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Abstract

This paper shows that for any random variables X and Y/, it is possible to represent Y as a function of (X, Z) such that Z
is independent of X and I(X; Z|Y") <log(I(X;Y)+1)+4 bits. We use this strong functional representation lemma (SFRL) to
establish a bound on the rate needed for one-shot exact channel simulation for general (discrete or continuous) random variables,
strengthening the results by Harsha er al. and Braverman and Garg, and to establish new and simple achievability results for
one-shot variable-length lossy source coding, multiple description coding and Gray-Wyner system. We also show that the SFRL
can be used to reduce the channel with state noncausally known at the encoder to a point-to-point channel, which provides a
simple achievability proof of the Gelfand-Pinsker theorem.
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I. INTRODUCTION

The functional representation lemma [[1, p. 626] states that for any random variables X and Y, there exists a random variable
Z independent of X such that Y can be represented as a function of X and Z. This result has been used to establish several
results in network information theory beginning with the early work of Hajek and Pursley on the broadcast channel [2] and
Willems and van der Meulen on the multiple access channel with cribbing encoders [3].

The random variable Z in the functional representation lemma can be intuitively viewed as the part of ¥ which is not
contained in X. However, Z is not necessarily unique. For example, let By, By, B3, By be i.i.d. Bern(1/2) random variables
and define X = (By,B2,B3) and Y = (B, B3, B4). Then both Z; = By and Zy = B; @ By satisfy the functional
representation lemma. However, H(Y'|Z;) = 2 while H(Y|Z3) = 3, that is, Z; provides more information about Y than Zs.
In general, H(Y|Z) = I(X;Y|2)+ HY|X,Z) = I(X;Y,Z) > I(X;Y). For our example H(Y|Z;) = I(X;Y) = 2, that
is, Z7 is the most informative Z about Y. What is the most informative Z about Y in general? Does it always achieve the
lower bound H(Y|Z) > I(X;Y)?

In this paper, we show that for general (X,Y’), their exists a Z such that H(Y|Z) is close to I(X;Y). Specifically, we
strengthen the functional representation lemma to show that for any X and Y, there exists a Z independent of X such that Y’
is a function of X and Z, and

I(X;Z]Y) <log(I(X;Y)+1) + 4.

Alternatively this can be expressed as

H(Y|Z) <I(X;Y) +log(I(X;Y) + 1) + 4. (1)

We use the above strong functional representation lemma (SFRL) together with an optimal prefix code such as a Huffman
code to establish one-shot, variable-length achievability results for channel simulation [4], Shannon’s lossy source coding [5],
multiple description coding [6], [7] and lossy Gray—Wyner system [§]]. These one-shot achievability results can be stated in
terms of mutual information, without the need of information density or other quantities. We then show how the SFRL can
be used to reduce the channel with state known at the encoder to a point-to-point channel, providing a simple proof to the
Gelfand-Pinsker theorem [9]. The asymptotic block coding counterparts of these one-shot results can be readily obtained by
converting the variable-length code into a block code and incurring an error probability that vanishes as the block length
approaches infinity.

A weaker form of the SFRL for discrete random variables follows from the result by Harsha et al. [4] on the one-shot exact
channel simulation with unlimited common randomness. Their result implies that I(X; Z|Y) < (1 +¢€)log(I(X;Y) 4+ 1) + c.
is achievable, where ¢ > 0 and c. is a function of e. This result was later strengthened by Braverman and Garg [10] to
I(X;7]Y) < log(I(X;Y) 4+ 1) + ¢ (note that replacing the universal code in [4] by a code for a suitable power law
distribution can also yield the same improvement). It is also shown in [10] that there exist examples for which the log term
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is necessary. SFRL strengthens these results in two ways; first it generalizes the bound to random variables with arbitrary
distributions (whereas the results in [4]], [10] only applies to discrete distributions), and second it provides a bound with a
small additive constant of 4 (whereas the constants in [4]], [LO] are unspecified). Our stronger result is established using a new
construction of Z and g that we refer to as the Poisson functional representation, instead of the rejection sampling approach
in [4]], [10]. Perhaps more importantly, we are the first to show that the result in [4] can be considered as a strengthened
functional representation lemma, which led us to explore applications in source and channel coding.

One-shot achievability results using fixed length (random) coding have been recently established for lossy source coding and
several settings in network information theory. In [[11], Liu, Cuff and Verdu established a one-shot achievability result for lossy
source coding using channel resolvability. One-shot quantum lossy source coding settings were investigated by Datta et al. [12]].
In [13]], Verdd introduced non-asymptotic packing and covering lemmas and used them to establish one-shot achievability results
for several settings including Gelfand-Pinsker. In [14], Liu, Cuff and Verdd proved a one-shot mutual covering lemma and
used it to establish a one-shot achievability result for the broadcast channel. In [[15], Watanabe, Kuzuoka and Tan established
several one-shot achievability results for coding with side-information (including Gelfand-Pinsker). In [16], Yassaee, Aref and
Gohari established several one-shot achievability results, including Gelfand-Pinsker and multiple description coding. Most of
these results are stated in terms of information density and various other quantities. In contrast, our one-shot achievability
results using variable-length codes are all stated in terms of only mutual information. Moreover, given the SFRL, our proofs
are generally simpler.

Variable-length (one-shot, finite blocklength or asymptotic) lossy source coding settings have been studied, e.g., see [17],
(L8], [19], [20], [21]. Some of these works concern the universal setting in which the distribution of the source is unknown,
hence the use of variable-length codes is justified. In contrast, the reason we consider variable-length codes in this paper is
that it allows us to give one-shot results that subsume their asymptotic fixed-length counterparts.

In the following section, we state the SFRL, introduce the Poisson functional representation construction and provide a
sketch of the proof of the lemma. The complete proof is given in Appendix [A] In Sections [[lT|and [[V] we use SFRL to establish
one-shot achievability results for channel simulation and three source coding settings, respectively. In Section [Vl we use SFRL
together with Shannon’s channel coding theorem to provide a simple achievability proof of the Gelfand—Pinsker theorem.
Finally in Section [VI| we prove a lower bound on I(X; Z]Y") in SFRL (whereas SFRL is an upper bound) and discuss several
other properties.

Notation

Throughout this paper, we assume that log is base 2 and the entropy H is in bits. We use the notation: X° = (X,,..., X}),
X"=X7, [a:b)=[a,b]NZ and [a] = [1 : a].

For discrete X, we write the probability mass function as px. For continuous X, we write the probability density function
as fx. For general random variable X, we write the probability measure (push-forward measure by X) as Px.

II. STRONG FUNCTIONAL REPRESENTATION LEMMA

The main result in this paper is given in the following.

Theorem 1 (Strong functional representation lemma). For any pair of random variables (X,Y) ~ Pxy (over a Polish space
with Borel probability measure) with I(X;Y) < oo, there exists a random variable Z independent of X such that' Y can be
expressed as a function g(X,Z) of X and Z, and

I(X;Z]Y) <log(I(X;Y)+1)+4.

Moreover, if X and Y are discrete with cardinalities |X| and |Y

, respectively, then |Z| < |X|(|]Y] —1) + 2

Note that SFRL can be applied conditionally; given Pxy |7, we can represent Y as a function g(X, Z,U) such that Z is
independent of (X,U) and

[(X: Z|Y.U) < log (I(X; Y|U) +1) + 4. @)

We can have Z 11 (X,U), not only Z Ll X |U which follows from directly applying SFRL for each value of U. The reason is
that by the functional representation lemma, we can represent Z as a function of U and Z such that Z 1L U (which, together
with Z 1L X | U, gives Z 1L(X,U)), and use Z instead of Z.

Note that SFRL applies to general distributions Pxy. Although H(Y) may be infinite, as long as I(X;Y") is finite, the
cardinality of Y conditioned on Z is countable and H(Y'|Z) is finite by SFRL. Since Z 1L X and H(Y|X, Z) = 0 imply that
I(X;Z|Y)=H(Y|Z) - I(X;Y), the SFRL implies the existence of a Z 1l X such that H(Y|Z) is close to I(X;Y).

To prove the SFRL, we use the following random variable Z and function g construction.



Definition 1 (Poisson functional representation). Fix any joint distribution Pxy. Let 0 < T3 < T3 < --- be a Poisson point

process with rate 1 (i.e., the increments 7; — 7;_; are i.i.d. Exp(1) for i = 1,2,... with Ty = 0), and Y3, Y5, ... be i.i.d. with

Y: ~ Py. Take Z = {(Y;,T;) }i=1,2,..., i.c., a marked Poisson point process. Then we can let Y = gx_,y (X, Z), where
9x—v (@, {(Ti, t)}) = Jrx Ly (o {@int) D)

and

. . dPy
kX—)Y(xv {(ylatl)}) - arginlln ti- m

To illustrate this Poisson functional representation, consider the following.

Example 1. Let Y ~ Unif[0,1] and Y{X = z} ~ fyx(y|z). Then gx vy (x,2) = g where k = argmin; t;/ fy|x (y|7).
Figure (1| shows an example of z = {(;,t;)}. The index k is selected by scaling up the graph of fy|x (y|z) until it hits the
first point, then we output g, of that point (ys in the figure). It is straightforward to check that this procedure gives the correct
conditional distribution Y'[{X = 2} ~ fy|x(y|x). Roughly speaking, if I(X;Y") is small, then Y|[{X = x} will be close to the
uniform distribution for most x’s, and the g s with smaller indices &’s will be more likely to be output, and therefore H(Y'|2)
will be smaller. (If I(X;Y) = 0, then Y[{X = 2} ~ Unif|[0, 1] and 7, is output for almost all x, and hence H(Y|Z) = 0.)

(¥, t5).

° (U4, t4)
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Figure 1. Illustration of the Poisson functional representation construction for Example 1.

Remark 1. If Y is discrete, then we can simplify the construction of Z to a vector of exponential random variables by letting
Zy = py(y)-min, g _, T;, which leads to the following construction. Assume Y € {1,...,l}. We canlet Y = gx_,v (X, zh,
where Z! is a sequence of i.i.d. Exp(1) random variables independent of X, and

l . 2y
gx—y(z,2') = argmin—————.
yey DPy|x(ylz)

We now proceed to give a sketch of the proof of Theorem [I] by showing that the Poisson functional representation satisfies
the constraints. The complete proof is given in Appendix [A] .
Sketch of the proof of Theorem ' Consider the Poisson functional representation. Let Y = Yk,
dPy
dPyx(-]X)
Since Y is a function of Z and K, we have H(Y|Z) < H(K). We now proceed to bound H(K).

Condition on X = . Since Ty < T < ---, K is small when d Py (y)/d Py |x (y|z) for different y’s are close to 1, i.e., Py
is close to Py x(-|z) (if Py = Py x(-|z) for all y, then d Py (y)/dPy|x(y|z) =1, and K = 1). In fact we can prove that

K = kxoy(X, {(Y;, T))}) = argmin T; - (2).

Ellog K| X =12 < D(PY‘X(-|33)|| Py) + e lloge + 1.



The proof is given in Appendix |Al Therefore E[log K] < I(X;Y) + e !loge + 1. By the maximum entropy distribution
subject to a given E [log K], we have
H(K) < E[log K] +log (E[log K]+ 1) + 1.
The proof of this bound is given in Appendix |B| for the sake of completeness. Hence
H(K)<I(X;Y)+e 'loge+2+log (I(X;Y) +e 'loge +2)
<I(X;Y)+1log(I(X;Y)+1)+e 'loge+2+log (e ' loge + 2)
<I(X;Y)+1log(I(X;Y)+1)+4.
Operationally, K can be encoded using the optimal prefix-free code for the Zipf distribution g(k) oc k~*, where
A=1+1/I(X;Y)+e tloge+1). (3)
It can be checked that the expected length of the codeword is upper bounded by I(X;Y) +log (I(X;Y) +1) + 5.

III. ONE-SHOT CHANNEL SIMULATION

Channel simulation aims to find the minimum amount of communication over a noiseless channel needed to simulate a
memoryless channel Py| x. Several settings of this problem have been studied, e.g., see [22], [23], [24]. Consider the one-shot
channel simulation with unlimited common randomness setup [4] in which Alice and Bob share unlimited common randomness
W. Alice observes X ~ Px and sends a prefix-free description M to Bob via a noiseless channel such that Bob can generate
Y (from M and W) according to a prescribed conditional distribution Py-|x. The problem is to find the minimum expected
description length of M, E[L(M)], needed. Since we have the Markov chain X — M — Y conditional on W,

E[L(M)] > HM|W) > I(X;Y|W) = I(X;Y,W) - I(X; W) = I(X;Y,W) > I(X;Y).
In [10], which strengthens the result in [4], it is shown that for X and Y discrete,
E[L(M)] <I(X;Y)+1log(I(X;Y)+ 1)+ ¢

is achievable, where c is an unspecified constant.
We now show that the SFRL provides an upper bound on E [L(M)] that applies to arbitrary (not only discrete) channels.
By the SFRL (), there exists a Z independent of X such that Y = gx_,y (X, Z) and

H(Y|Z) <I(X;Y) +log(I(X;Y) + 1) + 4.

We use W = Z as the common randomness. Upon observing X = z, Alice computes y = gx .y (x, z) and encodes y using
a Huffman code for the pmf py |z (-|2) into the description m (note that Y can be arbitrary but by the SFRL Y[{Z = z} is
discrete). Bob then recovers y from m and z. The expected length is

E[L(M)] <I(X;Y)+log(I(X;Y)+1) +5.

In practice, instead of using a Huffman code (which may be impractical since py z(-|z) is not easy to compute), we can
compress k = kx_y(x,z) in the Poisson functional representation into m using the optimal prefix-free code for the Zipf
distribution (3).

Moreover, for discrete X, Y, the amount of the common randomness can be bounded by log [W| < log(|X|(|Y|—1)+2). In
comparison, the amount of the common randomness in [4]] can be bounded by O(log(|X||)|)) only if the expected description
length is increased by O(loglog(|X] + |V])).

Remark 2. In [4], the setting in which X = x is an arbitrary input (instead of X ~ px) is studied. It is shown that
E[LIM)] <C+ (1+¢€)log(C+1)+ ce

for all z € X is achievable, where C' is the capacity of the channel py|x and c, is a function of e.

The Poisson functional representation can still be applied to this setting. If we encode k = kx_,y (z,z) into M using the
optimal prefix-free code for the Zipf distribution g(k) oc k~*, where A = 1+1/(C +e~'loge+1), then by the same argument
in the proof of the SFRL, and Claim 3.1 in [4],

E[L(M)] < C +log(C+1)+5

is achievable.

We can also prove a cardinality bound of the common randomness Z in this setting. Applying Carathéodory’s theorem on
the (|]X'[|)V|)-dimensional vectors with entries E[log K| X = x, Z = z] and p(z,y|z) forz € {1,...,|X|},y € {1,...,|Y|—-1},
we have the cardinality bound |Z| < |X||YV| + 1.



IV. LossY SOURCE CODING

We use the SFRL to establish one-shot achievability results for three lossy source coding settings.

A. Lossy source coding

Consider the following one-shot variable-length lossy source coding problem. We are given a random variable (source)
X € X with X ~ Px, a reproduction alphabet ), and a distortion function d : X x ) — [0, 00] (note that X,Y can be
arbitrary, and d(w,y) can be infinite). Given X, the encoder selects Y € Y and encodes it using a prefix-free code into
M € {0,1}*. The decoder recovers Y from M. Let R = E[L(M )] be the expected value of the length of the description
M and E[d(X,Y)] be the average distortion of representing X by Y. An expected length-distortion pair (R, D) is said to be
achievable if there exists a variable-length code with expected description length R such that E[d(X, Y)] <D.

In the following we use the SFRL to establish a set of achievable (R, D) pairs.

Theorem 2. A pair (R, D) is achievable for the one-shot variable-length lossy source coding problem with source X ~ Px,
reproduction alphabet ), and distortion measure d(x,y) if

R > R(D) +1log(R(D) + 1) +6,
where

R(D) = inf I(X;Y)
Py |x:E[d(X,Y)]<D

is the (asymptotic) rate-distortion function [3|].

Proof: Let Y be the random variable that attains E[d(X,Y)] < D and I(X;Y) < R(D) + €. By the SFRL (), there
exists Z independent of X such that Y = gx_,v (X, Z) and

H(gx-v (X, 2)|Z) < I(X;Y) +n,
where 1 = log(I(X;Y) + 1) + 4. Consider the set

A= {(H(gxov(X,2)), Ex [d(X, gxoy (X,2))]) : 2 € Z}.

The point (H(gx—v (X, Z)|Z), E[d(X,Y)]) is a weighted average of the points in A (and thus is in the convex hull of A).
Hence there exists z satisfying the rate constraint H(gx v (X,2)) < H(gx v (X, Z)|Z), and there exists 2 satisfying the
distortion constraint Ex [d(X, gx v (X, 2’))] < E[d(X,Y)]. However, there may not exist a single z simultaneously satisfying
both constraints. Hence we invoke Carathéodory’s theorem to find a mixture between two points zg, z; and A € [0,1] such
that both constraints are satisfied:

(1=NH(9x-y (X, 20)) + AH(9x-y (X, 21)) < H(gx»v (X, 2)|Z) < I(X;Y) + 1,
(1 = NEx [d(X, gx—v (X, 20))] + AEx [d(X, gx v (X, 21))] <E[d(X,Y)].

Note that to satisfy the above inequalities, we need one point less than stated in Carathéodory’s theorem. Take @ ~ Bern()\),
Y = gX_>Y(X7 ZQ). Then

H(Y)<HY|Q)+H(Q) < HY|Q) + 1 < I(X;Y) + 7+ 1.
We use a Huffman code to encode Y and obtain an expected length R < H ()7) + 1. The result follows by letting ¢ — 0. W

Note that a stochastic encoder is used in the proof. Nevertheless, the encoder only needs to randomize between two
deterministic encoding functions in order to achieve Theorem 2]

An interesting implication of Theorem [2| is that for any source Py, distortion measure d(x,y), and distortion level D, the
optimal asymptotic rate R(D) cannot be too far from the optimal one-shot expected description length R*(D) = inf{R :
(R, D) achievable} < R(D)+log(R(D) + 1) + 6. For example, there does not exist (P, d(z,y), D), where R(D) = 100 but
R*(D) > 113. This is a benefit of considering variable-length codes. Such conclusion does not hold if we consider fixed-length
codes instead (e.g., if X ~ Geom(1/2), d(z,y) = 1{z # y}, then R(D) < 2 for any D > 0, but the optimal length of the
one-shot fixed-length code tends to infinity as D — 0).

Although the above achievability proof does not use random coding, it can be interpreted as using the following soft random
coding scheme.

Soft codebook generation. The random variable Z = {(}71, T;)}i=1,2,... produced by the Poisson functional representation
represents the choice of the codebook. We select a “soft codebook” by conditioning on Z = {(g;,%;)}i=12,... Unlike
conventional codebook C C Y which contains a fixed number of y’s, a soft codebook {(%;,?;)} contains an infinite
sequence of g;’s, each with a weight ¢; (the smaller ¢; is, the more likely y; is chosen).



Encoding. The encoder observes x and finds the reconstruction ¥, where
s D

Yi)-
dPyx (|z)
It then encodes the index k using an optimal prefix-free code for the Zipf distribution (@). This is analogous to a
conventional codebook generation in which we find the closest y¥ € C to x and encodes it into its index in C. Here we
use a prefix-free code over the positive integers to encode the index into the description m because the index k can be
unbounded, but the smaller k’s (with smaller ¢;’s) are more likely to be used so they are assigned shorter descriptions.
Decoding. The decoder receives m, recovers k, then outputs yy.

k =argmin t; -
i

Note that the soft random coding scheme shares some similarity with the likelihood encoder in [25]], which uses a conventional
i.i.d. random codebook generation y(m) ~ Py, m = 1,...,2%, but uses a stochastic encoder which chooses m with probability
proportional to the likelihood function

P Jx
£lmlz) = pxiy elytm) o« T ),

The soft random coding scheme can be viewed as fixing the randomness in the likelihood encoder as part of the codebook.

A related one-shot variable-length lossy source coding setting with a constraint on the probability that the distortion exceed
certain level (instead of average distortion) was studied in [21]]. In [26], a result similar to Theorem E] is given in the context
of epsilon entropy.

The finite blocklength variable-length lossy source coding problem [[17] concerns the case in which the source is memoryless
and average per symbol distortion d(z",y") = (1/n) >, d(z;,y;). In [27] it is shown that the expected per symbol description
length R/n = R(D)+ (140(1))(1/n)logn is achievable via d-semifaithful codes [28] with d(X™,Y™) < D surely. Applying
Theorem 2] to X™, we have

R/n = R(D) + (1/n)(log(nR(D) + 1) + 6) = R(D) + (14 o(1))(1/n) log n.

Hence we achieve the same redundancy as [27] albeit under the expected distortion constraint instead of the stronger sure
distortion constraint using the d-semifaithful codes.

We can use Theorem [2] to establish the achievability of Shannon’s (asymptotic) lossy source coding theorem [5], assuming
there exists a symbol yg € Y with finite d(x,yo) for all x. First note that the redundancy (1 + o(1))(1/n)logn in the finite
block length extension can be made arbitrarily small, hence R/n can be made arbitrarily close to R(D). Now we use the finite
block length scheme over [ blocks of n source symbols each of length n (for a total block length of nl). By the law of large
numbers, the probability that the total description length is greater than nl(R(D)+¢) tends to 0 as the block length approaches
infinity. Hence, we can construct a fixed length code out of the variable-length code by simply discarding descriptions longer
than nl(R(D) + ¢) and assigning the reconstruction sequence (Yo, ..., Yo) to the discarded descriptions.

B. Multiple Description Coding

In this section, we use the SFRL to establish a one-shot inner bound for the variable-length multiple description coding
problem, which yields an alternative proof of the El Gamal-Cover inner bound [6] and the Zhang-Berger inner bound [7]], [29],
[30] in the asymptotic regime. The encoder observes X ~ Px and produces two prefix-free descriptions M7, My € {0, 1}*.
Decoder 1 observes M7 and generates 371 with distortion d (X, }71). Similarly, Decoder 2 observes M, and produces }72 with
distortion da (X, 172) Decoder O observes M; and My and produces Y, with distortion do(X, }70). An expected description
length-distortion tuple (Rl, Ry, Dy, Dy, D) is said to be achievable if there exists a scheme with expected description length
E[L(M;)] < R; and expected distortion E[d;(X,Y;)] < D;.

Theorem 3. The tuple (Ry, Ry, Dy, Dy, D3) is achievable if
Ry > I(X;Y1,U) + 2n,
RQZI(X )/27 )+27]7
Ry + Ry > I(X;Yy, Y1, Ys|U) + 21(X;U) + 1(Yy; Yo |U) + 51,
Di > E[ ,L( y z)] fOI”L:O71,2
for some Py, v, v, x, where
n=log (I(X;Yy,Y1,Y2,U) + I(Y1;Y2|U) + 1) + 7.

Note that the only difference between the above region and Zhang-Berger inner bound is the addition of 7, which grows
like logn if we consider X™ and does not affect the asymptotic rate.



Proof: Tt suffices to prove the achievability of the corner point:

Ry =I(X;11|U) + I(X3U) +2n — 1, )
D; = E[d;(X,Y;)] fori=0,1,2. ©)

The desired rate region can be achieved by time sharing between this corner point and the other corner point where Y7, Ys are
flipped, resulting in a penalty of at most 1 bit (we can use the first bits of M; and M to represent which corner point it is).
Applying the SFRL (1) to X,U, we have U = gx_,u (X, Z3), where Z5 1l X such that

H(U|Zs) < I(X;U) + log(I(X;U) +1) +4
<I(X;U)+n-3.
Applying the SFRL to X,Y; conditioned on U (), we have Y1 = gx_,y,ju(X, Z1,U), where Z; 1L(X,U) such that
HW|U, Z1) < I(X;Y1|U) +log(I(X;Y1|U) + 1) + 4
<I(X;Y1|U) +1n - 3.
Applying the SFRL to (X, Y7), Y5 conditioned on U, we have Y = gxv, v, v (X, Y1, Z2,U), Z> 1L(X,Y1,U) such that
H(Y,|U, Z3) < I(X, Vi Y3|U) + log(I(X, Vi; Y| U) + 1) + 4
< I(X, Y13 Y2 |U) +1 - 3.

Applying the SFRL to X, Y, conditioned on (Y1, Y2, U), we have Yy = gx v, v, v,u (X, Zo, Y1, Y2, U), Zo 1L(X,Y1,Y3,U)
such that

H(Y0|Y1,Y2,U,Zo) S I(X,Y0|Y1,1/2,U)+10g(I(X,Y0‘Y1,Y27U)+1)+4
< I(X;Y|Y1,Y2,U) + 10— 3.

Note that Z3 1l X. Consider the convex hull of the 7-dimensional vectors

H(U|Z§ = =)
HW|U, Z§ = 23)
H(YQ‘U,Z:OS :28)

H(Yy|Y1,Ys, U, ZS’ Zzg’)
Eldo (X, Y0) | Z§ = 5]
Eldi (X, Y1) | Z5 = 23]
Eld2(X,Y2) | Z§ = 3]

for different z3 € Zy x 21 x Z3 X Z3. By Carathéodory’s theorem, there exists a pmf pg with cardinality |Q| < 7 and Z3(q)
such that
HU|Q, Z§ = %(Q)) < I(X;U) +1 -3,

and similarly for the other 6 inequalities. Take U~ :gX?U(X, Z3(Q)), Y, = Ix-nv(X, 21(Q), U), Yy = Ixv;-vs U (X, Y,
%(Q),U) and Yo = gx v, vivou (X, 20(Q), Y1, Y2, U). Write Cp, (y) € {0,1}* for the Huffman codeword of y for the
distribution py. We set M; to be th~e concatenation of ~Q (3 bits), Cme(.‘Q)(U) and Cipvl\m('\ﬁ’@)(yl)’ and M to be
the concatenation of Q, Cy, (. o) (U), CPY2|[7Q('|U*Q) (Yz) and C Ys). The expected length of M is

Py 7 Va0 (- 1Y1,Y2,0.Q) (
upper bounded by

3+(I(X;U)+n—34+1)+ (I(X;Y1|U)+n—3+1)
= I(X;Y1|U) + I(X;U) + 21— 1.
Hence (@) is satisfied. By similar arguments, (3) and (6) hold.
Decoder 1 receives M; and recovers (), and then recovers U by decoding the Huffman code for the distribution Py Q( @),

and}hgn rgcoversj/l similarly. Decoder 2 receives M5 and recovers @, U and )72. Decoder 0 receives My, My and recovers
Q, U,Yl,YQ and Y(). |



C. Lossy Gray—Wyner System

In this section, we use the SFRL to establish a one-shot inner bound for the lossy Gray—Wyner system [8], which yields an
alternative proof of the achievability of the rate region in the asymptotic regime. The encoder observes (X1, X 2) ~ Px, x, and
produces three prefix-free descriptions Mo, My, Ms € {0,1}*. Decoder 1 observes My, M7 and generates Y7 with distortion
dl(Xl,Yl) Similarly, Decoder 2 observes My, M, and produces Y, with distortion d (XQ,Y2) An expected description
length-distortion tuple (Ry, Ry, R, D1, D3) is said to be achievable if there exists a scheme with expected description length
E[L(M;)] < R; and expected distortion E[d;(X;,Y;)] < D;.

Theorem 4. The tuple (Ro, Ry, Ro, D1, D5) is achievable if

Ro > I(X1,X2;U) +log(I(X1,Xo;U) + 1) + 8, (N
Ry > I(X1;Y1|U) +log(I(X1;Y1|U) +1) +5, ()
Ry > I(X; Ya|U) +log(I(X2; Y2|U) +1) +5, ©))
Di > E[di(X,,Y;)] fori=1,2 (10)

for some Py x, x,, Pyvi|x,.00 Py jx,.0-

Note that the only difference between the above region and the lossy Gray—Wyner rate region [, p. 357] is the addition of
the logarithm terms, which grows like logn if we consider X", X3' and does not affect the asymptotic rate.
Proof: Applying the SFRL to (X1, X5),U, we have U = gx, x,—v (X1, X2, Zp), where Zy 1L (X7, X5) such that

H(U|Zy) < I(X1,X2;U) +log(I(X1,X5;U)+ 1) + 4.

Applying the SFRL to X1,Y) conditioned on U [2)), we have Y1 = gx, v, ju (X1, Z1,U), where Z; 1L(X,U) such that
HMW|U, Z,) < I(X; Y1 |U) + log(I(X1; Y1 |U) + 1) + 4.

Applying the SFRL to X5,Y> conditioned on U, we have Y2 = gx,_,y,|u(X2, Z2,U), where Z, 1L (X5, U) such that
H(Y2|U, Z2) < I(X2;Y2|U) + log(I(X2; Y2|U) + 1) + 4.

Note that ZZ 1l (X1, X5). Consider the convex hull of the 5-dimensional vectors

H(U|Z§ = =5)
HW|U, 2§ = =)
H(Y2|U, Z§ = 2§)

Eld1(X1,Y1)| Z5 = 3]

(
Elda(X2,Y2) | Z3 = 23] |

for different 23 € Zy x Z; x Z,. By Carathéodory’s theorem, there exists a pmf pg with cardinality |Q| <5 and Z2(¢) such
that

H(U|Q, Z§ = 2(Q)) < (X1, Xo;U) + log(I(X1, X3 U) + 1) + 4,
and similarly for the other 4 inequalities. Take U= 9x, 5,0 (X1, Xa, 20(Q)), Y, = 9x, -y v (X1, 21(Q), U) and Yy =
9x2 v, U (X2, 22(Q), U). Write Gy, (y) € {0,1}* for the Huffman codeword of y for the distribution py. We set My to be
the concatenation of @ (3 bits) and C e ‘Q)(U) M, = prl‘aQ(-lU»Q) (Yl) and My = CP‘PZ\UQ('lU?Q) (Yg) The expected
length of My is upper bounded by

+(HU[Zo) +1)
< 34 (I(X1, X5 U) + log(I(X1, Xa;U) + 1) + 4+ 1)
= I(X17X2;U) + log(1(X1, X2;U) + 1) + 8.
Hence (7) is satisfied. By similar arguments, (8), (9) and (T0) hold.
Decoder 1 receives My, M; and recovers Q and then recovers U by decoding the Huffman code for the distribution

Pgio(+1Q), and then recovers Y} by decoding the Huffman code for the distribution Py, ool |U, Q). Similar for Decoder 2.
|



V. ACHIEVABILITY OF GELFAND—PINSKER

In this section, we use the SFRL to prove the achievability part of the Gelfand-Pinsker theorem [9]] for discrete memoryless
channels with discrete memoryless state pspy|x,s, Where the state is noncausally available at the encoder. The asymptotic
capacity of this setting is

Cep= max ([(U;Y)-I1(U;S)).
pU|s=$(u»S)
We show the achievability of any rate below Cgp directly by using the SFRL to reduce the channel to a point-to-point
memoryless channel. Fix py|g and x(u, s) that attain the capacity. Applying the SFRL to S, U, there exists a random variable
V 1L S such that
HU|V)<I(U;S) +1log(I(U;S) +1) + 4.

Note that
(\v;y)=I1U;Y)-1I(U;Y|V)+ I(V;Y|U)
> I(U;Y) - H(U|V)
>I(U;Y)—I(U;S) —log(I(U;S) + 1) — 4.

Hence we have constructed a memoryless point-to-point channel py- |y, with achievable rate close to I(U;Y) — I(U; S).
For n channel uses, let U"|{S™ = 5"} ~ [], pujs(us|s;). The SFRL applied to S™, U™ gives
I(V;Y™) > nl(U;Y) —nl(U; S) — log(nI(U; S) + 1) — 4.
Now we use the channel pyny [ times (for a total block length of nl). By the channel coding theorem, we can communicate
I(nI(U;Y)—nI(U;S) —log(nI(U;S)+1) —4) — o(l) bits with error probability that tends to 0 as | — oo. Letting n — oo
completes the proof.

In the above proof, we see that the SFRL can be used to convert a channel with state into a point-to-point channel by
“orthogonalizing” the auxiliary input U and the state S. The point-to-point channel can be constructed explicitly via Poisson
functional representation. This construction can be useful for designing codes for channels with state based on codes for
point-to-point channels. It is interesting to note that this reduction makes the achievability proof for the Gelfand—Pinsker quite
similar to that for the causal case in which the channel is reduced to a point-to-point channel using the "Shannon strategy”
(see [l p. 176]).

Note that Marton’s inner bound for the broadcast channels with private messages [31] can also be proved using the SFRL
in a similar manner. The idea is to “orthogonalize” the dependent auxiliary random variables Uy, Us by applying the SFRL on
U1, Us to produce two independent input random variables, and treat them with Y7, Y5 as an interference channel, and finally
to treat interference as noise.

VI. LOWER BOUND AND PROPERTIES OF I(X; Z|Y)
Define the excess functional information as

V(X oY) = I(X;Z|Y).

inf
Z:Z AL X, H(Y|X,Z)=0

An equivalent way to state SFRL is U(X — Y) < log(/(X;Y) + 1) + 4. In this section, we explore the properties of
U(X — Y). We first establish a lower bound.

Proposition 1. For discrete Y,

U(X —Y)> —Z/O Px {pyx(y|X) > t}log (Px {py|x (y|X) > t}) dt — I(X;Y).
yey

Moreover for |Y| = 2, equality holds in the above inequality, and the infimum in ¥(X — Y') is attained via the Poisson
functional representation.

Proof: Fix Z 1L X such that Y = g(X,Z). For any y, let V, = py|z(y|Z), U ~ Unif[0,1], X, = Py |x (¥ X),
V,=P {f(y >U| U}, then E[V,] = E[V,] = py (y). We have
1
/ P{V, > t}dt = E [max {V, — v, 0}]

= Ez [max {py|z(y|Z) — v, 0}]
=Ez [max{Px {9(X,2) =y | Z} — v, 0}]

=E, {max{Ej(y {PX {Q(X, Z) :y’Z,Xy} ’Z] Y OH



— Bz [max{Eg, [Px{o(X,2)=y| 2.5, } | 2] -Ex, [1{% > Fz' - v)}]  o}]
<Ey, [EXy [maX{PX {g(X,Z) _y|Z,Xy} -1{x%, >l v)} , o} ‘Z”
—Ez[Ex, [Px{o(x.2)=y| 2.5, } 1 {X, < F - 0)} | 7]

—Ex, [E2 [Px {9(x,2) =y| 2.5, } | %,] -1 {%, < FTl0 -0}

—Ex, [Ex [Pz {o(X.2) =y | X} |5, ] -1 {%, < Pl - )}

=Eg, [EX {py‘x(y|X) |Xy} 1{Xy < FLl(1-v) ]

=B, [%, 1{X, < Fl -0

— Eu [max {P{X, 2 U|U} ~ v, 0}]

v

Hence V,, dominates f/y stochastically in the second order. By the concavity of —tlogt, we have

H(Y|Z)= —Z Ez [pviz(y|Z)logpy z(y] Z)]

== E[V,logV,]

Y

> -3 E[V,logV,] b
Yy

= _Z/O Px {pvix (W[X) > u}log (Px {pyx (y| X) = u}) du.

Therefore,

1
1621Y) 2 =% [ P {pvix 01X = t}log (P {ovix(41%) > 1)) dt = I(X:).

One can verify that for |Y| = 2, equality in (TI) holds by the definition of Poisson functional representation. [ ]

The following proposition shows that there exists a sequence of (X, Y") for which the bound ¥(X,Y) < log(I(X;Y)+1)+4
given in the SFRL is tight within 5 bits. An example where the log term is tight is also given in [10], though the additive
constant is not specified there.

Proposition 2. For every a > 0, there exists discrete X,Y such that I1(X;Y) > « and
(X =>Y)>log(I(X;Y)+1)—1.

The proof is given in Appendix [C] Besides the upper bound given by the SFRL and its tightness, in the following we
establish other properties of ¥(X — Y'). We write the conditional excess functional information as

VX =Y |Q)=E[¥(X =Y [Q=qg)].

Proposition 3. The excess functional information V(X — Y') satisfies the following properties.

1) Alternative characterization.

WX =Y) = inf H(Y|Z) - I(X;Y).
2) Monotonicity. If X1 L Xs and Xy 11 (X2, Y3)|Y1, then
U((X1,X2) = (Y1,Ys)) > U(X; — V7).
3) Subadditivity. If (X1,Y1) LL(Xs,Ys), then
U((X1,X2) = (Y1,Y2)) <¥(X; - Y1) + (X2 — Y3).
As a result, if we further have X5 11 Ys, then U((X1, X2) — (Y1,Y2)) = ¥(X; — Y1) by monotonicity.



4) Data processing of V + I. If Xo — X1 — Y7 — Y5 forms a Markov chain,
U(Xy = V) + [(X1;: Y1) > ¥(Xe = Vo) + [(Xo; Vo).
5) Upper bound by common entropy.
WX ) < GX;Y) — [(X;Y) < min {H(X|Y), H(Y|X)},

where G(X;Y) = miny y yyw H(W) is the common entropy [32)], [33]].

6) Conditioning. If Q satisfies H(Q|X) = 0, then
X -=Y)>29(X =>Y Q).
If we further have H(Q|Y') = 0, then equality holds in the above inequality.

T) Successive minimization.
(X -Y)= V:\l/anLX{I(X;V|Y)+\I/(X -Y|V)}.
Proof:
1) Alternative characterization. Note that if Z 1L X and H(Y|X,Z) =0, then H(Y|Z) — I(X;Y) = I(X; Z|Y), hence

inf I(X;Z)Y)> inf H(Y|Z)-I(X;Y).
Z:Z 1L X, H(Y|X,Z)=0 Z:Z 1 X

For the other direction, assume Z 1L X. By the functional representation lemma, let Y = ¢(X, Z, Z), Z 1.(X, Z). We
have
H(Y|Z)-1(X;Y) > H(Y|Z,Z) - I(X;Y)
=I(X;Z,Z]Y)

> inf I(X;Z'|Y).
z':72' X, H(Y|X,2')=0

2) Monotonicity. Let Z satisfies Z 1l (X, X2) and H (Y7, Y2| X1, X2, Z) = 0. Note that (Z, X) 1L X; and H(Y1|X1, Z, X3) =
0. Hence

3) Subadditivity. let Z,, Zs satisfies Z; 1l X; and H(Y;|X;, Z;) = 0, then

U((X1, X2) = (V1,Y2)) < (X1, Xo; 21, 22| Y1,Y3)
:I(X1721|Y1)+I(X2,Z2|Y2)

4) Data processing of W+1. let Z 1L X1, and let Y2 = g(Y7, W) be the functional representation of Y5. Then (Z, W) L X5,
and by the the alternative characterization,

U(Xy = Vo) + [(Xo; Ya) < H(Y2|Z, W)
=H(Yz|Z, W, Y1)+ 1(Y1;Y2|Z, W)
< HY1|Z,W)
— H(V1|2).

5) The upper bound by common entropy is a direct consequence of the data processing inequality in the previous part.
6) Conditioning. Assume that H(Q|X) =0, Z 1L X and H(Y|X,Z) =0, then Z 1L X|{Q = q}and H(Y|X,Z,Q = q) =
0 for all ¢, hence
I(X;Z|Y) > I(X; Z]Y,Q)
= Egp, [1(X52]Y,Q = q)]
> Bgp (VX =2 Y [Q = q)].



To show the equality case, assume H(Q|Y) = 0. Let Z satisfies Z 1L X|{Q = ¢} and H(Y|X,Z,Q = q) = 0 for all
- By functional representation lemma, let Z = 9(Q,Z), Z 1@, and since we are invoking functional representation
lemma over the marginal distribution of (Q, Z), we can assume Z 1l (X,Y)|(Q, Z). Hence Z 1 X. We have

Eqmrg [I(X:Z]Y,Q = )] = I(X: 2]Y.Q)
=1(X;Z2]Y,Q)
=I(X;Z|Y)
> V(X = Y).

7) Successive minimization. Assume that V' 1 X, and let Z satisfy Z 1L X|{V = v} and H(Y|X,Z,V = v) = 0 for all
v, then X 1 (Z,V). We have

I(X; Z|Y,V)
I(X;Z,V]Y) - I(X;V]Y)
I(X;Z,V|Y) - I(X;V]Y)

>U(X =Y)-I(X;V]Y).
Note that I(X;V]Y)+ U (X - Y |V)=TU(X = Y) if V = . Also note that

Egmpo [1(X: Z|Y,V = )|

inf {I(X;V|Y)+¥(X Y |V)< inf I(X;VIY)+9(X > Y|V
popf MGV +IX =Y VE< i UGV R S Y V)
= inf I(X;V]Y)
V:V I X, H(Y|X,Z)=0
—P(X oY)

|
Remark 3. If ¥(X,Y) = 0, then it means that there exists Z such that Z I X, Z 1l X|Y, H(Y|Z) = I(X;Y) and
H(Y|X,Z) = 0. This implies there exists z such that H(Y|Z = 2) > I(X;Y) and H(Y|X, Z = z) = 0. Hence it is possible
to perform one-shot zero error channel coding on the channel P x|y with input distribution Py |z_. to communicate a message
with entropy > I(X;Y).
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APPENDIX
A. Proof of Theorem |

Condition on the event {X = z}. First we show that gx_.y (x, {(¥;,T;)}) follows the distribution Py|x(-|z). By the
marking theorem of the Poisson point process [34], {(Y;,T;)} is a Poisson point process over the product measure Py x
(where p is the Lebesgue measure on [0, 00)). By the displacement theorem [34]],

ey ™))

is a Poisson point process over Py |x(:|z) x x. Hence
dPy ~

minT; - ——(¥;) ~ Exp(1),
A NE DR
and JP
f/arminTi-Y}}i>~P |x),
(g, J652s (7)) ~ P
where we write Y (k) = Yj. Now we bound H(Y | {(Y;,T})}). Let
dPy -
O =minT,- — Y ___(V}),
i dPY|X('|$)( )
K = arg minTi . dPy (571)»

7 dPY\X(|x)



then H(Y | {(Y;,T;)}) < H(K). Conditioned on © = 6, Y ~ Py |x(-]z) and {(Y;,Ti) }ix is a Poisson point process over
the semidirect product measure

V(AXB)Z/AM(B N [9~W(y)7m)>dPy(y)~

Note that K — 1 = |{i : T} < Tx}|. Hence K — 1 conditioned on © = # and Yx = § follows the Poisson distribution with
rate

v(Yx1[0,Tg)) =v (y X {O’ 0 W@))>

= [u(oo- @) 0 [ . ) ) v
—0 [ mxfo, S E ) - TP ) ey

dPy dPy
dPy|X |£L’
< .
0| e P )
APy ix(lz)

Therefore

Ellog K] = Eypy «(|z) / e ’E [logK |©=0, Vi = Y} de}
LJo

[ [ dP |z
< EYNPY|X('|I) A e’ log (92';}5”(}/) + 1) d6:|

[ o0 dP |
< EY~PY|X('|I) log (/0 6—991;';25')(}/)% + 1):|

[ dPyx(|z)
= EYNPy|X(-|x) -IOg (dPY(Y) + 1>:|
' APy x (-
< EY~Py|X('|I) max {1Og Z;}E'JI)(Y) 70} + 1:|

dP Jx
- D(PY‘X(-|x) IPy)— Eywp‘,lx(_m [min {1og ZF)’(;EH(Y) 7OH +1

< D(PY‘X(~|x) IPy) + e tloge + 1,

where the last line follows by the same arguments as in Appendix A in [4]. For X ~ Py,
Ellog K] < I(X;Y) +e tloge + 1.
By the maximum entropy distribution subject to a given E [log K] (see Appendix , we have
H(K)<I(X;Y)+e 'loge+2+log (I(X;Y)+e loge +2)
<I(X;Y)+1log(I(X;Y)+1)+e 'loge+2+log (e ' loge +2)
<I(X;Y)+1log(I(X;Y)+1)+4.
To prove the cardinality bound, first note that if |X|, || are finite, then | Z| < |V |‘X‘ can be assumed to be finite since it is
the number of different functions z — gx_,y (x, z) for different 2. To further reduce the cardinality, we apply Carathéodory’s
theorem on the (|X|(|]Y| — 1) + 1)-dimensional vectors with entries H(Y|Z = z) and p(z,y|z) for z € {1,...,|X|}, y €

{1,...,]Y]| — 1}; see [35]], [36]. The cardinality bound can be proved using Fenchel-Eggleston-Carathéodory theorem [37],
38]

B. Proof of the Bound on Entropy in Theorem [I|

The proof of the following proposition follows from the standard argument in maximum entropy distribution. It is included
here for the sake of completeness.

Proposition 4. Let © € {1,2,...} be a random variable, then
H(©) <Elog©] +log (ElogO] + 1) + 1



Proof: Let q(0) = cf~* where A = 1+ 1/E [log ©], and ¢ > 0 such that >, ¢(f) = 1. Note that

1
9 A<1+/ 6~ Ada_1+f1

Therefore

NE

H(©) < ) pe(f)log

1
q(0)

po(f) (Mogb — logc)

<
I
i

M

<
Il
-

= AE [log ©] + log < 9’\)
=1

< AE [log ©] + log (1 + )\11)

= E[log©] + log (E[log®] + 1) + 1.

Operationally, we would use the optimal prefix-free code for the Zipf distribution ¢(#) to encode ©.

C. Proof of Proposition [2]

Let k€ {0,1,...}, Veo: 2" 1],

pv(U) — 7712k7(10g(v+1)]’

where v = 2¥71(k + 2), and let X ~ Unif[0 : 2*¥ — 1] independent of V, and Y = (X + V) mod 2*. Note that
H{v: vpv (v) > t}| = ypv (|t]) for t > 0. We have

_Z/ Px {py|x(y|X) > t}log (Px {py|x(y|X) > t}) dt

yey

=3 [ ) 2 ) o (2 o ) 2 B a

yey

=k—/0 {o: pr(v) > t}log|{u: pr(v) > t}]dt
— k- / v (17t)) log (vpy (17t])) dt

2k -1
=k— ZPV ) log (ypv (v)) dt
—k—log7+H(V).

And
IX;Y)=HY)-HY|X)=k—-H(V).

By Proposition [T}
VX —>Y)>k—logy+ H(V)—(k—H(V))=2H(V) —log~.

One can check that

3 1
HV - 1 2) — =+ ——
(V)= k+ og(k +2) +k+2
Hence
1 3 1 1
. _ - e < =
I1(X;Y) 2k log(k + 2) + 2 k+2_2k’
and

2
\Il(X—>Y)>k:+210g(k‘+2)—3+m—log(2k "(k+2)

2
—log(k+2)— 24+ ——
og(k +2) =2+ =5

>log(I(X;Y)+1) — 1.
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