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Abstract—A coding scheme for two-page unrestricted-rate P- of P-RIO codes are achieveld [2] than that of RIO codés [1].
RIO code that each page may have different code rates is |n [2], only fixed-rate P-RIO code is considered that thegate
proposed. In the second page, the code for each messages ®I8S 4 oach page are same. The complexity of research algorithm
of two complementary codewords with code lengtm. There are . . tiall d th h ickl
a total of 2"~* codes which are disjoint to guarantees uniquely- in [2] increases exponentially a_n g searg Space quickly
decodable for 2"~' messages. In the first page, the code for PECOMes memory and computationally intensive as codetiengt
each message consists of all weightvectors with their non-zero increases.
elements restricted to(2u—1) same positions, where non-negative | this paper, we propose a coding scheme for two-page

integer « is less than or equal to half of code length. Finding . ) ) .
codes to be disjoint in first page is equivalent to constructin of unrestricted-rate P-RIO code that each page may havesifer

constant-weight codes, and the numbers of disjoint codes ethe C0de rates. In the second page, the code for each messages
best-known numbers of codewords in constant-weight code®ur ~ consists of two complementary codewords with code length
coding scheme is constructive, and the code length is arbéiry. 7. There are a total oR"~! codes which are disjoint to
The sum rates of our proposed codes are higher than those of guarantees uniquely-decodable #8r! messages. In the first
previous work. page, the code for each message consists of all weight-
vectors with their non-zero elements restricted2o—1) same
positions, where non-negative integelis less than or equal
Flash memories are the prevalent type of non-volatile memg half of code length. Finding codes to be disjoint in first
ory (NVM) in use today which are intended for SSD angage is equivalent to construction of constant-weight spde
mobile applications. Flash memories are comprised of Isocknd the numbers of disjoint codes are the best-known numbers
of cells. The cells can have binary values or multiple levelsf codewords in constant-weight codes. Our coding scheme is
Multilevel flash memories can store multiple bits in a cellgonstructive, and the code length is arbitrary. The sunsrate

Conventionally, in multilevel flash memory, in order to readf our proposed codes are higher than those of conventional
a single logical page, more than a single read threshold, @ged-rate P-RIO codes ifn][2].

average, is required.

To increase input/output (I/O) performance for multilevel I
flash memories. A random input-output (RIO) codé [1] is
proposed. It is a coding scheme that permits writing 1 A Unrestricted-Rate P-RIO Code
pages iny levels and reading one page of data from multi-level
flash memories only uses one single read threshold. A oneAssume thatin the flash memory, the cells havevels and
to-one correspondence between RIO codeés [1] and the w|icells are in level zero initially. It is only possible todrease
studied WOM codes [3] is shown. However, in WOM codedhe level of each cell. We denote tiy] = {0,1,....¢ — 1}.
the encoder sets the cell state values based on the curfedftn cells, a vectorr = (zo,21,...,2n-1) € [q]" Will be
memory state and the received message on each write, tifigdled a cell state vector.
the message are stored sequentially and are not all knowf-RIO code is a coding scheme that encoding of each page
in advance while encoding. Moreover, it is difficult to usélevel) in parallel while reading one page of data using glsin
difference code rate for each writing in WOM codes. read threshold. In g-level flash memory, there afg — 1)'s

In RIO codes, all the messages of each level can be knof@ges. LetV/;, i = 1,2,...q — 1, be the number of messages
in advance, it is unnecessary to store messages sequentfall ith page.
and possible to control difference code rate for each level. We expand the definition of P-RIO codes inl [2] to
Therefore, a parallel RIO (P-RIO) codél [2] is proposed thét; My, Ma, ..., M, 1)-P-RIO code as follows.
the encoding of each level is done in parallel while readimg 0 Definition 1 ( [2]): An (n; My, Ma, ..., M,_1)-P-RIO
page of data using a single read threshold. Higher sum-ratesle is a code with an encoding scheme comprising: of

|. INTRODUCTION

. PRELIMINARY
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cells with ¢ levels and is defined by encoding map

& [Mh] x [Ma] X -+ x [Mg—1] — [q]"

and decoding map®; : [¢|" — [M;], fori=1,2,...,q— 1,
where messages of each page;, mo, ..., mq_1) € [M] x
[Ma] x -+ x [My_1]. O

The sum rate ofn; My, Mo, ..., My_1)-P-RIO code is

q—1
> logy M;
Rsum: =
n
Note that the «code rates of each page
(n; My, Mo, ..., My,_1)-P-RIO codes may be unequal,

that isM; # M; for i # j. In [2], only the P-RIO codes with
same code rate of each page are considered.
The decoding map®; : [¢|" — [M;] is first to read one

of the first page. The sets of the code are
{{000}, {001}, {010}, {100},{011,110,101}} corresponding
the messages — 4 of first page.

The rows correspond to the symbol value of
the second page. The sets of the codes
B {{000,111},{001,110}, {010,101}, {100,011} }
corresponding the messages- 3 of second page. The code
rate of two sets are 0.773 and 0.667, respectively. The sum
rate is Rgym = 1.44.

TABLE |
) (n =3; My =5, M = 4)-P-RIO CobE
n 0 I 2 3 1
0 |[ 000 | 112 | 121 | 211 | 122
T [ 001 | 002 | 120 | 210 | 220
2 |[ 010 | 102 | 020 | 201 | 202
3 [[ 100 | 012 | 021 | 200 | 022

page of data using a single read threshold, and then decode

the data to corresponding message. + &k a threshold level
between pages — 1 andr, r = 1,2,...,q — 1, called rth
threshold. The data of reading thth threshold from the cell
statex = (zg,21,...,2,-1) € [¢]" is denoted asl,.(x) =
(do,d1,...,dn—1) € {0,1}" where

0,
L,
Vector d,.(x) gives the(¢ — r)th level's message.

B. (n; My, Ms)-P-RIO Code

Now we conside = 3 flash memory, that is to say,
are two pages on each cell.

Leta = (ao,al, . ,an_l) andb = (bo,bl, . ,bn—l) be
two n-vectors. We say that vectar is included in vectomw,
denoted bya < b, ifand only ifa; < b; fori =0,1,...,n—1.

T <r
xr; >

dr (Il)

Given two sets4, B C {0,1}", if there exists at least one

vectora € A and at least one vectdre B such thata < b,
we say that sefl is included in setB, denoted byA < B.
Let setB = {BQ,Bl, .. .,BMfl} with Bj - {O, 1}”, 0<
j < M—1.we say thatd is included inB, denoted byAd < B,
if A<B;forallj=0,1,...,2""%
The following theorem is given if_[2] witd\/; = M.
Theorem 1 ([[2]): An (n; My, Ms) P-RIO code exists if
and only if two setsA = {4y, A1,...,Ay,—1} and B =
{30,317...,31\42_1} with Ai,Bj - {0,1}”, 0 < <
M;—1,0 < j < My —1 that satisfy the following conditions:
1) AnAy =0 andB;NBy =@ forall 0 <i,i <
Ml_ll OS.]?.]/ §M2_1!Z¢7’/7] 3&.]/
2) Foranyi,:=0,1,...,M; —1, A; <B. O
From Theoreril1, we have that gets the code of first page,
subsetd; is the constituent code for thith message. Similarly,
B is the code of second page, subggt is the constituent
code for thejth message. The first condition in Theorém

guarantees the uniguely-decodable for each page’s messagesitions onn positions for allu = 0,1, ...

When the message of the first pagd jshe message of the
second page i8, based on the Tab[é I, we have that the cell
state is102.

Threshold level between levéland1 is 1, threshold level
between levell and2 is 2. d;(102) = 101, d(102) = 001.
Sincel01 € Bs, 001 € Aq, thus, the message of the first page
is 1, the message of the second page.is O

I1l. CONSTRUCTION OF(n; M7, Ms)-P-RIO CoDE

In this section, we give a construction @f; M7, Ms)-P-
RIO code.

there

A. Construction oB
Let binaryn-vectorb; = (0, b1, ba, ..., b,—1) With its index
j= }:02 2"~1=1p,, a decimal representaion bf. We define

Bj={b;,bj=1®b;},j=0,1,...,2" " —1 1)

wherel™ is all-1 n-vector and notatiom represents a modulo-
2 sum of two binary vectors. Obviously3; N By = © for
j # j'. Thus we obtaiB = {By, B1, ..., Ba,—1} with My =
2n71

Let w(b) be the Hamming weight of vectd: From [1) we
have ~

w(b;) +w(b;) =n. 2

Note that there always exists one vectorf; such that its
weight is greater than or equal tp5 ], where [p] is the
smallest integer greater than or equapto

B. Construction ofA

In this section, for a gived < u < [%], we will show that
a constant-weight set, consisting of all weight«ectors with
their non-zero elements restricted (2. — 1) same positions,
is included in seB. The disjoint ones, among the constant-
weight sets with all possible permutations(@f,— 1) non-zero
,[5], forms set

The second condition guarantees reading one page of data

using a single read threshold.
Example 1:Table 1 gives an example of (3;5,4) P

O<u<[g

For a given positive integen, let « be an integer with
27 andm = 2u — 1. Let A%, be a collection of

RIO code. The columns correspond to the symbol valadl m-vectors with Hamming weight. We arrange all the.=

are



(™) vectors in setd{

matrix.
From T.%, we give at. x n matrix

atm 1 (OtC)T’ i) (Otc )T] (3)

where the most leftn columns formSZ“c((%, and the remaining

into ¢, x m matrix Tc(ore, called a core

T = L T

n —m columnst}, m <i <n —1, are all-0 column vectors.

Denote byA(“") a set of rows in matrix’(*"),

110
Example 2:Foru = 2, m = 3, we haveTc(gr)e: 011 |,
101
1 0 0
T(274):l 11 0] and A% = {1100,0110,1010}.
1 010
O
Lemma 1:For0 < u < %1 it follows that A(»™) < B,
Proof: For anya € A“”, we rewritea = (a(0 : m—
1),07=™) wherea(0 : m—1) 2 (ag,...,am-1) € Al

From [1), for anyj, it always satisfies that
w(b;(0:m—1)) +w(b;(0:m—1))

This implies thatw(b; (0:m—1)) > u or w(b;(0:m—1)) > u
SinceAéﬁ,)e includes all them-vectors with Weightu, there
exists at least one, for examptes, (0:m—1) € Ald), such that

an, (0:m—1) < b;(0:m—1) or az (0:m—1) < b;(0:m—1).

=m =2u— 1.

Therefore there exists at least one vectoy, € Alwn) sych
that a,, < b; or ag, < by, for all j = 1,2,..., M. This
completes the proof. O

Let sequencél = (mg,71,...,m,—1) IS @ permutation of
the integers 0 ta— 1. Denote a column permutation GH*™)

by
4)

Let A"™ be a set of rows in matris@™. Similar to
Lemmdl we have the following lemma.
Lemma 2:For 0 < u < [§] and permutatiodl, it follows
that A" < B. O
Since there are(n — m)’'s all-zero columns in matrix
TI(I“’"), for all possible permutation, we have matritﬂ%’")

T = ¢ 4T T

) VT —1

and their corresponding setﬁ.:g‘j’"), j=0,1,..., (:}1) — 1.
Let TIy,.0,, {meqgs70,,---,m, ., be a set of non-
zero columns’ indexes in matrig}“™. Denote by| - | a

(u,n)

(Necessary condition:) Assume tha§, ™ A Ay = 0.
Since weights of any vectors in these two setsiatbere exist
at leastu different elements betwedry,.,,, , andIlj ., .
Thus|I,..,, , NI, ., | < u—1. This completes the proof.
O

LemmdBmeans that among all possibqg) permutations
11, the permutation patterns satisfyig (5) gives disjoirs sk
practical, finding these permutations is not easy. Forgaipat
we can find a solution in the related research field on constant
weight codes[[4]. For a given codeword in a constant-weight
code with code lengtlm, minimum Hamming distanc@u,
and weightm 2u — 1, the non-zero positions in the
codeword are the non-zero columns’ indexes in malﬁ%").
Let M (=™ be the number of constant-weight codewords. The
M (") constant-weight codewords givef () permutation
patterns and thus provideA("™, A{“™ A"™ 1 with

M (uw,n) 1
A(“ " A A(“ ") — 0,k +# k. Here we use the same notation

for A(“ ™ and A(“ ) for convenience.
The permutatlon patterns satisfyidg (5) and the number of
M) are given in Tablé]l forn < 15 [4]-[6]. Note that
MO =1 for AL™ = {o"}.
TabledT] and:N’ give all possible permutation patterns of

Il¢y.e,,_, for forming disjoint sets.
TABLE Il
THE NUMBER OF M (#:1)
Y111 2384|567
n

] 7 1 — [ - = 1 =1 =
5 5 2 1 — [ - =1 =
6 6 7 1 — [ - =1 =
7 7 7 1 1 - - | -
8 3 3 2 1 - - | -
9 9 | 12 | 3 1 1 -1 =
10 10| 13 | 6 1 1 -1 =
11 11 | 17 | 11 | 2 1 1 -
12 12 | 20 | 12 | 3 1 1 -
13 13 | 26 | 18 | 4 1 1 1
14 14 | 28 | 28 | 8 2 1 1
15 15 | 35 | 42 | 15 | 3 1 1

Moreover, for two district: andu/, it follows that 4™

cardinality of set. The following Iemma shows sufficient angye have the main result of this work.
necessary conditions for two permutation patterns such thatheorem 2:SetsA in @) andB in (@) form an

their corresponding sets are d|5]0|nt

Lemma 3:Two setsA wn) A wn) — @), if and only if

()

Proof: (Sufficient condition:) Assume thdll,, .., , N
I, | <u—1. This meandl,, , andIlj ,  have
at mostu — 1 same elements. Since evedy c A%"") and

everya' € Aﬁ‘,’") have weight ofu, it follows a # a’. Thus
A A = 0.

Megee,,, NI, | <u—1.

A,(;f/’") = () since the weights in these two sets are distinct.
Let
A:{Al(c“’")|k:O,1,...7M(“’")—1,u:0,1,...,[g]}. (6)
(n; My, My = 2"~ 1)P-RIO code
A
whereM; = > MGm), O

1=0
Let us look more closely am(“:(m’") E=0,1,...,
M) _1 in (@). In the case of odd there does not eX|sts
any all-zero column iri’('z1:») of @). Thus setsA [51m)
from any possible permutations are the sameAéFsﬂ’")
itself, and thusM ([Z1:") = 1. Furthermore, we observe that



TABLE Il

ALL POSSIBLE PATTERNS O, FORMING DISJOINTsETS(u =2)  Proof: We first show thats,, < B. We partitionB into two

parts B? andB®. The first partB2 consists ofB;s Whose
il (W =12) elements are with weight/2. The remalnlngBJs form B~ .
Sincew(b;) +w(b;) = n, everyB; € B* has a vector whose

weight is greater than/2+ 1. Therefore we hav& (3 +1) <
6 4 | {0,1,2},{0,3,4},{1,3,5},{2,4,5} BZ.

We now showA(3") < B2, Among A3, the most
right bit of every vector is 1, and the remaining bits forms
the all subvectors with weight/2 — 1. In B2, one of two

n | M@ | 11,

5 2 {07 273}7{17374}

7 7 {07 172}7{07374}7{07576}7
{17 37 5}7 {1747 6}7 {27 37 6}7 {27 47 5}

8 8 {0,1,2},{5,6,7},{0,3,5},{1, 3,6}, vectors always has the most right bit being 1 and remaining
{2,3,7},{0,4,6},{1,4,7},{2,4,5} bits be weightn/2 — 1. ThereforeA(3:) < B2, It follows
that Asyp < B.
o I ol el A It remains to shows,, A = . Since the most right
{273 7} {0 5 7} {1’37 8},{2,4,6} b_|t in A(i’n) iS 1 Wh||e that Inf}(?’”) iS 0, |t f0||OWS that
A N AGEM = @ and thusA(Z™) NA = . Also we
15 35 {3,7,11},{3,8,12},{3,9,13}, {3, 10, 14}, have E(+1%) N A = () because weights in the two sets are
{4,7,12},{4,8,13},{4,9, 14}, {4, 10, 11}, distinct. Thereforeds,,N A = @. This completes the proof.
{5,7,13}, {5, 8,14}, {5,9,11}, {5, 10,12}, -

{6,7,14},{6,8,11},{6,9,12}, {6, 10, 13}

C. Code Rate of Two-Write Unrestricted-Rate P-RIO-Code

TABLE IV Based onM (™) in Tablell, we haveRsym of (n; My, M)
ALL POSSIBLE PATTERNS OFl_Igozgm71 FORMING DISJOINT SETS(u = 3) P_Rlo COdes in TabIEV, Compared W|th that (Of, ]\/[7 ]\/[)

fixed-rate P-RIO code]2]. From the table, we see that the
3,n — .
no| MG My, (u=3) sum rates of our P-RIO codes are higher than those of the
; 1 (0,1,2,3,4) fixed P-RIO codes given in_[2] when = 3,4,5,6. When
M n > 6, there is no data in[2] since construction complexity
8 2 {0,1,2,3,4},{0,1,5,6,7} is very high.
9 3 {0,1,2,3,4},{3,4,5,6,7},{0,1,6,7,8} TABLE V
(n; M1, M2;2) P-RIOCODES FOR3 < n < 15
10 6 {07172737 4}7{0717576:7 7}7{17275787 9}7 n J\/ll J\/[2 Rsum M I]Z Réumﬂz
{2,3,6,7,8},{3,4,5,6,9},{0,4,7,8,9} 3| 5 4 1.44 4 1.333
1| 7 8 1452 7 1.4037
5| 9 16 | 1.434| 11 1.384
6 | 13 32 | 1.45 19 141
21m) _ ([2]n wn) i i 7 | 17 64 | 144 ] 7
A.Uz ) = E(D .), where E(“") is the set of alln-vector R s 7
with Hamming weightu. 9 | 27 | 256 | 1.417 7 /
In the case of evem, there exists one all-zero column in 10 | 33 | 512 | 1.404 ! /
(2 n) ; ; ; 11 | 44 | 1024 | 1.406| 7 7
T2 of @), and thus, possible permutation patterns gives > 51 5048 1389 7 ;
n possible matricesTH_’")s According toLemma B, the 13 | 65 | 4096 | 1.386 | / 7
corresponding possible setsA =g are joint each other. As 14 | 84 | 8192 | 1.385| |/ !
15 | 114 | 16384 | 1.389 / /

a result, we choose one, e. @(z ), amongA (575 in our
proposed code iTheoreni R and thusM 21 = 1. Different
from the case of odc, we observe thati(z:") < E(3:m)

since A" consists of only the weigh- vectors with the
most right bit being 0. This observation motives us to imgrov Now we give two examples of P-RIO codes with code
our proposed codes iftheoreni P by adding a supplementallength ofn = 4, 5.

set toA. Example 3:For n = 4, by (@), we have the set of second

Specifically, given an even, let AGM = {1 ®ala € page of
Az} andAsup_ Alg:m) y plg+ln), Addlng Asyp to A of

D. Examples

©) providesA” — (A, Aw). B = {{0000,1111},{0001,1110}, {0010, 1101},
Theorem 3:For a given evem, setsA’ andB in (@) form {0011,1100}, {0100, 1011}, {0101, 1010},
an {0110, 1001}, {0111, 1000} },

(n; My, My = 2"~1) P-RIO code , "
Next, we construcA’ as follows. Whenu = 0, Tcore =

where M = M; + 1. 0], and thenA"* = {0000}. Whenu = 1, ), = 1],



TABLE VI
(5;9,16)-P-RIO @DE

0 1 2 3 4 5 6 7 8
00000 | 21111 | 12111 | 11112 | 11121 | 11211 | 21211 | 12121 | 22211
00001 | 21110 | 12110 | 00002 | 11120 | 11210 | 21210 | 12120 | 22210
00010 | 21101 | 12101 | 11102 | 00020 | 11201 | 21201 | 12102 | 22201
00011 | 21100 | 12100 | 00012 | 00021 | 11200 | 21200 | 00022 | 22200
00100 | 21011 | 12011 | 11012 | 11021 | 00200 | 21021 | 12012 | 22021
00101 | 21010 | 12010 | 00102 | 11020 | 00201 | 21020 | 12020 | 22020
00110 | 21001 | 12001 | 11002 | 00120 | 00210 | 00220 | 12002 | 22002
00111 | 21000 | 12000 | 00112 | 00121 | 00211 | 00221 | 00122 | 00222
01000 | 20111 | 02000 | 10112 | 10121 | 10211 | 20121 | 10122 | 10222
01001 | 20110 | 02001 | 01002 | 10120 | 10210 | 20120 | 02002 | 20220
10 || 01010 | 20101 | 02010 | 10102 | 01020 | 10201 | 20201 | 02020 | 20202
11 || 01011 | 20100 | 02011 | 01012 | 01021 | 10200 | 20200 | 02012 | 02022
12 || 01100 | 20011 | 02100 | 10012 | 10021 | 01200 | 20021 | 10022 | 20022
13 || 01101 | 20010 | 02101 | 01102 | 10020 | 01201 | 20020 | 02102 | 02202
14 || 01110 | 20001 | 02110 | 10002 | 01120 | 01210 | 01220 | 02120 | 02220
15 || 01111 | 20000 | 02111 | 01112 | 01121 | 01211 | 01221 | 02112 | 01222

OO N[O O | W | H D

we have thatAgM) = {1000}, A" = {0100}, A0 = IV. CONCLUSION

{0010}, Agl ) = {0001}. Whenu = 2, from Exampld®2 we | this paper, we proposed a coding scheme for two-page

haveA 2,4 {1100, 0110, 1010}, unrestricted-rate P-RIO code that each page may havedtiffer
Slncen is even, A4 = {0011, 1001,0101} and E®4 = code rates. Our coding scheme is constructive, and the code

{1110,1101,1011,0111}, from TheorenB, we havels,p = length is arbitrary. The sum rates of our proposed codes are

{0011,1001,0101,1110,1110,1101,1011,0111}. higher than those of conventional fixed-rate P-RIO codes in

Therefore, we haveA’ {A(O 4) A (1.4) A(1 9 A (1.4), [2.
A8 AR Ag b, From TheorerTEIBA and B prowde

(4,7, 8) P RIO code as shown in Table_VII. O _ ACKNOWLEDGEMENT .
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Whenu = 0 andu = 1, we haveA (0:5) {00000}, and
A = {00001}, A% = {00010}, A‘1 )" = {00100},
Agl % = {01000}, A" 5 _ = {10000}.

When v = 2, from Table (I, we haveA(2 %)
{10010, 10100, 10100} and A{** = {01010, 01001 00011}

Whenu = 3, we haveA #) = {00111,01110, 11100,
01011,10110,01101, 11010, 10011 11001, 10101}.

FinaIIy, we obtain the (5;9,16)—P—RIO code in Talle] VI.
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