

√
m ≥ CK2γ(C1(x⋆,v⋆) ∩ S

n+m−1) + ǫ, (14)

then
√

‖x̂− x⋆‖22 + ‖v̂ − v⋆‖22 ≤ 2δ
√
m

ǫ

with probability at least 1− exp{−γ2(C1 ∩ S
n+m−1)}.

Proof. Since (x̂, v̂) solves (2) or (3), we have f(x̂) ≤ f(x⋆)
and g(v̂) ≤ g(v⋆). This implies (x̂ − x⋆, v̂ − v⋆) ∈
E1(x⋆,v⋆) ⊂ C1(x⋆,v⋆). It then follows from Proposition

1 and (14) that the event

min
(a,b)∈C1(x⋆,v⋆)∩Sn+m−1

√
m‖Φa+ b‖2

≥ √
m− CK2γ(C1(x⋆,v⋆) ∩ S

n+m−1) ≥ ǫ (15)

holds with probability at least 1 − exp{−γ2(C1(x⋆,v⋆) ∩
S
n+m−1)}.

On the other hand, since both (x̂, v̂) and (x⋆,v⋆) are

feasible, by triangle inequality, we have

‖Φ(x̂− x⋆) + (v̂ − v⋆)‖2
≤ ‖y −Φx̂− v̂‖2 + ‖y −Φx⋆ − v⋆‖2 ≤ 2δ. (16)

Combining (15) and (16) completes the proof.



To obtain interpretable sample size bound (13) in terms of

familiar parameters, it is necessary to bound γ(C1(x⋆,v⋆) ∩
S
n+m−1).

Lemma 1. The Gaussian complexity of C1(x⋆,v⋆)∩S
n+m−1

satisfies

γ(C1(x⋆,v⋆) ∩ S
n+m−1)

≤ 2
[

ω
(

Tf (x⋆) ∩ S
n−1

)

+ ω
(

Tg(x⋆) ∩ S
m−1

)

+ 1
]

.

Proof.

γ(C1(x⋆,v⋆) ∩ S
n+m−1)

= E sup
(a,b)∈C1(x⋆,v⋆)∩Sn+m−1

∣

∣ 〈g,a〉+ 〈h, b〉
∣

∣

≤ E sup
c∈(0,1)

a∈Tf(x
⋆)∩S

n−1

b∈Tg(v
⋆)∩S

m−1

c · |〈g,a〉|+
√

1− c2 |〈h, b〉|

≤ E sup
a∈Tf (x⋆)∩Sn−1

|〈g,a〉|+ E sup
b∈Tg(v⋆)∩Sm−1

|〈h, b〉|

= γ(Tf (x⋆) ∩ S
n−1) + γ(Tg(v⋆) ∩ S

m−1)

≤ 2
[

ω
(

Tf ∩ S
n−1

)

+ ω
(

Tg ∩ S
m−1

)

+ 1
]

.

The last inequality follows from (9).

Clearly, (13) follows from Theorem 1 and Lemma 1.

B. Recovery via Partially Penalized Optimization

We next present performance analysis for the partially

penalized optimization problem (4). Let λ = λ2/λ1, λ1 and

λ2 are absolute constants. Our second result shows that, with

high probability, approximately

CK4η2(λ1 · ∂f(x⋆)) + CK4η2(λ2 · ∂g(v⋆)) (17)

corrupted measurements suffice to recover (x⋆,v⋆) exactly in

the absence of noise and stably in the presence of noise, via

the procedure (4).

In this case, we define the following error set

E2(x⋆,v⋆) := {(a, b) ∈ R
n × R

m :

f(x⋆ + a) + λ · g(v⋆ + b) ≤ f(x⋆) + λ · g(v⋆)}.
By the convexity of f and g, E2(x⋆,v⋆) belongs to the

following convex cone

C2(x⋆,v⋆) := {(a, b) ∈ R
n × R

m : 〈a,u〉+ λ〈b, s〉 ≤ 0

for any u ∈ ∂f(x⋆) and s ∈ ∂g(v⋆)}.
Then we have the following results.

Theorem 2 (Partially Penalized Recovery). Let (x̂, v̂) be the

solution to the partially penalized optimization problem (4). If

the number of measurements
√
m ≥ CK2γ(C2(x⋆,v⋆) ∩ S

n+m−1) + ǫ, (18)

then
√

‖x̂− x⋆‖22 + ‖v̂ − v⋆‖22 ≤
2δ
√
m

ǫ

with probability at least 1− exp{−γ2(C2 ∩ S
n+m−1)}.

Proof. The proof is similar to that of Theorem 1.

Let η2f = η2(λ1 · ∂f(x⋆)) and η2g = η2(λ2 · ∂g(v⋆)). We

can bound γ(C2(x⋆,v⋆) ∩ S
n+m−1) as follows.

Lemma 2. The Gaussian complexity of C2(x⋆,v⋆)∩S
n+m−1

satisfies

γ(C2(x⋆,v⋆) ∩ S
n+m−1) ≤ 2

√

η2f + η2g + 1.

Proof. For any point (a, b) ∈ C2(x⋆,v⋆), we have

〈a,u〉+ λ〈b, s〉 ≤ 0

for any u ∈ ∂f(x⋆) and s ∈ ∂g(v⋆). Multiplying both sides

by λ1 yields

〈a, λ1u〉+ 〈b, λ2s〉 ≤ 0.

For any g ∈ R
n and h ∈ R

m, by Cauchy-Schwarz inequality,

we have

〈a, g〉+ 〈b,h〉 ≤ 〈a, g − λ1u〉+ 〈b,h− λ2s〉
≤ ‖a‖2‖g − λ1u‖2 + ‖b‖2‖h− λ2s‖2.

Choosing suitable u ∈ ∂f(x⋆) and s ∈ ∂g(v⋆) such that

‖g − λ1 · u‖2 = dist(g, λ1 · ∂f(x⋆))
and

‖h− λ2 · s‖2 = dist(h, λ2 · ∂g(v⋆)),
we obtain

〈a, g〉+ 〈b,h〉 (19)

≤ ‖a‖2 · dist(g, λ1 · ∂f(x⋆)) + ‖b‖2 · dist(h, λ2 · ∂g(v⋆))
= df · ‖a‖2 + dg · ‖b‖2,

where df := dist(g, λ1∂f(x
⋆)) and dg := dist(h, λ2∂g(v

⋆)).
Therefore,

ω
(

C2(x⋆,v⋆) ∩ S
n+m−1

)

= E sup
(a,b)∈C2(x⋆,v⋆)∩Sn+m−1

[

〈g,a〉+ 〈h, b〉
]

≤ E sup
(a,b)∈C2(x⋆,v⋆)∩Sn+m−1

[

‖a‖2 · df + ‖b‖2 · dg
]

≤ E

√

d2f + d2g ≤
√

E d2f + E d2g =
√

η2f + η2g .

The second and the third inequalities follow from Cauchy-

Schwarz and Jensen’s inequalities respectively. By (9), we

complete the proof.

Thus, (17) follows from Theorem 2 and Lemma 2.

C. Recovery via Fully Penalized Optimization

Finally, we analyze the fully penalized optimization problem

(5). In this case, we require regularization parameters τ1 and

τ2 to satisfy the following assumption:

Assumption 1.

τ1 ≥ βf∗(ΦT z) and τ2 ≥ βg∗(z),

for any β > 1.



Our third result shows that, with high probability, approxi-

mately

CK4

[

√

η2(τ1 · ∂f(x⋆)) + η2(τ2 · ∂g(v⋆)) +
τ1αf + τ2αg

β

]2

(20)

corrupted measurements suffice to recover (x⋆,v⋆) exactly in

the absence of noise and stably in the presence of noise, via

the procedure (5).

Similarly, define the error set

E3(x⋆,v⋆) :=
{(a, b) ∈ R

n × R
m : τ1f(x

⋆ + a) + τ2g(v
⋆ + b)

≤ τ1f(x
⋆) + τ2g(v

⋆) +
1

β
[τ1f(a) + τ2g(b)]}.

By the convexity of f and g, E3(x⋆,v⋆) belongs to the

following convex cone

C3(x⋆,v⋆) := {(a, b) ∈ R
n × R

m :

τ1〈a,u〉+ τ2〈b, s〉 ≤
1

β
[τ1f(a) + τ2g(b)]}

for and u ∈ ∂f(x⋆) and s ∈ ∂g(v⋆). Then we have the

following result.

Theorem 3 (Fully Penalized Recovery). Let (x̂, v̂) be the

solution to the fully penalized optimization problem (5) with τ1
and τ2 satisfying Assumption 1. If the number of measurements

√
m ≥ CK2γ(C3(x⋆,v⋆) ∩ S

n+m−1) + ǫ, (21)

then
√

‖x̂− x⋆‖22 + ‖v̂ − v⋆‖22 ≤ 2m · β + 1

β
· τ1αf + τ2αg

ǫ2

with probability at least 1− exp{−γ2(C3 ∩ S
n+m−1)}.

Proof. Since (x̂, v̂) solves (5), we have

1

2
‖y −Φx̂− v̂‖22 + τ1f(x̂) + τ2g(v̂)

≤ 1

2
‖y −Φx⋆ − v⋆‖22 + τ1f(x

⋆) + τ2g(v
⋆). (22)

Observe that

1

2
‖y −Φx̂− v̂‖22 =

1

2
‖Φ(x̂− x⋆) + (v̂ − v⋆)‖22

+
1

2
‖z‖22 − 〈Φ(x̂− x⋆), z〉 − 〈v̂ − v⋆, z〉 .

Substituting this into (22) yields

1

2
‖Φ(x̂− x⋆) + (v̂ − v⋆)‖22 ≤ τ1[f(x

⋆)− f(x̂)]

+ τ2[g(v
⋆)− g(v̂)] + 〈Φ(x̂− x⋆), z〉+ 〈v̂ − v⋆, z〉 . (23)

Since ‖Φ(x̂− x⋆) + (v̂ − v⋆)‖22 ≥ 0, we have

τ1f(x̂) + τ2g(v̂)

≤ τ1f(x
⋆) + τ2g(v

⋆) + 〈Φ(x̂− x⋆), z〉+ 〈v̂ − v⋆, z〉
≤ τ1f(x

⋆) + τ2g(v
⋆) + f∗(ΦTz) · f(x̂− x⋆)

+ g∗(z) · g(v̂ − v⋆)

≤ τ1f(x
⋆) + τ2g(v

⋆) +
τ1
β

· f(x̂− x⋆) +
τ2
β

· g(v̂ − v⋆),

where f∗(·) and g∗(·) denotes the dual norms of f(·) and g(·)
respectively. The second inequality follows from generalized

Hölder’s inequality. The last inequality holds because of

Assumption 1. This implies (x̂−x⋆, v̂− v⋆) ∈ E3(x⋆,v⋆) ⊂
C3(x⋆,v⋆). It then follows from Proposition 1 and (21) that

the event

min
(a,b)∈C3(x⋆,v⋆)∩Sn+m−1

√
m‖Φa+ b‖2

≥ √
m− CK2γ(C3(x⋆,v⋆) ∩ S

n+m−1) ≥ ǫ (24)

holds with probability at least 1 − exp{−γ2(C3(x⋆,v⋆) ∩
S
n+m−1)}.

On the other hand, it follows from (23) that

1

2
‖Φ(x̂− x⋆) + (v̂ − v⋆)‖22 (25)

≤ τ1
β

· f(x̂− x⋆) +
τ2
β

· g(v̂ − v⋆) + τ1 · f(x̂− x⋆)

+ τ2 · g(v̂ − v⋆)

=
β + 1

β

(

τ1 · f(x̂− x⋆) + τ2 · g(v̂ − v⋆)
)

=
β + 1

β

(

αfτ1 · ‖x̂− x⋆‖2 + αgτ2 · ‖v̂ − v⋆‖2
)

≤ β + 1

β
· (αf τ1 + αgτ2) ·

√

‖x̂− x⋆‖22 + ‖v̂ − v⋆‖22,

where αf = supu 6=0
f(u)
‖u‖2

and αg = supu 6=0
g(u)
‖u‖2

are

compatibility constants. The first inequality follows from tri-

angle inequality. In the last inequality, we have used Cauchy-

Schwarz inequality.

Combining (24) and (25) completes the proof.

To bound the Gaussian complexity of C3(x⋆,v⋆)∩Sn+m−1,

we have

Lemma 3.

γ(C3(x⋆,v⋆) ∩ S
n+m−1) ≤ 2

[

√

η2f + η2g +
τ1αf + τ2αg

β

]

+ 1.

Proof. By (19), we obtain

ω
(

C3(x⋆,v⋆) ∩ S
n+m−1

)

= E sup
(a,b)∈C3(x⋆,v⋆)∩Sn+m−1

[

〈g,a〉+ 〈h, b〉
]

≤ E
[

‖a‖2 · df + ‖b‖2 · dg +
1

β
τ1 · f(a) +

1

β
τ2 · g(b)

]

≤
√

η2f + η2g +
τ1αf + τ2αg

β
.

The following Lemma indicates how to choose regulariza-

tion parameters τ1 and τ2 in Assumption 1.

Lemma 4. Let A be an m × n matrix whose rows Ai

are independent centered isotropic sub-Gaussian vectors with

maxi ‖Ai‖ψ2
≤ K , and w be any fixed vector. Let T be any

bounded subset Rn. Then, for any t ≥ 0, the event

sup
u∈T

〈Au,w〉 ≤ CK‖w‖2
[

γ(T ) + t · rad(T )
]



holds with probability at least 1−exp{−t2}, where rad(T ) :=
supu∈T ‖u‖2.

Proof. Define the random process

Xu := 〈Au,w〉 , for any u ∈ T ,
which has sub-Gaussian increments

‖Xu −Xu′‖ψ2
= ‖ 〈A(u− u′),w〉 ‖ψ2

≤ ‖w‖2‖A(u− u′)‖ψ2

≤ CK‖w‖2‖u− u′‖2
for any u,u′ ∈ T . The last inequality follows from [14,

Lemma 3.4.3]. Define T̄ = T ∪ {0}. It follows from Tala-

grand’s Majorizing Measure Theorem [15, Theorem 4.1] that

the event

sup
u∈T

〈Au,w〉 ≤ sup
u∈T

| 〈Au,w〉 | = sup
u∈T̄

| 〈Au,w〉 |

= sup
u∈T̄

| 〈Au,w〉 − 〈A0,w〉 |

≤ sup
u,u′∈T̄

| 〈Au,w〉 − 〈Au′,w〉 |

≤ C′K‖w‖2(ω(T̄ ) + t diam(T̄ ))

≤ C′′K‖w‖2(γ(T ) + t rad(T ))

holds with probability at least 1 − exp{−t2}, where

diam(T̄ ) := supu,s∈T̄ ‖u − s‖2. In the last inequality,

we have used the facts that ω(T̄ ) ≤ γ(T̄ ) = γ(T ) and

diam(T ) ≤ 2 rad(T ). This completes the proof.

When the noise is bounded (‖z‖2 ≤ δ), we have the event

f∗(ΦTz) = sup
u∈Bn

f

〈Φu, z〉 ≤ CKδ√
m

[

γ(Bnf ) +
√
m · rf

]

holds with probability at least 1−exp(m), where B
n
f = { u ∈

R
n : f(u) ≤ 1 } and rf = sup{ ‖u‖2 : u ∈ B

n
f }. Thus it is

safe to choose τ1 ≥ βCKδ√
m

[

ω
(

B
n
f

)

+
√
m · rf

]

. In addition,

we have g∗(z) = supu∈Bm
g
〈z,u〉 ≤ δ supu∈Bm

g
‖u‖2 = δ ·rg ,

where B
m
g = { s ∈ R

m : g(s) ≤ 1 } and rg = sup{ ‖s‖2 :
s ∈ B

m
g }. Therefore, we can choose τ2 ≥ βδ · rg .

When z is a sub-Gaussian random vector such that (7)

holds, then ‖z‖2 concentrates near the value
√
m [14, Theo-

rem 3.1.1], that is ‖‖z‖2 −
√
m‖ψ2

≤ CK2. This implies

P
{

‖z‖2 ≥ (L2 + 1)
√
m
}

≤ P
{∣

∣‖z‖2 −
√
m
∣

∣ ≥ L2
√
m
}

≤ 2e−cm.

Combining this with Lemma 4 and taking union bound yields

f∗(ΦT z) = sup
u∈Bn

f

〈Φu, z〉 ≤ CK(1 + L2)
[

γ(Bnf ) +
√
m · rf

]

with probability at least 1 − 3e−cm. Moreover, it is not hard

to show the event

g∗(z) = sup
u∈Bm

g

〈z,u〉 ≤ CL
[

γ(Bmg ) +
√
m · rg

]

holds with probability at least 1−exp{−m}. In order to satisfy

the Assuption 1, we can choose τ1 ≥ CK(1 + L2)β
[

γ(Bnf )+√
m·rf

]

and τ2 ≥ CLβ
[

γ(Bmg )+
√
m·rg

]

in the sub-Gaussian

noise case.

IV. CONCLUSION

In this paper, we have presented performance analysis for

three convex recovery procedures which are used to recover a

structured signal from corrupted sub-Gaussian measurements.

We considered both bounded and stochastic noise cases.

Our results have shown that, under mild conditions, these

approaches reconstruct both signal and corruption exactly in

the absence of noise and stably in the presence of noise.

For future work, it would be of great interest to exploit the

relationship among these procedures and their phase transition

phenomenon [16].
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