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Abstract—In [1], a sharp phase transition has been numerically
observed when a constrained convex procedure is used to solve
the corrupted sensing problem. In this paper, we present a the-
oretical analysis for this phenomenon. Specifically, we establish
the threshold below which this convex procedure fails to recover
signal and corruption with high probability. Together with the
work in [1], we prove that a sharp phase transition occurs
around the sum of the squares of spherical Gaussian widths
of two tangent cones. Numerical experiments are provided to
demonstrate the correctness and sharpness of our results.

Index Terms—Corrupted sensing, phase transition, Gaussian
width, compressed sensing, signal separation.

I. INTRODUCTION

Corrupted sensing aims to recover a structured signal from

a small number of corrupted measurements

y = Ψx⋆ + v⋆, (1)

where Ψ ∈ R
m×n is the sensing measurement matrix which is

assumed to have i.i.d. standard Gaussian entries in this paper,

x⋆ ∈ R
n is the unknown signal, and v⋆ ∈ R

m is an unknown

corruption. The goal is to estimate x⋆ and v⋆ from y and Ψ.

This problem is encountered in many practical applications,

such as face recognition [2], subspace clustering [3], network

data analysis [4], and so on. Theoretical guarantees for this

problem include sparse signal recovery from sparse corrup-

tion [5]–[11] and structured signal recovery from structured

corruption [1], [12], [13].

To make the recovery possible, we will assume that both x

and v have some structures which are promoted by the convex

functions f(·) and g(·) respectively. When prior information

about f(x⋆) or g(v⋆) is available, it is natural to consider the

following program to recover the signal and corruption:

min f(x), s.t. y = Ψx+ v, g(v) ≤ g(v⋆), (2)

or

min g(v), s.t. y = Ψx+ v, f(x) ≤ f(x⋆). (3)

In [1], Foygel and Mackey provided conditions under which

convex program (2) or (3) succeeds with high probability.

Numerical experiments in [1] also suggested that there is a

sharp phase transition when (2) or (3) is used to solve the

corrupted sensing problem. However, little work has devoted

to determining the threshold below which (2) or (3) fails with

This work was supported by the National Natural Science Foundation of
China under Grant 61301188.

high probability. Therefore, theoretical understanding of the

phase transition for program (2) and (3) is far from satisfactory.

In this paper, we present a theoretical analysis for the phase

transition of (2) or (3). In particular, we figure out the exact

position of phase transition, and demonstrate that the phase

transition occurs in a relatively narrow region.

II. PRELIMINARIES

In this section, we present some preliminaries which will

be used in our analysis.

Our result involves two important concepts: the Gaussian

width and the tangent cone. Given a subset T in R
n, the

Gaussian width is defined by

ω(T ) = E sup
t∈T

〈g, t〉 , where g ∼ N(0, In).

We also define two tangent cones corresponding to signal and

corruption respectively. The tangent cone of f(·) at the true

signal x⋆ is defined as

Ds =
{

a ∈ R
n : ∃ t > 0, f(x⋆ + at) ≤ f(x⋆)

}

. (4)

Similarly, the tangent cone of g(·) at the true corruption v⋆ is

given by

Dc =
{

b ∈ R
m : ∃ t > 0, g(v⋆ + bt) ≤ g(v⋆)

}

. (5)

III. MAIN RESULTS

In this section, we state our main results with some discus-

sions.

Theorem 1 (Failure of convex program (2) or (3)). Consider

convex program (2) or (3). Assume that both tangent cones Ds

and Dc are closed. For any t ≥ 0, if the measurement number

m satisfies

√
m <

√

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

− t,

then the constrained convex program (2) or (3) fails with

probability at least 1 − exp(−t2/2), where Sn−1 and Sm−1

are the unit sphere of Rn and R
m respectively.

Proof. See Appendix A.
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Remark 1 (Phase transition of corrupted sensing). Recall

Theorem 1 and Remark 2 in [1], which stated that 1 2 when

√
m ≥

√

ω2(Ds ∩ Sn−1) + ω2(Dc ∩ Sm−1)+
1√
2
+

1√
2π

+t,

the constrained convex program (2) or (3) succeeds with

probability at least 1 − exp(−t2/2). This, together with our

result Theorem 1, demonstrate that the phase transition of

corrupted sensing occurs around

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

,

and the width of phase transition area is about

C
√

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

,

where C is an absolute constant.

Remark 2. Our result also agrees with the result of

Amelunxen el al. [14]. Indeed, by Proposition 10.2 and

Proposition 3.1 (9) in [14], we have

ω2
(

Ds∩Sn−1
)

+ω2
(

Dc∩Sm−1
)

≈ δ(Ds)+δ(Dc) = δ(Ds×Dc),

where δ(D) denotes the statistical dimension of a convex cone

D.

Remark 3. In [14], Amelunxen et al. considered the phase

transition of the following demixing problem:

z = x+Uy,

where x, y ∈ R
n are unknown signals and U ∈ R

n×n is a

random orthogonal matrix. This model is different from ours

since we have random Gaussian measurement matrix with

m ≪ n.

Remark 4. In [15], Oymak and Tropp considered the phase

transition of the following demixing model:

y = Ψ0x0 +Ψ1x1,

where x0, x1 ∈ R
n are two signals and Ψ0, Ψ1 ∈ R

m×n

are some random transformation matrices. This model is also

different from ours since Ψ1 is a deterministic matrix in our

case. This makes the problem more difficult to analyze.

IV. SIMULATION RESULTS

In this section, we employ a numerical experiment to verify

our theoretical guarantees (Theorem 1). In the experiment,

both signal and corruption are designed to be sparse vectors.

We use CVX [16] [17] to solve the convex program (2) or (3).

In the experiment, we assume that the prior information

of f(x⋆) is known exactly, and solve program (3). The

experiment settings are as follows: the ambient dimension n
is set to 128, the measurement number m = n = 128, the

sparsity level of signal changes from 1 to n with step 1, and

the same for corruption. For every sparsity level of signal

1The authors believe that the small additive constants are artifacts of the
proof technique.

2The original result is stated in terms of Gaussian complexity γ(Ds∩Bn),

difined as γ2(Ds∩Bn) = E
(

supt∈Ds∩Bn 〈g, t〉
)

2
, where Bn denotes the

ℓ2 unit ball in R
n. However, as the author stated, the Gaussian complexity

γ(Ds ∩Bn) is only very slightly larger than ω(Ds ∩ Sn−1).

Fig. 1. Phase transition for constrained convex program 3. The red curve
plots the phase transition threshold predicted by Theorem 1.

and corruption, we run and solve (3) 20 times. We declare

success if the solution to (3), denoted by (x̂, v̂), satisfies

‖x̂ − x⋆‖2 ≤ 10−3. Then we get the empirical probability

of successful recovery. At last, we plot the theoretical curve

predicted by Theorem 1.

Our numerical experiment result is shown in Fig. 1. We can

see that the theoretical threshold given by Theorem 1 is closely

matched with the empirical phase transition. It means that our

theory can give a reliable prediction of the phase transition

curve.

V. CONCLUSION

This paper studied the problem of phase transition when

we use convex program to solve corrupted sensing problem.

Our results, together with previous work [1], gave the exact

location of phase transition and the size of transition region.

Simulations were provided to verify the correctness of our

results. Our ongoing work is to establish a general framework

to analyze the phase transition of various convex programs

with noise-free or noisy data.

APPENDIX A

PROOF OF MAIN RESULTS

In this section, we present proof for our main result (The-

orem 1). First, we will establish a sufficient condition under

which convex program (2) or (3) fails, then some necessary

tools are introduced, and at last, we give the proof for Theorem

1.

A. Sufficient Condition for failure

In this subsection, we establish an easy-to-handle sufficient

condition under which program (2) or (3) fails.

Lemma 1. Let Ds and Dc denote the signal and the corrup-

tion tangent cones defined in (4) and (5) respectively. Then a

sufficient condition under which constrained convex program

(2) or (3) fails is

min
(a,b)∈(Ds×Dc)∩Sn+m−1

∥

∥Ψa+ b
∥

∥ = 0. (6)



In other words, the subset Ds × Dc ∩ Sn+m−1 intersects the

null space of matrix
[

Ψ I
]

.

Proof. Lemma 1 is a generalization of Proposition 2.1 of [18].

The proof is similar, and hence is omitted.

Although Lemma 1 gives a sufficient condition for failure,

it is difficult to check when (6) holds. The following lemma

can overcome this drawback.

Lemma 2 (Sufficient condition for failure, Proposition 3.8,

[15]). Under the condition of Lemma 1, if both Ds and Dc

are closed, a sufficient condition for (6) to hold is

min
‖r‖=1

min
s∈(Ds×Dc)◦

∥

∥s−A∗r
∥

∥ > 0, (7)

where (Ds × Dc)
◦ denotes the polar cone of Ds × Dc, A =

[

Ψ I
]

, and I denotes the identity matrix.

Remark 5. One can easily check that

(Ds ×Dc)
◦ = D◦

s ×D◦
c .

Thus, the sufficient condition under which convex program (2)

or (3) fails can be rewritten as

min
‖r‖=1

min
s∈D◦

s
×D◦

c

∥

∥s−A∗r
∥

∥ > 0. (8)

In the following parts, we will prove that (8) holds with

high probability when the condition of Theorem 1 is satisfied.

Before this, let’s state some tools that will be used in our

proof.

B. Other Useful Tools

Lemma 3 (Gordon’s inequality, Theorem 3.16, [19]). Let

(Xut)u∈U,t∈T and (Yut)u∈U,t∈T be two Gaussian processes

indexed by pairs of points (u, t) in a product set U × T .

Assume that

E(Xut −Xus)
2 ≤ E(Yut − Yus)

2 for all u, t, s;

E(Xut−Xvs)
2 ≥ E(Yut−Yvs)

2 for all u 6= v and all t, s.

Then we have

E inf
u∈U

sup
t∈T

Xut ≤ E inf
u∈U

sup
t∈T

Yut.

Lemma 4 (Concentration of measure, Theorem 5.6, [20]). Let

X = (X1, . . . , Xn) be a vector of n independent standard

normal random variables. Let f : R
n → R denotes an L-

Lipschitz function. Then, for all t ≥ 0,

P
{

f(X)− Ef(X) ≥ t
}

≤ e−t2/(2L2).

Lemma 5 (Lemma 3.7, [18]). Let D ⊂ R
n be a non-empty

closed, convex cone. Then we have that

ω2(D ∩ Sn−1) + ω2(D◦ ∩ Sn−1) ≤ n.

Lemma 6. Let Ω1 and Ω2 be subsets of Sm−1 and Sn−1

respectively. Then the function

F (Ψ) = min
t∈Ω1

max
u∈Ω2

〈Ψu, t〉

is a 1-Lipschitz function, where Ψ is the same as in (1).

Proof. See Appendix B.

C. Proof of Main Results

According to Remark 5, we only need to prove that when

√
m <

√

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

− t,

the following event

min
‖r‖=1

min
s∈D◦

s
×D◦

c

∥

∥s−A∗r
∥

∥ > 0

holds with probability at least 1− e−t2/2. Moreover, a simple

calculation verifies that this inequality is equivalent to

min
‖r‖=1

min
s∈D◦

s
×D◦

c

‖s−A∗r‖2 > 0

⇐⇒ min
‖r‖=1

min
s∈D◦

s
×D◦

c

‖s−A∗r‖22 > 0

⇐⇒ min
‖r‖=1

min
s1∈D◦

s

s2∈D◦
c

[

∥

∥s1 −Ψ
∗r

∥

∥

2

2
+
∥

∥s2 − r
∥

∥

2

2

]

> 0. (9)

Now, we will consider two cases for r:

Case I: r ∈ D◦
c ∩Sm−1. In this case, when we minimize over

s2, the second term
∥

∥s2 − r
∥

∥

2

2
will be zero. Thus, the above

inequality (9) is equivalent to

min
r∈D◦

c
∩Sm−1

min
s1∈D◦

s

s2∈D◦
c

[

∥

∥s1 −Ψ
∗r

∥

∥

2

2
+
∥

∥s2 − r
∥

∥

2

2

]

> 0

⇐⇒ min
r∈D◦

c
∩Sm−1

min
s1∈D◦

s

∥

∥s1 −Ψ
∗r

∥

∥

2

2
> 0

⇐⇒ min
r∈D◦

c
∩Sm−1

min
s1∈D◦

s

∥

∥s1 −Ψ
∗r

∥

∥

2
> 0. (10)

For our purpose, we need to lower bound the left side of (10).

Note that for any fixed r ∈ D◦
c ∩ Sm−1, we have

min
s1∈D◦

s

‖s1 −Ψ
∗r‖2 = min

s1∈D◦
s

max
u∈Sn−1

〈u,Ψ∗r − s1〉

≥ max
u∈Sn−1

min
s1∈D◦

s

〈u,Ψ∗r − s1〉

= max
u∈Sn−1

[

〈u,Ψ∗r〉 − max
s∈D◦

s

〈u, s〉
]

= max
u∈Ds∩Sn−1

〈u,Ψ∗r〉

= max
u∈Ds∩Sn−1

〈Ψu, r〉 .

The first equality is due to the definition of ℓ2-norm. The first

inequality is because of the minimax inequality. The second

equality comes from the linear property of inner product. The

third equality uses the fact that maxs∈D◦
s

〈u, s〉 = 0 when u ∈
Ds, otherwise it equals ∞. The last equality can be derived

by a simple transformation. As the above inequality holds for

any r ∈ D◦
c ∩ Sm−1, we have

min
r∈D◦

c
∩Sm−1

min
s1∈D◦

s

‖s1 −Ψ
∗r‖2

≥ min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

〈Ψu, r〉 . (11)

It remains to bound the right side. To this end, we will first use

Gordon’s inequality (Lemma 3) to derive a lower bound for

the expectation, and then concentration of measure (Lemma

4) to obtain the desired result. Let Xru := 〈Ψu, r〉 and

Yru := 〈g, r〉 + 〈h,u〉 be two Gaussian processes, where

g ∼ N(0, Im×m) and h ∼ N(0, In×n) are independent



standard Gaussian random vectors. It can be easily checked

that the increments satisfy

E(Xru −Xru′)2 =
∥

∥u− u′
∥

∥

2

2
= E(Yru − Yru′)2,

E(Xru −Xr′u′)2 =
∥

∥urT − u′r′T
∥

∥

2

F

≤
∥

∥u− u′
∥

∥

2

2
+
∥

∥r − r′
∥

∥

2

2

= E(Yru − Yr′u′)2.

Therefore, Gordon’s inequality (Lemma 3) gives us:

E min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

Xru

≥ E min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

Yru

= E min
r∈D◦

c
∩Sm−1

〈g, r〉+ E max
u∈Ds∩Sn−1

〈h,u〉 . (12)

Since g is a symmetric random vector, we have

E min
r∈D◦

c
∩Sm−1

〈g, r〉 = E min
r∈D◦

c
∩Sm−1

〈−g, r〉

= −E max
r∈D◦

c
∩Sm−1

〈g, r〉

= −ω(D◦
c ∩ Sm−1).

Substituting this into (12), we get

E min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

Xru ≥ ω(Ds∩Sn−1)−ω(D◦
c∩Sm−1).

(13)

As Dc is a closed convex cone, by Lemma 5, we know that

ω2
(

D◦
c ∩ Sm−1

)

+ ω2
(

Dc ∩ Sm−1
)

≤ m,

which implies

ω(D◦
c ∩ Sm−1) ≤

√

m− ω2(Dc ∩ Sm−1).

Substituting this into (13), we get the following result:

E min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

〈Ψu, r〉

≥ ω(Ds ∩ Sn−1)−
√

m− ω2(Dc ∩ Sm−1)

≥
√

ω2(Ds ∩ Sn−1) + ω2(Dc ∩ Sm−1)−
√
m. (14)

In the last inequality, we have used the assumption that

ω2(Ds ∩ Sn−1) + ω2(Dc ∩ Sm−1) > m.

Next, Lemma 6 confirms that the following function

min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

〈Ψu, r〉

is a 1-Lipschitz function. Thus, concentration of measure

(Lemma 4) gives us that for any t ≥ 0,

P

{

min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

〈Ψu, r〉−

E min
r∈D◦

c
∩Sm−1

max
u∈Ds∩Sn−1

〈Ψu, r〉 ≥ −t
}

≥ 1− exp(−t2/2).

Putting the above inequality and (14), (11), (9), (10) together,

we eventually get that when

√
m <

√

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

− t,

we have

P

{

min
r∈D◦

c
∩Sm−1

min
s∈Ds×D◦

s

‖s−A∗r‖2 > 0
}

≥ 1−exp(−t2/2).

Case II: r /∈ D◦
c ∩ Sm−1. In this case, it is clear that no

matter what r and s2 takes value, it is always holds that
∥

∥s2 − r
∥

∥

2

2
> 0.

Thus,

P

{

min
r∈Sm−1\(D◦

c
∩Sm−1)

min
s1∈D◦

s

‖s1 −Ψ
∗r‖2 > 0

}

= 1,

which, by (9) and (10), implies that

P

{

min
r∈Sm−1\(D◦

c
∩Sm−1)

min
s∈Ds×D◦

s

‖s−A∗r‖2 > 0
}

= 1.

Union bound. Combining case I and case II and taking a

union bound, we have

P

{

min
‖r‖2=1

min
s∈Ds×D◦

s

‖s−A∗r‖2 > 0
}

≥ 1− exp(−t2/2),

provided

√
m <

√

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

− t.

By Lemma 1 and Lemma 2, it means that when

√
m <

√

ω2
(

Ds ∩ Sn−1
)

+ ω2
(

Dc ∩ Sm−1
)

− t,

the convex program (2) or (3) fails with probability at least

1− exp(−t2/2). This completes the proof.

APPENDIX B

PROOF OF LEMMA 6

To prove Lemma 6, we only need to show that for any

C,D ∈ R
m×n

∣

∣F (C)− F (D)
∣

∣ =
∣

∣

∣
min
t∈Ω1

max
u∈Ω2

〈Cu, t〉 − min
t∈Ω1

max
u∈Ω2

〈Du, t〉
∣

∣

∣

≤ ‖C −D‖F .

For any fixed t ∈ Ω1, let

u0(t) ∈ arg max
u∈Ω2

〈Cu, t〉 .

And we have

max
u∈Ω2

〈Du, t〉 ≥ 〈Du0(t), t〉 .

Then, let

t0 ∈ arg min
t∈Ω1

〈Du0(t), t〉 ,

and we have

F (C) = min
t∈Ω1

max
u∈Ω2

〈Cu, t〉 = min
t∈Ω1

〈Cu0(t), t〉

≤ 〈Cu0(t0), t0〉 .

Similarly,

F (D) = min
t∈Ω1

max
u∈Ω2

〈Du, t〉 ≥ min
t∈Ω1

〈Du0(t), t〉

= 〈Du0(t0), t0〉 .



Therefore,

F (C)− F (D) ≤ 〈Cu0(t0), t0〉 − 〈Du0(t0), t0〉
= 〈(C −D)u0(t0), t0〉
≤

∥

∥(C −D)u0(t0)
∥

∥

2

∥

∥t0
∥

∥

2

≤
∥

∥C −D
∥

∥

2
≤ ‖C −D‖F . (15)

The same argument gives

F (D)− F (C) ≤ ‖C −D‖F . (16)

Thus, combining (15) and (16), we get
∣

∣F (C)− F (D)
∣

∣ ≤ ‖C −D‖F .
The conclusion follows immediately.
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