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Abstract—Racetrack memory is a new technology which utilizes thus one of the domains is not read, which results witlela-
magnetic domains along a nanoscopic wire in order to obtaine  tjon of the bit stored in this domain. In case the domains were
tremely high storage density. In racetrack memory, each magetic s g ccessfully shifted, then the same domain is read again

domain can store a single bit of information, which can be sesed d - . fi h f h bit. Thi
by a reading port (head). The memory has a tape-like structure ana we experience amsertion, however or the same bit. 1his

which supports a shift operation that moves the domains to be Kind of insertion errors is also referred eepetition errors or
read sequentially by the head. In order to increase the memgrs  sticky insertions in a sticky channel [2], [8].

speed, prior work studied how to minimize the latency of the bift In this work we study codes which correct position errors in
operation, while the no less important reliability of this operation racetrack memory. At first sight, this problem is not anyefiff

has received only a little attention. . - .
In this work we design codes which combat shift errors in race ent than the well-studied problem of designing codes ctngc

track memory, called position errors. Namely, shifting the domains deletions and insertion5I[1]./[5]. However, we take anotqer
is not an error-free operation and the domains may be over-sifted  proach to tackle the problem and leverage the special fesitur

or are not shifted, which can be modeled agsleletions and sticky  of racetrack memory, where it is possible to use more than a
insertions. While it is possible to use conventional deletion and single head in order to read the domains. Thus, each domain

insertion-correcting codes, we tackle this problem with tle spe- . d th d th t d b di
cial structure of racetrack memory, where the domains can be IS read more than once an € extra reads can be used In or-

read by multiple heads. Each head outputs a noisy version ohe der to correct the position errors during the reading praces
stored data and the multiple outputs are combined in order to Since every head reads all the bits, we can treat every head as
reconstruct the data. Under this paradigm, we will show thatit g channel which returns a noisy version of the stored inferma
is possible to correct, with at most a single bit of redundang, d o and based on these noisy reads the information is éecod
deletions with dﬂ—l heads if the heads.are we!l-separateq. Similar This model falls under the general framework by Levenshtein
results are provided for burst of deletions, sticky insertons and . .

combinations of both deletions and sticky insertions. of the reconstruction problem [6]. However, in our case, as op-
posed to the general one studied by Levenshtein, the positio
errors are correlated and depend on the locations and déstan

Racetrack memory, also known aslomain wall memory, is between the different heads.
an emerging non-volatile memory which is based on spint®ni In contrast to substitution errors, deletions/sticky itisas
technology. It attracts significant attention due to itsmising behaveifferentially. Namely, to successfully decode a substitu-
ultra-high storage density, even comparing to other spimd¢s tion error, it is necessary to determine the location of thiere
memory technologies such as STT-RAM [16]. However, for deletions/sticky insertions, the decoder sac-

A racetrack memory is composed oflls, also calleddo- cessfully decode the correct codeword without determimithg
mains, which are positioned on a tape-like stripe and are sephe locations of the deletions/sticky insertions, sinasoitld be
rated bydomain walls. The magnetization of a domain is pro-any bit which belongs to the run where each deletion/stioky i
grammed to store a single bit value, which can be read by sessrtion has occurred. Assume first that the heads are adljacen
ing its magnetization direction. The reading mechanisnpero and on every cycle the domains are shifted by a single loca-
ated by a read-onlyort, called ahead, together with aeference tion. Thus, if there are no position errors, the bit storedach
domain. Since the head is fixed (i.e. cannot moveghit op- domain is read twice. On the other hand, in the occurrence of
eration is required in order to read all the domains. Shijftile  position errors, the deletions/sticky insertions in the teeads
cells is accomplished by applying a shift current which n®veare correlated. For example, if thth bit is deleted in the first
the domain walls in one direction. Thus, shift operationveno head then theéi + 1)-st bit is deleted in the second head. In
all the domains one step either to the right or to the leftsit case these two deleted bits belong to the same run, then the
also possible to shift by more than a single step by applyimpisy words from the two heads are identical and thus we did
a stronger current. When doing so, it is required to have maret benefit from the extra read by the additional head. On the
than a single head to read the domain walls [9]. hand, if the heads are well separated and there are no losg run

There are several approaches to enhance the shift operatiothe stored information, then the heads’ outputs will efiff
in order to reduce its time and energy consumption [13],.[15nd under this setup we will show how it is possible to correct
However these mechanisms suffer from degraded relialaifity the position errors. Note that it is possible to correct adixe
cannot ensure that domains are perfectly shifted so they arenber of deletions and sticky insertions with a single head
aligned with the head. These errors, calfedition errors, can while the rate of the codes approaches 1 and the redundancy
be modeled as deletions and sticky insertions [16], whighés order is©(log(n)) [1], [5]. Hence, any code construction using
motivation for this work. A deletion is the event where the damultiple heads should have rate approaching 1 and more than
mains are shifted by more than a single domain location atitht, improve the redundancy result@®flog(n)). However, this
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should be accomplished while minimizing the distance betwecomprised of magnetizable cells which can store a single bit
the heads. The information is read back from the cells by sensing their
The rest of this paper is organized as follows. In Sedfibn kinagnetization direction using heads which are fixed in their
we formally define the model and problems studied in the papsitions; see Fid.l1. Since the heads are fixed in their logsatio
namely the reading process in racetrack memory and codes «
recting deletions and sticky insertions using multipledsedn l_ l l_
— —>

SectiorIll, we construct codes correcting a single detetising
two heads with approximately 0.36 redundancy bits, by requ
ing the distance between the heads to be at Igagtn)| + 1.

In Section 1V, we extend this construction for codes coinggct
a burst of deletions where the length of the burst is either ex

actly b or at most. Another extension is given in Sectipn V forthe memory cells move so they can all be read by the heads.
codes correcting multiple deletions. In this case our gonst 1 Nis shifting operation is performed by applying a shift current
tion can correct! deletions usingl + 1 heads with at most a Which moves all the cells on each cycle one or more steps in
single bit of redundancy, by requiring the distance betwan the same directiori [9]. However, the shifting mechan!s_msdoe
jacent heads to be at leasflog(n)] + d(d + 1)/2 + 1. In the NOt work pe_rfectly and may suffer from errors, callmlsmon
case the number of headsis strictly less thanl+ 1, we show ©Tors. That is, cells may be shifted by more than a single loca-
that it is possible to correet — 1 deletions with the heads, andlion on each cycle or are not shifted. These position errars ¢
so the code should be able to correct the remaidingm —1) D€ modeled as deletions and sticky insertions. Namedingie
deletions. In this section, we also report on several maelte deletion is the event where the cells are shifted by two loca-
we could not include due to the lack space. Some of the prod@ns instead of one and thus one of the bits is not read by the

— | — | > | — | > | «— | «—

Fig. 1: Racetrack memory with multiple heads

are omitted for the same reason. head. In case the cells were shifted by same1 > 2 loca-
tions, thenb consecutive cells were not read and we say that a
Il. PRELIMINARIES AND MODEL DEFINITIONS deletion burst of size b has occurred. On the other handitiaky

Let F, denote the binary field. For a positive integey insertion is the event where the cells wenet shifted and the
the set{1,2,...,n} is denoted byn]. Letw = (u1,...,u,) Same cell is read again and if this happéns 1 times in a
andv = (v1,...,v,) be two vectors of lengthh and m, row, we say that durst of b sticky insertions has occurred.
respectively. The concatenation af and v is the vector = We assume that there are several heads and each head reads
(u1,...,un,v1,...,vy,) Of lengthn + m, which is denoted all the cells. In case there is only a single head, then the only
by uw o v. A subvector of a wordu is a vectorulfii,i] = approach to correct the position errors is by using a codelwhi
(Wiys Wiz 415---,Uiy) € Fy in which 1 < 43 < ia < n. The is capable of correcting deletions and sticky insertionswH

length of this subvector id < i, —i; + 1 < n. In case ever, in case there are several heads, the cells are reaglenult

i1 = 19 = i, we denote a subvectar([i, i] of length 1 byw[i] times by each head and thus we study how this inherent redun-

to specify thei-th element of vectou. dancy can be used to design better codes. The output of the
Let £ and m be two positive integers where< m. Then, heads depend on their locations. For example, assume tieere a

a lengthm vectorv € F3* which satisfiesv; = v;4, for all three heads which are used to read the stored wordhere

1 <i < m—/is said to haveperiod ¢. For a vectoru € FZ, the distance between the first two headg,ignd the distance

we denote byL(u, ¢) the length of its longest subvector whichbetween the last two headstis If a deletion occurs at position

has period’. Note that by definitior.(u, ¢) > ¢, and for¢ = 1, < in the first head then a deletion also occurs at positie;

L(u,1) equals the length of the longest runn in the second head and another deletion at positiety +t- in

Example 1.Let uw = (uq,...,uo) = (0,0,1,1,0,1,0,1,1) € the third head. Therefore, the output of the first, seconidd th

FJ. Since the longest run inu is of length two, we have head is the vectou(d;), w(di+s, ), w(Ji+t,+1, ), respectively.
L(u,1) = 2. The subvector[4,8] = (1,0,1,0,1) of w has  The goal in this paper is to design codes correcting posi-
period 2 sincaw = ug = us = 1 andus = u7 = 0. This is the tion errors in the reading process. We say that a code is an
longest subvector ofi of period2, and hencd.(u,2) = 5. O m-head b-position-error-correcting code if it can correctb po-
sition errors usingn heads. Similarly, we also defime-head b-

For a length» word w € F3 andi € [n], we denote by deletion-correcting codes, m-head b-sticky-insertion-correcting
u(d;) the vector obtained by after deleting itsith bit, that is, codes, m-head b-burst-deletion-correcting codes, and m-head
w(8;) = (U1, ... Uim1, Uit .-, un). FOr a seth C {6; : i €  p-purgt-sticky-insertion-correcting codes. We note that the loca-
[n]}, we denote byu(A) the vector of lengtl — |A| obtained tjons of the heads is also part of the code design. Since e ar
fromu after deleting all the bits specified by the locations in thg), shifting the cells is constrained, the heads should eabb

setA. In caseA = {d;,...,di4p-1} then we denote the vec-far apart and the distance between adjacent heads showld thu
tor u(A) by u(dp;y) to specify a burst ob deletions starting pe minimized. As always, the goal in designing these codes is
at theith position. to minimize the redundancy of each code construction.
Example 2. Let v = (0,0,1,1,0,1,0,1,1) € TF9, then

u(ds) = (0,0,1,0,1,0,1,1). For A = {04,07,d0} then |||, Two-HEAD SINGLE-DELETION-CORRECTING CODES

u(A) = (0,0,1,0,1,1), andu(djz 4) = (0,0,0,1,1). O

In this section we study how to construct two-head single-
In this work, we assume that the information stored in th#eletion-correcting codes. Our main result states thatefdis-
racetrack memory is represented by a wardThe memory is tance between the two heads is at Idasg(n)]+1 cells, where



n is the length of the codewords, then such codes exist with tg-the rates of these codes is strictly less than 1. Since we can
dundancy of roughly).36 bits. achieve codes with rate approaching 1 by simply using a sin-
Construction 1. For allt < n, letC(n, 1,t) be a code of length 9le head and a single-deletion-correcting code of redurydan
n such that the length of the longest run of every codeword is3t Mostlog(n + 1) [5], we are interested only in codes with
mostt. Thatis,Cy(n,1,t) = {c € F? | L(c, 1) < t}. rate approaching 1 and will optimize their redundancy. Thus
we follow a similar approach to the one takenlinl[12] for codes
The following theorem proves the correctness of this coBorrecting a burst of deletions and letbe a function of the
struction. code lengthn. In particular, by choosing = [log(n)] + 1, it
was observed ir_[12], using the derivations fram![10] &nd,[11
Theorem 2. The codeC: (n, 1,1) is a two-head single-deletion-that the redundancy of the codg(n,1,[log(n)] + 1) is
correcting code when the heads are positidniegations apart. approximately 0.36, and far = [log(n)] + 2 efficient encod-
ing and decoding algorithms were recently found for these

Proof: Letc = (c1,...,¢n) € Ci(n, 1,t) be a stored code- : : . - .
word of lengthn and assume that a single deletion occurred é?des using a single bit pf redundancy [7]. We conclude this
Iscussion with the following corollary.

positions. Then, the outputs from the two heads are: _ _ . _
Corollary 3. There exists a two-head single-deletion-correcting

Head 1:¢(6;) = (c1,- -+, Cim1,Cit1s -+ -5 Cn), code when the heads are positioned [log(n)] + 1 locations
Head 2: ¢(d;i4¢) = (€1, -y Citt—15 Citttly---sCn)- apart with redundancy of approximatédg,(e) /4 ~ 0.36 bits.
Consider the first + ¢ — 1 bits in these two sequences: IV. CoODESCORRECTING ABURST OFDELETIONS
Head 1:c(0;)[1,i 4+t — 1] = (C1y ..y i1, Cig1, Cigas- - -+ Cigt)s In this section we study the setup where the domains are

over-shifted by more than a single location, so a burst oé-del
tions occurs in each head. We will focus on two cases: the
We claim thate(d;)[1,7 + ¢ — 1] # ¢(d;44)[1,7+ t — 1]. Other- length of the burst is exactly or at mostb.

wise, we will get that

Head 2:c(0iq¢)[1,i+t—1]=(c1,...,Ci—1,Cis Cit1s -+ Cigt—1)-

A. Two-Head b-Burst-Deletion-Correcting Codes

Here we investigate codes correcting a burst of exdcty-
jacent deletions using two heads. Suppose we use two heads at
distancet to correct a burst of sizé in the stored codeword

Ci = Ci+1 = »+* = Ci4t—1 = Citt,
which implies that there is a run of length4- 1 in ¢ in con-
tradiction to the construction of the codf (n,1,¢). Let j; be
the leftmost index that differs betweeid;)[1,7 + ¢ — 1] and

¢(8;44)[1, i+t—1]. Such an index exists sineés;)[1,i+t—1] # € (c1, ..., cn). Recall that fon € [n] andb [n,_,i]’ the vec-

: . : . . tor obtained fronc after deleting the subvectefi,i+b—1] =
c(d;i44)[1,7+ ¢t — 1] and soj; < i+t — 1. Furthermorey, > ¢ . . is (s Theref K that if th ¢
since the first — 1 bits in the outputs from two heads are théCir - -+ Ci+b-1) iS c(d(; ). Therefore, we know that if the out-

put from the first head i(dj; ;) for somei and b, then the
output from the second headd$d; 1 ), where the heads are
locatedt positions apart. The following is the construction of
such codes.

same as in the stored codeword. Note tlatcan be differ-
ent than: in case theith bit which was deleted is in a middle
of a run and so the first occurrence whes@;)[1,7 + ¢ — 1]
and c(d;4+)[1,7 + ¢t — 1] differ is only at the end of this run.
We conclude that[l, j1] = ¢(0;44)[1,71] andefjy + 1,n] = Construction4. LetCz(n, b, t) be a code of length such that
¢(8;)[j1, n—1]. Hence, the original codewordcan be recovered the length of the longest subvector which has petiad every
by concatenating the firgt bits frome(6;4) and the lash—j;  codewordt € Cy(n, b, t) is at most. Thatis,Cz(n, b,t) = {c €
bits frome(s;). Thatis,c = ¢(8;44)[1, j1]oc(5;)[j1,n—1]. This  F3 | L(e,b) <t}
proof also provides a simple decoding algorithm for the co
(Cl (n, 1, t).

The next example demonstrates this code construction
its decoder.

Example 3.Letn = 9,t =3 andc = (0,0,1,1,0,1,0,1,1) b8 Theorem 5. The codeCs(n, b, t) is a two-head-burst-deletion-
a stored codeword ity (n, 1, ). Let us assume that the outputs:orrecting code when the heads are positiariedations apart.

from two heads are:
Next we turn to evaluate the size of the cadg(n, b, t). In
Head 1: ¢(d;) = (0,0,1,0,1,0,1,1), particular, as done in the previous section, we will find aigal
Head 2: ¢(ds) = (0,0,1,1,0,0,1,1). of ¢ for which the redundancy of the code will be approximately
36 bits. Let us start with the following definition.

dIEﬁe proof that this construction can correct a burst of dmtet
é)r}‘dengthb follows similar ideas from the proof of Theordrh 2.

Hence,j; = 4 is the leftmost index that differs between twoO'

vectors and thus the stored codeword is decoded according_ to. . . m .
¢ = ¢(6)[1,4] 0 ¢(65)[4,8] = (0,0,1,1,0,1,0,1,1). 0 efinition 6. Letu = (u1,...,u,;) € FS* be a lengthn binary
’ ’ T vector. Fom > m, the b-period check vectoof u is the vector

w) = (u1+Uitp, - . Um—b+Um) € F3'~" of lengthm —b.
By a suitable mapping described in Section 1V, the cocf()ab( )=t u b ) €F3 g9

Cy(n,1,t) can be transformed into a code that satisfies tfide following lemma can be readily verified.

(0,#—1) Run Length Limited (RLL) constraint([8]. While effi-

cient encoding and decoding algorithms are known for codesmma 7. A wordw contains a subvector of lengthvith period
which satisfy the(0,¢ — 1) RLL constraint for fixed value of b if and only ifp,(w) contains a run of — b zeroes.



For a vectoru, we denote byLy(u) the length of the longest V. CODESCORRECTINGMULTIPLE DELETIONS
run of zeroes inu. For exampleL,(0110100010) = 3. For all

: In this section we move to the more challenging task of
n andt < n, we define the cod®(n,t) to be ging

correcting multiple deletions and construatheadd-deletion-
R(n,t) ={c e Fy |Lo(u) < t}. correcting codes. For simplification, we first consider thsec
e%: 2 and show that the cod€s(n, < 2,t1), which can cor-
rect a burst of at most two deletions by using two heads, is a
three-head double-deletion-correcting code, when thiarmls
between every adjacent heads is at least 2(¢t; — 1). We
will then use this result as a building block for a more gehera
claim on codes which can corredtdeletions usingn heads.
While we don’t design new code constructions, a key point
e in the construction is finding the required minimum distance
v;, if 1 <D, . .
u; = { ; between two adjacent heads for its success.
Ui—b +wi—p, Otherwise We start by presenting our result for the construction céhr
In the context of error-correcting codes for tandem duplichead double-deletion-correcting codes.
tions [4], Jainet al. demonstrated Lemnid 7 and the fact tfat
and ¥ are bijections whert = 2b — 1. It is straightforward to Theorem 14.The codeCs(n, < 2,t1) is a three-head double-
extend the proof fot > b. Hence, we have the following lemmadeletion-correcting code when the distance between aujace
that is useful in evaluating the size of the cotig(n, b, t). heads is at least= 2(t; — 1).

Using Lemmall, we can construct a bijection betwe
Ca(n,b,t) and the seff x R(n — b,t —b) for n > b+ 1.
Specifically, we define the following maps.
o ®: Ca(n,bt) = F x R(n — b,t —b), where®(u) =
(u[1, 0], py(u)).
e U:F,xR(n—b,t—b) — Ca(n,b,t), where¥ (v, w) = u
and

Lemma 8. For alln,b,t, |Cy(n,b,t)| = 2° - |R(n — b,t — b)|. Proof: Letc = (c1,...,cn) € C3(n, < 2,t;) be the stored
) ) codeword and = 2(¢; — 1) be the distance between adjacent
The size of the cod&(n, ¢) can be calculated using the reiea4s. | et us assume that the two deletions occurred in ghe fir
sults from Sectio Il and by applying Lemriia 8 for= 110 haad are in positions , io, wherei, < i,. Hence the deletions

get that for alln andt < n, [R(n,1)] = [Ci(n+ 1,1, +1)|/2. in the second head are in positionst-, i» + ¢ and in the third

We can now conclude with the following corollary. head they are in positions + 2t, i, + 2t. That is, the outputs
Corollary 9. For alln, b, t, from the three heads are:
Ci(n—b+1,1,t—-0b+1

Ca(n, b, )| = 2" ICo 5 A Head 1: ¢(d;,,0s,)
According to Corollarie§]3 and 9 we conclude the following. = (C1y++vsCiy—15Ciy 415+ -5 Cig—15 Cigt 15+ - 5 Cn),s
Corollary 10. There exists a two-headb-burst-deletion- Head 2: ¢(d;, 41, i, 4¢)
lcorre_cting code whﬁn tZe h;ads artfe positio?'*redﬂb(;g(nﬂ: b = (€1, Ciyp b1y Ciyptads - -+ s Cintt—1s Cigttdls -3 Cn),s
ocations apart with redundancy of approximat ~
0.36 l’)itS p wi u Y pproxi g(e)/ Head 3: 6(6i1+2t, §i2+2t)
B. Correcting a Burst of Length at Most b = (€1, -5 Ciyg2t-1, Cir 21415 -+ Cin b 2015 Cin 42041 - - -5 Cn)-

The goal of this section is to design a code correcting a burstye prove that it is possible to correct the two deletions by

of at mostb deletions using two heads. We follow the samgxpiicitly showing how to decode them. This will be done in
ideas presented thus far and use the following construction three steps.

Construction 11. LetCs(n, < b, t) be a code of length which 1) First, use the first two heads to correct the first deletion i
is the intersection of the cod€s(n, ¢,t) for1 < ¢ < b. That s, the first head.
2) Then, use the second and third heads to correct the first
< o b 1
Ca(n, < b,1) mf:lci(n’é’ 2 deletion in the second head.
={ceFy|L(e,d) <t, forall ¢ <b}. 3) At this point, the first and second heads have only a single

Theorem 12.The codeCs (n, < b, t) can correct up té consec- deletion and thus we proceed to correct this deletion as
utive deletions using two heads at distahce was done in Theorent] 2.

. . ) . Since the last two steps are very similar to the first one, we
In this case we will not able to provide an exact approXimgioy discuss the first step

tion for It_ihe redundancyno; tze COQF‘(%? b, t)h'ai |tnhprev(|jous In order to prove the first step, we show tleéd;, , 5;,)[1, 41+
cases. However, we will find a value offor which the redun- , _ 1] # (814,04, 40)[1,41 + £ — 1]. Assume in the contrary,

dancy of the code is at most a single bit. For this purpose, Wen we distinguish between the following two cases:
follow similar ideas to the ones presented by Schoeirgl. in o )
[12] when studying the redundancy of the so-caligiversal « Case 1: Ifi; —4; > #; +1 then the two subvectors

RLL constraint. This result is stated in the next theorem. (81, 8:) L, i1+t —1]= (1 Cir 1y Cir 1 Cirres)
119 Y2 ) - gty — 1y M P g 5 1/
Theorem 13.For aIITL, b’ ¢ 1 t—b c(6i1+t7 5i2+t)[1a i1+t1—1]:(C1,. - 5Ci1—1,Cipy- - -5 Ciy “Ftl*l)
n
|C3(n, < b,1)[ > 2 <1 —n- (5) are identical, o the sUbVect@s, , i, 41, - - ,Ci, 11,1, Ciy 44, )

forms a run of lengtht; + 1, in contradiction to the con-

In particular, fort = [lo +b+1 the redundancy of the code i
p [log(n)] 4 struction of the cod&;5(n, < 2,t1).

Cs(n, < b,t) is at most a single bit.



o Case 2: Ifig — i1 < t1 theniy +¢ = 41 +2t1 — 2 >

d-deletion-correcting code where the distance betweercanfa

io + t1 — 2. Therefore, the firsty 4+ ¢; — 3 bits in the first headsis > dty — d(d+1)/2 + 1. In particular under this setup:

two heads, which are subvectors

C((Sil y 51'2)[1, iQ + tl — 3]

= (Cl7 ey Ciy—1,Ci 415 -3 Cig—1,Cig41y 00 vy Ci2+t1—1)7

C(5i1+t, 5i2+t)[17 iQ +11 — 3]

= (Cl, o3 Ci—15Cip -3 Ci—2,Cip—1y - - - ,Ci2+t1,3),
are identical, which implies thdt;,—1,¢iy, ..., Ciy+t,-1)

is a subvector of lengthy + 1 with period 2, again in con-
tradiction to the construction of the codg(n, < 2,t1).
Let j; be the leftmost index that(d;, , d;, ) ande(d;, ++, ip+1)
differ. Similarly to the argument in the proof of Theorem
@, such an index exists and we can obtain the vector
c(0;,) by concatenating the firsf; bits in ¢(d;,4¢,0i,+1)
and the lastn — 1 — j; bits in ¢(d;,,0:,), 1.€., ¢(d;y) =
c(6i1+tv 6i2+t)[17j1] © c(6i156i2)[j17n - 2] u
The next example demonstrates the decoding procedure pr
sented in Theorem 14.

Example4.Letn = 11,t; = 3,t = 4 and the stored codeword
isc = (0,0,1,1,0,1,1,0,1,1,1) € Cy(11,< 2,3). Assume
that the outputs from the three heads are:

Head 1: ¢(61,85) = (0,1,0,1,1,0,1,1,1),

Head 2: ¢(ds,67) = (0,0,1,1,1,0,1,1,1),

Head 3: 0(59, 511) = (O, O, 1, 1, O, 1, 1, O, 1)

(1]
(2]

By comparing the outputs from the first two heads, we see th&tl
j1 = 2 is the leftmost index that(d1, d3) ande(ds, d7) differ. 4]
Hence, we can obtain the vector

c(03) = ¢(05, 07)[1, 2]oc(d1,03)[2,9] =(0,0,1,0,1,1,0,1,1,1). 5]

Similarly, we find the leftmost index that(ds,d7) and
c(dg, 611) differ which is jo» = 5 and obtain the vector

(6]

0(67) 26(59, 611)[1, 5]06(65, 57)[5, 9] = (0, O, 1, 17 0, 17 0, 17 1, 1) [7]
Now, we can recover the original codeword by findijzg= 4

as the leftmost index that(d3) and c(d7) differ and recover [8]

the stored codeword to be

¢ = ¢(67)[1,4] o e(d3)[4,10] = (0,0,1,1,0,1,1,0,1,1,1). [°]

5 o

Based on the cardinality result on the colg(n, < 2,t1) [

from Sectio TV we conclude with the following corollary.

1) There exists &l + 1)-headl-deletion-correcting code with

at most a single bit of redundancy

2) There exists al-headd-deletion-correcting code with re-

dundancy at modflog(n + 1)| + 1.

Lastly, we report on our results for the other cases solved in
this work, which we could not include their details.

Theorem 17.
1) The codéC,(n,1,t) can correct bursts of sticky insertions

each of length at most- 1 usingd + 1 heads while the dis-
tance between adjacent heads is at leaSpecifically, for
t = [log(n)] + 1, the redundancy of the code is approxi-
mately0.36 bits.

2) The codeCy(n,1,t) is a two-head single-position-error-
correcting code when the distance between two heads is at

leastt.

§) The codeCs(n, < 2,t1) is a three-head two-position-error-
correcting code when the distance between adjacent heads

is at least = 3t; — 2.
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