
Secure RAID Schemes from EVENODD and STAR
Codes

Wentao Huang and Jehoshua Bruck
California Institute of Technology, Pasadena, USA

{whuang,bruck}@caltech.edu

Abstract—We study secure RAID, i.e., low-complexity schemes
to store information in a distributed manner that is resilient to
node failures and resistant to node eavesdropping. We describe a
technique to shorten the secure EVENODD scheme in [6], which
can optimally tolerate 2 node failures and 2 eavesdropping nodes.
The shortening technique allows us to obtain secure EVENODD
schemes of arbitrary lengths, which is important for practical
application. We also construct a new secure RAID scheme
from the STAR code. The scheme can tolerate 3 node failures
and 3 eavesdropping nodes with optimal encoding/decoding and
random access complexity.

I. INTRODUCTION

In the RAID architecture [9], information is stored distribu-
tively among multiple nodes in a redundant manner that is
resilient to individual node failures. Over the past decades,
RAID and the fundamental idea of dispersing information to
improve reliability have become a ubiquitous principle that lies
at the heart of most of today’s distributed storage systems.

As the need to store critical and sensitive data increases,
the challenge of protecting data privacy becomes imminent.
This paper studies the design of schemes to encode and store
information distributively so that the system is not only failure-
resilient, but also resistant to adversarial eavesdropping of
individual nodes. Specifically, we study the problem of storing
a message among n nodes such that any n−r nodes can decode
the message but any coalition of z nodes cannot infer any
information about the message. These schemes can find a wide
array of applications including, for example, securing disk
arrays [13] (where nodes are disks), securing cloud storage
[1] (where nodes are different cloud providers) and securing
wireless networks [8] (where nodes are wireless devices).

A well-known secret sharing scheme is Shamir’s scheme
[14], which is optimal in space. However, in addition to
space overhead, the security requirement induces overheads in
various other aspects. A series of recent works have focused on
modeling and minimizing these overheads, including computa-
tional and random access complexity [6], decoding bandwidth
[7], [2], repair bandwidth [10], [11] and repair locality [12].

This paper focuses on the aspect of computation and random
access. The secure RAID schemes proposed in [6], which
are schemes with optimal encoding/decoding and random
access complexity, can tolerate r = 2 failures and z = 2
eavesdroppers. The length of the schemes are n = p + 2
or p − 1, where p is a prime. Two natural and important
questions remain open: 1) is it possible to design secure
RAID schemes of more flexible lengths? 2) is it possible to

design secure RAID schemes that can tolerate more failures
and eavesdroppers? In this paper we answer both questions
affirmatively.

Specifically, we design a secure RAID scheme of arbitrary
length that can tolerate two failures and two eavesdropping
nodes by shortening the secure EVENODD scheme in [6]. We
remark that shortening erasure codes is trivial, i.e., given an
arbitrary [n, k] systematic erasure code, one can directly obtain
an [n−s, k−s] code of the same distance as the original code,
by suppressing s information symbols in the original code and
setting them to be 0 [4]. In the contrary, for secure RAID
schemes while the same shortening technique will maintain
the reliability parameter r, it can reduce the security parameter
z. Refer to Figure 1 for an example. However, we show that
secure EVENODD has the desirable property that it can be
flexibly shortened to arbitrary length without compromising z
if the suppressed entries are carefully chosen. This property
is particularly important in practice because a specific scheme
implemented in a system can be easily adapted to different
configurations when the number of nodes varies.

Node 1 Node 2 Node 3 Node 4
c1 = u c2 = m1 + u c3 = m2 + u

∑
ci = m1 +m2 + u

(a) A simple scheme with n = 4, r = 1, z = 1. u is a random key bit
and m1,m2 are message bits. Security achieved by one-time-pad and
reliability achieved by the parity bit.

Node 1 Node 2 Node 3 (suppressed) Node 4
c1 = u c2 = m1 + u c3 = 0

∑
ci = m1

(b) Shortened scheme. The bit c3 is set to be 0 and does not need to be
stored. Node 3 acts as a place holder only for the purpose of encoding.
The scheme is not secure as Node 4 leaks the message bit.

Fig. 1: An example that naive shortening of a secure RAID
scheme will compromise security.

Our second contribution is a new secure RAID scheme
that can tolerate r = 3 failures and z = 3 eavesdroppers.
The scheme is XOR-based, optimal in rate, and essentially
optimal in encoding/decoding and random access complexity.
Specifically, encoding one bit of information on average re-
quires approximately r + z = 6 XORs and decoding one bit
of information when no erasure occurs on average requires
approximately z = 3 XORs. The scheme is constructed
from the STAR code [5], which is a generalization of the
EVENODD code and can optimally tolerate 3 failures. The



construction idea is to use a variant of the dual STAR code
for secrecy (key padding) and to use the STAR code for
reliability. We integrate this pair of codes into a systematic
secure RAID scheme using the framework in [6], so that the
scheme preserves the computational efficiency of the codes.

II. SHORTENING SECURE EVENODD

A. Secure RAID schemes

In an (n, k, r, z) secure RAID scheme, a message m =
(m1, . . . ,mk) of k symbols over some alphabet is encoded
into n symbols such that: 1) Reliability: m can be decoded
from any subset of encoded symbols of size ≥ n − r. 2)
Secrecy: Any subset of encoded symbols of size ≤ z do
not reveal information on m. Each of the n nodes then
stores one encoded symbol. In this paper we focus on the
encoding/decoding and random access complexity of secure
RAID schemes. The encoding/decoding complexity is the
computational complexity of the encoding/decoding algorithm
measured in the amount of XORs. The random access com-
plexity is the computational and communication complexity
of decoding a single entry of the message m.

B. Shortened secure EVENODD

We now discuss the shortening of secure EVENODD. For
a prime p, secure EVENODD is a (n = p + 2, k = p −
2, r = 2, z = 2) secure RAID scheme over alphabet Fp−12

with essentially optimal computational and random access
complexity [6]. While the length of the secure EVENODD
is restricted to p + 2, in practice it is often desirable to
obtain schemes with arbitrary length n. For erasure codes,
this goal is achieved by the technique of shortening. However,
for secure RAID schemes shortening in general can reduce
the security parameter z. In this section we show that se-
cure EVENODD has the desirable property that it can be
flexibly shortened without compromising z. Namely, from a
(p+ 2, p− 2, 2, 2) secure EVENODD scheme one can obtain
a (p+ 2− s, p− 2− s, 2, 2) scheme for any 0 < s < p.

We start with an algebraic description of secure EVENODD.
Let p be a prime, and let Mp(x) =

∑p−1
i=0 x

i be a polynomial
over GF (2). Let Rp be the ring of polynomials of degree
less than p− 1 over GF (2) with multiplication taken modulo
Mp(x). We shall use the indeterminate α instead of x to refer
to polynomials in Rp. Note that αp = 1, and therefore ring
elements of the form αi always has a multiplicative inverse
αp−i, also denoted by α−i. We remark that Rp is a field if
and only if 2 is a primitive element in GF (p). In this section
we focus on the case that Rp is indeed a field. This is not a
significant restriction as it is conjectured that 2 is a primitive
element in GF (p) for a constant fraction (≈ 0.374) of primes
p [3]. Throughout the paper we denote {1, · · · , n} by [n].

Construction 1. (Secure EVENODD) [6] Let u1(α), u2(α)
be two key polynomials selected i.i.d. uniformly at random
from Rp, and let mi(α), i ∈ [p − 2] be the message
polynomials (each representing p−1 bits of information). The
key and message polynomials are encoded into p+2 codeword

polynomials ci(α), such that ci(α) represents the p − 1 bits
to be stored on the i-th node. Then (c1(α), ..., cp+2(α)) =
(u1(α), u2(α),m1(α), ...,mp−2(α)) Gpad GEO, where Gpad
is a square matrix that pads the key polynomials to the
message polynomials, and GEO is the generator matrix for
the EVENODD code. Specifically,

Gpad =


1 1 1 · · · 1
0 α α2 · · · αp−1

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (1)

and

GEO =


1 0 · · · 0 1 1
0 1 · · · 0 1 α
...

...
. . .

...
...

...
0 0 · · · 1 1 αp−1

 . (2)

Construction 2. (Shortened Secure EVENODD) Let 0 < s <
p−2 be an integer. The shortened secure EVENODD of length
p+ 2− s and dimension p− 2− s is encoded by

(u1(α), u2(α),m1(α), ...,mp−2−s(α)) G
′
pad G

′
EO,

where u1(α), u2(α) are randomly selected key polynomials,
m1(α), ...,mp−2−s(α) are the message polynomials, and G′pad
is obtained by deleting the 3-rd to (s+2)-th rows and columns
from Gpad, and G′EO is obtained by deleting the 3-rd to (s+2)-
th rows and columns from GEO.

Note that the length and dimension of the shortened se-
cure EVENODD is decreased by s compared to the secure
EVENODD. Also note that by deleting the rows and columns
from the matrices we are essentially suppressing the 3-rd to
(s + 2)-th entries in the codeword of Construction 1 to be
0. The following theorem shows that the shortened secure
EVENODD maintains the security parameter z.

Theorem 1. If Rp is a field, then the shortened secure
EVENODD is a (p+2−s, p−2−s, 2, 2) secure RAID scheme.
Particularly, the scheme has optimal rate.

Proof. By [7, Proposition 1], the scheme is rate-optimal if
it indeed tolerates two erasures and two eavesdroppers. It is
easy to see that the shortened scheme maintains the same
level of reliability as secure EVENODD, and can tolerate any
two erasures. Particularly, the same decoding algorithm can
be used, except that the shortened (suppressed) entries in the
codeword are set to be 0 by default. It remains to be shown
that the shortened scheme is also secure in the presence of
two eavesdropping nodes.

By the well known security lemma (e.g., [2, Appendix 7]),
the scheme is secure if and only if the following claim is true:
let ci1(α), ci2(α) be any two entries of the shortened code-
word, then u1(α) and u2(α) are functions of ci1(α), ci2(α)
and mi(α), i = 1, ..., p− 2− s. To prove the claim, we refor-
mulate it in the context of Construction 1. Note that encoding



Construction 2 is equivalent to encoding Construction 1 and
suppressing the 3-rd to (s+2)-th entries in the codeword to be
0. Therefore, let S = {3, 4, ..., s+ 2} be the index set of the
shortened entries, then an equivalent claim is: in Construction
1, for any i1, i2 ∈ [p + 2]\S, u1(α) and u2(α) are functions
of ci1(α), ci2(α), {ci(α) : i ∈ S}, and mi(α), i ∈ [p− 2]\S.
In the following we prove this claim by showing that one can
recover u1(α) and u2(α) from ci1(α), ci2(α), {ci(α) : i ∈ S},
and mi(α), i ∈ [p − 2]\S. Note that the generator matrix of
Construction 1 is

Gpad GEO =


1 1 1 · · · 1 1 0
0 α α2 · · · αp−1 1 1
0 0 1 · · · 0 1 α2

...
...

...
. . .

...
...

...
0 0 0 · · · 1 1 αp−1

 . (3)

We remove the rows corresponding to the message polynomi-
als mi(α), i ∈ [p − 2]\S, namely the (3 + s)-th to the p-th
rows from (3) to obtain a matrix, denoted by Gs:

1 1 1 · · · 1 1 · · · 1 1 0
0 α α2 · · · αs+1 αs+2 · · · αp−1 1 1
0 0 1 · · · 0 0 · · · 0 1 α2

...
...

...
. . .

...
...

...
...

...
...

0 0 0 · · · 1 0 · · · 0 1 αs+1


Then it suffices to show that column vectors e1 = (1, 0, · · · , 0)
and e2 = (0, 1, 0, · · · , 0) are in the column span of the space
generated by the 3-rd to (s + 2)-th columns plus the i1-th
and i2-th columns of Gs. Clearly, if both the i1-th and i2-th
columns are not the last two columns of Gs, then since Rp
is a field, the i1-th and i2-th columns span e1 and e2. In the
remaining part of the proof we focus on the cases that at least
one of i1 and i2 is equal to p + 1 or p + 2. We also need to
distinguish the case that s is odd from the case that it is even.
We begin with the case that s is odd.

Case 1 (i1 = p + 1, i2 < p + 1): sum the 3-rd to (s +
2)-th columns and the i1-th column to obtain u = (0, 1 +∑s+1
i=2 α

i, 0, · · · , 0). This vector together with the i2-th column
span e1, e2.

Case 2 (i1 = p + 2, i2 < p + 1): for i = 3, ..., s + 2,
scale the i-th column by αi−1 and add it to the i1-th column
to obtain the vector v = (

∑s+1
j=2 α

j , 1 +
∑s+1
j=2 α

2j , 0, · · · , 0).
Now if i2 = 1, then clearly v and the first column spans e1,
e2. Otherwise, scale the i2-th column by

∑s+1
j=2 α

j and add to
v to obtain (0, 1+

∑s+1
j=2 α

j+i2−1 +
∑s+1
j=2 α

2j , 0, · · · , 0). We
only need to show that

ρ = 1 +

s+1∑
j=2

αj+i2−1 +

s+1∑
j=2

α2j 6= 0. (4)

Note that αp = 1 and (4) is trivially true when s = 1 or p = 5.
Now we prove (4) assuming p > 5 and s > 1. First suppose
that s < p+3

2 so that the summation
∑s+1
j=2 α

2j includes
α4, α6 but does not include α5.

∑s+1
j=2 α

j+i2−1, however, sums
consecutive powers of α and therefore if it includes α5, then

it must inlcude either α4 or α6 or both. Therefore ρ must
either 1) includes both α4 and α6 but does not include α5,
or 2) includes α5 but does not include at least one of α4 and
α6. In both cases ρ is not zero. Now suppose that s ≥ p+3

2 ,
then

∑s+1
j=2 α

2j includes α1, α3 but does not include α2. By
the same argument as above again it follows that ρ 6= 0. This
proves (4) and so v and the i2-th column span e1, e2.

Case 3 (i1 = p+ 1, i2 = p+ 2): obtain u as in Case 1 and
obtain v as in Case 2. Then u, v span e1, e2.

We now turn to the regime that s is even.
Case 1′ (i1 = p + 1, i2 < p + 1): sum the 3-rd to (s +

2)-th columns and the i1-th column to obtain u′ = (1, 1 +∑s+1
i=2 α

i, 0, · · · , 0). This vector together with the i2-th column
span e1, e2.

Case 2′ (i1 = p + 2, i2 < p + 1): proof is identical to the
proof of Case 2.

Case 3′ (i1 = p + 1, i2 = p + 2): Obtain u′ as in Case 1′.
Add u′ to the j-th column to obtain

wj = (0, 1 +

s+1∑
k=2
k 6=j−1

αk, 0, · · · , 1, · · · , 0), j = 3, ..., s+ 2

where the entry of 1 is the j-th entry. Now scale wj by αj−1

and sum all of them to the (p+ 2)-th column to obtain:

v′ =

0, 1 +

s+1∑
j=2

αj
1 +

s+1∑
l=2, l 6=j

αl

 , 0, · · · , 0

 (5)

=

0, 1 +

s+1∑
j=2

αj , 0, · · · , 0

 . (6)

Then u′, v′ span e1, e2. The proof is complete.

III. SECURE STAR

The secure RAID schemes proposed in [6] including the
secure EVENODD discussed above are designed to tolerate
r ≤ 2 erasures and z ≤ 2 eavesdroppers. A natural and
important question is how to construct secure RAID schemes
that can tolerate more erasures and eavesroppers. In this
section we construct an efficient secure RAID scheme based
on the STAR code [5], which is a generalization of the
EVENODD code. The STAR code is a family of MDS array
codes capable of tolerating 3 erasrues with almost optimal
encoding complexity. The resulting secure RAID scheme can
tolerate r ≤ 3 erasures and z ≤ 3 eavesdroppers, with almost
optimal encoding and decoding complexity and with efficient
random access compleixty. We start with describing the STAR
code. Define Mp(x), Rp and α as in Section II-B.

Construction 3. (STAR code [5]) Let p be a prime, the
STAR code is a [p + 3, p] MDS array code over Fp−12 .
Specifically, let m1(α), ...,mp(α) be p message polynomials
each representing p−1 message bits. Then the codeword poly-
nomials (c1(α), ..., cp+3(α)) = (m1(α), ...,mp(α)) GSTAR,



where GSTAR is the generator matrix of the STAR code:

GSTAR =


1 0 · · · 0 1 1 1
0 1 · · · 0 1 α α−1

...
...

. . .
...

...
...

...
0 0 · · · 1 1 αp−1 α−(p−1)

 (7)

We now describe the secure STAR scheme.

Construction 4. (Secure STAR) Let u1(α), u2(α), u3(α)
be three key polynomials selected i.i.d. uniformly at
random from Rp, and let mi(α), i ∈ [p − 3] be the
message polynomials (each representing p − 1 bits of
information). The key and message polynomials are encoded
into p + 3 codeword polynomials (c1(α), ..., cp+3(α)) =
(u1(α), u2(α), u3(α),m1(α), ...,mp−3(α)) G′′pad GSTAR,
where G′′pad, defined in (8), is a square matrix that pad the
key polynomials to the message and GSTAR is defined in (7).

G′′pad =



1 1 1 · · · 1 1
1 α α2 · · · αp−2 αp−1

1 α−1 α−2 · · · α−(p−2) α−(p−1)

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


(8)

The following result shows that secure STAR is a valid
secure RAID scheme.

Theorem 2. The secure STAR is a (n = p+3, k = p−3, r =
3, z = 3) secure RAID scheme over Fp−12 . Particularly, the
scheme has optimal rate.

Proof. By [7, Proposition 1], the scheme is rate-optimal if it
tolerates three erasures and three eavesdroppers. Because the
STAR code can tolerate three erasures and the codewords of
secure STAR are codewords of the STAR code, secure STAR
can also tolerate three erasures. It remains to be shown that
the scheme can tolerate three eavesdropping nodes.

By the well known security lemma (e.g., [2, Appendix 7]),
it suffices to show that from any three entries of the codeword
ci1(α), ci2(α), ci3(α) and mi(α), i = 1, ..., p − 3, one can
recover u1(α), u2(α) and u3(α). To prove this claim, note
that the generator matrix of secure STAR is G′′pad GSTAR =

1 1 1 · · · 1 1 1 0 0

1 α α2 · · · αp−2 αp−1 0 0 1

1 α−1 α−2 · · · α−(p−2) α−(p−1) 0 1 0

0 0 1 · · · 0 0 1 α2 α−2

...
...

...
. . .

...
...

...
...

...
0 0 0 · · · 1 0 1 αp−2 α−(p−2)


(9)

Let Gtop be the matrix formed by the first three rows of the
matrix in (9), then Gtop is a systematic parity check matrix
of the STAR code if the (p + 2)-th and (p + 3)-th columns
are swapped. Because the STAR code is MDS, any three
columns of its parity check matrix are linearly independent.
Therefore any three columns of Gtop are linearly independent.
This proves the claim and the theorem.

A. Encoding Secure STAR

We analyze the computational complexity of secure STAR.
Consider the operation of multiplying a polynomial f(α) =∑p−2
i=0 fiα

i by αj . Then the resulting polynomial is

αjf(α) =

p−2∑
i=0

〈i+j〉6=p−1

fiα
〈i+j〉 +

p−2∑
i=0

fp−1−jα
i (10)

where 〈·〉 is the modulo p operator, and we define fp−1 = 0.
Note that the first summation in (10) is simply a cyclic shift of
f(α) except that the (p−1−j)-th entry becomes 0. Therefore
the multiplication in (10) takes at most p−1 XORs to compute.
Consider the encoding complexity of secure STAR, in the first
phase we multiply the key and message polynomials by Gpad′′ .
This takes at most 10(p−1)+5(p−3)(p−1) XORs. The second
phase, which is to encode the standard STAR code, takes at
most 3(p − 1)2 + 2(p − 2) XORs. Therefore the normalized
encoding complexity of secure STAR is

10(p− 1) + 5(p− 3)(p− 1) + 3(p− 1)2 + 2(p− 2)

(p− 3)(p− 1)
≈ 8

XORs to encode each bit of message. By [6, Corollary 1],
a lower bound on the normalized encoding complexity is
6 + 6

p−3 ≈ 6 XORs to encode each message bit. Therefore
the encoding complexity of secure STAR is almost optimal.
In the following we show an improved encoding scheme
of secure STAR to further reduce the encoding complexity.
The normalized encoding complexity of the improved scheme
converges to 6 as p grows, and so is asymptotically optimal.

Specifically, consider the (binary) generator matrix of the
STAR code by regarding a polynomial f(α) as a binary row
vector of length p− 1. And so GSTAR expands into a p(p− 1)
by (p+3)(p− 1) binary matrix, i.e., each entry in the matrix
in (9) expands into a (p− 1) by (p− 1) block:

G′STAR =


I 0 · · · 0 I A0 A0

0 I · · · 0 I A1 A〈−1〉
...

...
. . .

...
...

...
...

0 0 · · · I I Ap−1 A〈−(p−1)〉

 (11)

where I is the identity matrix of order p − 1, 0 is the zero
matrix, and Ak = (a

(k)
ij ), 1 ≤ i, j ≤ p− 1 is defined by:

a
(k)
ij =

{
1, j − i = k or i = p− k
0, otherwise (12)

For example, A0 = I , and for p = 5

A1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

 , A2 =


0 0 1 0
0 0 0 1
1 1 1 1
1 0 0 0

 (13)

Therefore the binary parity check matrix corresponding to the



systematic generator matrix in (11) is :

H ′STAR =

 I I · · · I I 0 0
At0 At1 · · · Atp−1 0 I 0
At0 At〈−1〉 · · · At〈−p−1〉 0 0 I

 .

Consider the complexity of encoding the dual code of the
STAR code by multiplying a message vector (u1,u2,u3) with
the matrix H ′STAR, where ui is a binary row vector of length
p − 1. Then multiplying ui with Atj is simply a cyclic shift
of ui (by j entries to the left) except that the (p− j)-th entry
in the result becomes u∗i =

∑p−1
k=1 uik. Therefore the only

computation required in multiplying ui with Atj is to compute
u∗i , which only needs to be performed once for each ui.

Now to encode secure STAR, instead of using the padding
matrix G′′pad in (8), we use the following matrix G′pad:

I I I · · · I I
At0 At1 At2 · · · Atp−2 Atp−1
At0 At〈−1〉 At〈−2〉 · · · At〈−(p−2)〉 At〈−(p−1)〉
0 0 I · · · 0 0
...

...
...

. . .
... 0

0 0 0 · · · I 0


Replacing G′′pad by G′pad does not affect the security of the
scheme. This is because the first three rows of G′′pad and of
G′pad span the same space, i.e., the space of the dual STAR
code, with the last three entries in the codeword deleted.

The improved padding matrix reduce the encoding complex-
ity of the padding phase to at most 2(p−2)+6(p−1)+3(p−
3)(p − 1) XORs. Therefore, the overall normalized encoding
complexity of the improved scheme is

4(p− 2) + 6(p− 1) + 3(p− 3)(p− 1) + 3(p− 1)2

(p− 1)(p− 3)
≈ 6

XORs per message bit, which is asymptotically optimal.

B. Decoding Secure STAR

Next we consider the decoding complexity of secure STAR.
In general one can decode by multiplying the codeword vector
to the inverse of the generator matrix, but matrix inversion is
an expensive operation (requiring O(n6) XORs). Even if the
cost of matrix inversion is amortized (as the inverse can be pre-
computed), matrix multiplication is still expensive (requiring
O(n4) XORs). In the following we show that the construction
of secure STAR entails a very efficient decoding algorithm,
requiring only O(n2) XORs in total.

The decoding algorithm can be divided into three steps:
First, if any of the first p entries in the codeword is erased,
recover them by erasure decoding. Secondly, decode the key
polynomials u1(α), u2(α), u3(α) and hence all the key bits
from c1(α), c2(α), cp(α). Finally, cancel the keys from ci(α),
i = 3, ..., p−1 to obtain the message polynomials. For the first
step, since the codewords of secure STAR are codewords of
the STAR code, recovering the erased symbols is equivalent
to recovering from erasures in the STAR code. A major
advantage of the STAR code is that it has a very efficient

erasure decoding algorithm [5], requiring at most O(n2) XORs
to recover any three erasures. In the following we focus on
the latter two steps that deal with the arguably more important
issue of “decrypting” the message, as erasure decoding is
needed only when erasures occurred, but “decryption” is al-
ways required whenever one wants to retrieve the information.

We first describe the third step of canceling the keys, which
is simply to “re-pad” the keys to the codeword in the same way
as how they are padded to the messages during the encoding
phase. Since the padding scheme G′pad is almost optimal, i.e.,
most entries in the array are padded by only three key bits,
the minimum number of keys to tolerate three eavesdroppers,
the complexity of canceling the keys is essentially optimal.
Namely, for most entries in the array, recovering the message
bit stored in that entry only requires 3 XORs to cancel the
keys.

We now describe the second step of decoding the key
polynomials. For the ease of notation, denote for short ai ,
u1i, bi , u2i, ci , u3i, i = 1, ..., p − 1, and a0 , u∗1,
b0 , u∗2, c0 , u∗3 (recall that u∗j =

∑p−1
i=1 uji). Then the

coefficients of c1(α) are ai+ bi+ ci, the coefficients of c2(α)
are ai + b〈i+1〉 + c〈i−1〉 and the coefficients of cp(α) are
ai+ b〈i−1〉+ c〈i+1〉, i = 1, ..., p−1. Therefore the coefficients
of c1(α) + c2(α) are ui , bi + b〈i+1〉 + c〈i−1〉 + ci, and the
coefficients of c1(α)+cp(α) are vi , b〈i−1〉+bi+ci+c〈i+1〉,
i = 1, ..., p− 1.

For i = 0, ..., p−3, by XORing v〈i+1〉 and u〈i+2〉 we obtain
wi = bi+ b〈i+1〉+ b〈i+2〉+ b〈i+3〉. Since b0 = u∗2 =

∑p−1
i=1 bi,

we have w0 =
∑p−1
i=4 bi, and wp−3 =

∑p−4
i=1 bi. We consider

two cases: Case 1: p mod 4 = 1. Therefore 4 divides p − 5
and we can combine the wi’s to obtain

∑p−1
i=5 bi. Canceling it

from w0 we obtain b4. Similarly, 4 divides p − 9 and so we
can obtain

∑p−4
i=6 bi. Canceling

∑p−4
i=6 bi and w1 from wp−3

we obtain b5. By symmetric we can also obtain c4 and c5.
Case 2: p mod 4 = 3. Therefore 4 divides p− 3 and we can
combine the wi’s to obtain

∑p−1
i=3 bi. Canceling w0 from it

we obtain b3. Similarly, 4 divides p − 7 and we can obtain∑p−4
i=4 bi. Canceling it from wp−3 we obtain b1 + b2 + b3.

Finally cancel it from w1 and we obtain b4. By symmetric we
can also obtain c3 and c4.

Therefore, there always exists an i so that we can obtain
bi, bi+1 and ci, ci+1. Now cancel bi, ci and ci+1 from vi to
obtain bi−1 and cancel bi+1, ci and ci+1 from ui+1 to obtain
bi+2. By symmetric we can also obtain ci−1 and ci+2. By
induction we obtain all bi, ci, i = 1, ..., p− 1. Finally, cancel
the bi’s and the ci’s from the coefficients of c1(α) to obtain
ai, i = 1, ..., p − 1. This completes the decoding of all key
bits.

We summarize the computational complexity of the decod-
ing algorithm when no erasure occurs, i.e., the complexity of
the second and third steps of the algorithm. The second step
requires no more than 18(p − 1) XORs and the third step
requires no more than 3(p − 1) + 3(p − 3)(p − 1) XORs.



Therefore the normalized decoding complexity is

18(p− 1) + 3(p− 1) + 3(p− 3)(p− 1)

(p− 3)(p− 1)
≈ 3

XORs per message bit. Since every message bit has to be
padded by at least three key bits in order to tolerate three
eavesdropping nodes, the decoding complexity of the scheme
is asymptotically optimal.

REFERENCES

[1] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
Dependable and secure storage in a cloud-of-clouds,” ACM Transactions
on Storage, vol. 9, no. 4, pp. 12:1–12:33, 2013.

[2] R. Bitar and S. El Rouayheb, “Staircase codes for secret sharing with
optimal communication and read overheads,” arXiv:1512.02990, 2016.

[3] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes with independent
parity symbols,” IEEE Transactions on Information Theory, vol. 42,
no. 2, pp. 529–542, 1996.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, vol. 44, pp. 192–202, 1995.

[5] C. Huang and L. Xu, “STAR : an efficient coding scheme for correcting
triple storage node failures,” in USENIX Conference on File and Storage
Technologies (FAST), 2005, pp. 197–210.

[6] W. Huang and J. Bruck, “Secure RAID schemes for distributed storage,”
in 2016 IEEE International Symposium on Information Theory (ISIT),
July 2016, pp. 1401–1405.

[7] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Communication
efficient secret sharing,” IEEE Transactions on Information Theory,
vol. 62, no. 12, pp. 7195–7206, 2016.

[8] H. Luo, P. Zerfos, J. Kong, S. Lu, and L. Zhang, “Self-securing ad
hoc wireless networks,” in International Symposium on Computers and
Communications, 2002.

[9] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (RAID),” in ACM SIGMOD, vol. 17:3, 1988, pp.
109–116.

[10] S. Pawar, S. E. Rouayheb, and K. Ramchandran, “Securing dynamic
distributed storage systems against eavesdropping and adversarial at-
tacks,” IEEE Transactions on Information Theory, vol. 57, no. 10, pp.
6734–6753, 2011.

[11] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5227–5239, 2011.

[12] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal Locally Repairable and Secure Codes for Distributed Storage
Systems,” IEEE Transactions on Information Theory, vol. 60, no. 1, pp.
212 – 236, Jan. 2014.

[13] J. K. Resch and J. S. Plank, “AONT-RS: blending security and perfor-
mance in dispersed storage systems,” in USENIX conference on File and
stroage technologies (FAST), 2011, pp. 191–202.

[14] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.


