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Two-Moment Inequalities for Rényi Entropy

and Mutual Information
Galen Reeves

Abstract—This paper explores some applications of a two-
moment inequality for the integral of the r-th power of a function,
where 0 < r < 1. The first contribution is an upper bound on the
Rényi entropy of a random vector in terms of the two different
moments. When one of the moments is the zeroth moment, these
bounds recover previous results based on maximum entropy
distributions under a single moment constraint. More generally,
evaluation of the bound with two carefully chosen nonzero
moments can lead to significant improvements with a modest
increase in complexity. The second contribution is a method for
upper bounding mutual information in terms of certain integrals
with respect to the variance of the conditional density. The bounds
have a number of useful properties arising from the connection
with variance decompositions.

Index Terms—Information Inequalities, Mutual Information,
Rényi Entropy.

I. INTRODUCTION

Measures of entropy and information play a central role

in applications throughout information theory, statistics, com-

puter science, and statistical physics. In many cases, there is

interest in understanding maximal properties of these measures

over a given family of distributions. One example is given

by the principle of maximum entropy, which originated in

statistical mechanics and was introduced in broader context

by Jaynes [1].

Entropy-moment inequalities can be used to describe prop-

erties of distributions characterized by moment constraints.

Perhaps the most well known entropy-moment inequality

follows from the fact that the Gaussian distribution maximizes

differential entropy over all distributions with the same vari-

ance [2, Theorem 8.6.5]. This inequality leads to remarkably

simple proofs for fundamental results in information theory

and estimation theory.

A variety of entropy-moment inequalities have also been

studied in the context of Rényi entropy [3]–[7], which is a

generalization of Shannon entropy. Recent work has focused

on the extremal distributions for the closely related Rényi

divergence [8]–[12].

Another line of work focuses on relationships between

measures of dissimilarity between probability distributions

provided by the family of f -divergences [13], [14], which

includes as special cases, the total variation distance, relative

entropy (or Kullback-Leibler divergence), Rényi divergence,
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and chi-square divergence. One application of these results

is to provide bounds for mutual information in terms of

divergence measures that dominate relative entropy, such as

the chi-square divergence; see e.g. [13], [15].

A. Overview of results

The starting point of our analysis (Proposition 2) is an

inequality for the integral of the r-th power of a function.

Specifically, for any numbers p, q, r with

0 < r < 1 and p <
1− r

r
< q,

the following inequality holds:

(∫
f r(x) dx

)1
r

≤ C

(∫
|x|pf(x) dx

)λ(∫
|x|qf(x) dx

)1−λ

,

for all non-negative functions f : R+ → R+ where C and

0 < λ < 1 are given explicitly in terms of the tuple (p, q, r).
An extension to functions defined on an arbitrary subset of Rn

is also provided (Proposition 3).

The remainder of the paper shows how this inequality can

be used to provide bounds on information measures such as

Rényi entropy and mutual information. Some useful properties

of the bounds include:

• Simplicity: Beyond the existence of a density, these

bounds do not require further regularity conditions such

as boundedness or sub-exponential tails. As a conse-

quence, these bounds can be applied under relatively mild

technical assumptions.

• Tightness: For some applications, the bounds can provide

an accurate characterization of the underlying information

measures. For example, a special case of Proposition 9 in

this paper played a key role in the author’s recent work

[16]–[18], where it was used to bound the relative entropy

between low-dimensional projections of a random vector

and a Gaussian approximation.

• Geometric Interpretation: Our bounds on the mutual

information between random variables X and Y can be

expressed in terms of the variance of the conditional

density of Y given X . Specifically, the bounds depend

on integrals of the form:
∫

‖y‖s Var(fY |X(y|X)) dy.

For s = 0, this integral is the expected squared L2

distance between the conditional density fY |X and the

marginal density fY .

The paper is organized as follows: Section II provides

integral inequalities for nonnegative functions; Section III

http://arxiv.org/abs/1702.07302v1
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gives bounds on Rényi entropy of orders less than one; and

Section IV provides bounds on mutual information.

II. MOMENT INEQUALITIES

Throughout this section, we assume that f is a real-valued

Lebesgue measurable function defined on a measurable subset

S of R
n. For any positive number p, the function ‖ · ‖p is

defined according to

‖f‖p =

(∫

S

|f(x)|p dx
) 1

p

.

Recall that for 0 < p < 1, the function ‖ · ‖p is not a norm

because it does not satisfy the triangle inequality. The s-th
moment of f is defined according to

µs(f) =

∫

S

‖x‖s f(x) dx,

where ‖ · ‖ denotes the standard Euclidean norm on vectors.

A. Multiple Moments

Consider the following optimization problem:

maximize ‖f‖r
subject to f(x) ≥ 0 for all x ∈ S

µsi(f) ≤ mi for 1 ≤ i ≤ k.

For r ∈ (0, 1) this is a convex optimization problem because

‖ · ‖rr is concave and the moment constraints are linear. By

standard theory in convex optimization (see e.g., [19]), it can

be shown that if the problem is feasible and the maximum is

finite, then the maximizer has the form

f∗(x) =

( k∑

i=1

ν∗i ‖x‖si
) 1

r−1

, for all x ∈ S.

The parameters ν∗1 , · · · , ν∗k are nonnegative and the i-th mo-

ment constraint holds with equality for all i such that ν∗i
is strictly positive, that is ν∗i > 0 =⇒ µsi(f

∗) = mi.

Consequently, the maximum can be expressed in terms of a

linear combination of the moments:

‖f∗‖rr = ‖(f∗)r‖1 = ‖f∗(f∗)r−1‖1 =

k∑

i=1

ν∗imi.

For the purposes of this paper, is it is useful to consider

a relative inequality in terms of the moments of the function

itself. Given a number 0 < r < 1 and vectors s ∈ R
k and

ν ∈ R
k
+ the function cr(ν, s) is defined according to

cr(ν, s) =

(∫ ∞

0

( k∑

i=1

νi x
si

)− r
1−r

dx

) 1−r
r

,

if the integral exists. Otherwise, cr(ν, s) is defined to be pos-

itive infinity. It can be verified that cr(ν, s) is finite provided

that there exists i, j such that νi and νj are strictly positive

and si < (1− r)/r < sj .

The following result can be viewed as a consequence of the

constrained optimization problem described above. We provide

a different and very simple proof that depends only on Hölder’s

inequality.

Proposition 1. Let f be a nonnegative Lebesgue measurable

function defined on the positive reals R+. For any number

0 < r < 1 and vectors s ∈ R
k and ν ∈ R

k
+, we have

‖f‖r ≤ cr(ν, s)

k∑

i=1

νi µsi(f).

Proof. Let g(x) =
∑k

i=1 νi x
si . Then, we have

‖f‖rr = ‖g−r(fg)r‖1
≤ ‖g−r‖ 1

1−r
‖(gf)r‖ 1

r

= ‖g −r
1−r ‖1−r

1 ‖gf‖r1

=

(
cr(ν, s)

k∑

i=1

νi µsi(f)

)r

,

where second step follows from Hölder’s inequality with

conjugate exponents 1/(1− r) and 1/r.

B. Two Moments

The next result follows from Proposition 1 for the case of

two moments.

Proposition 2. Let f be a nonnegative Lebesgue measureable

function defined on the positive reals R+. For any numbers

p, q, r with 0 < r < 1 and p < 1/r − 1 < q, we have

‖f‖r ≤ [ψr(p, q)]
1−r
r [µp(f)]

λ[µq(f)]
1−λ,

where λ = (q + 1− 1/r)/(q − p) and

ψr(p, q) =
1

(q − p)
B̃

(
rλ

1− r
,
r(1 − λ)

1− r

)
, (1)

where B̃(a, b) = B(a, b)(a+ b)a+ba−ab−b and B(a, b) is the

Beta function.

Proof. Letting s = (p, q) and ν = (γ1−λ, γ−λ) with λ > 0,

we have

[cr(ν, s)]
r

1−r =

∫ ∞

0

(
γ1−λ xp + γ−λ xq

)− r
1−r dx.

Making the change of variable x 7→ (γu)
1

q−p leads to

[cr(ν, s)]
r

1−r =
1

(q − p)

∫ ∞

0

ub−1

(1 + u)a+b
du =

B(a, b)

(q − p)
,

where a = r
1−rλ and b = r

1−r (1 − λ) and the second step

follows from the integral representation of the Beta function

[20, Eq. (1.1.19)]. Therefore, by Proposition 1, the inequality

‖f‖r ≤
(
B(a, b)

q − p

) 1−r
r (

γ1−λµp(f) + γ−λ µq(f)
)
,

holds for all γ > 0. Evaluating this inequality with

γ =
λµq(f)

(1− λ)µp(f)
,

leads to the stated result.
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The special case r = 1/2 admits the simplified expression

ψ1/2(p, q) =
πλ−λ(1− λ)−(1−λ)

(q − p) sin(πλ)
, (2)

where we have used Euler’s reflection formula for the Beta

function [20, Theorem 1.2.1].

Next, we consider an extension of Proposition 2 for func-

tions defined on R
n. Given any measurable subset S of R

n

we define

ω(S) = Vol(Bn ∩ cone(S)), (3)

where Bn = {u ∈ R
n : ‖u‖ ≤ 1} is the n-dimensional

Euclidean ball of radius one and

cone(S) = {x ∈ R
n : tx ∈ S for some t > 0}.

The function ω(S) is proportional to the surface measure of

the projection of S on the Euclidean sphere and satisfies

ω(S) ≤ ω(Rn) =
π

n
2

Γ(n2 + 1)
, (4)

for all S ⊆ R
n. Note that ω(R+) = 1 and ω(R) = 2.

Proposition 3. Let f be a nonnegative Lebesgue measurable

function defined on a subset S of Rn. For any numbers p, q, r
with 0 < r < 1 and p < 1/r − 1 < q, we have

‖f‖r ≤ [ω(S)ψr(p, q)]
1−r
r [µnp(f)]

λ[µnq(f)]
1−λ,

where λ = (q+1− 1/r)/(q− p) and ψr(p, q) is given by (1).

Proof. Let f be extended to R
n using the rule f(x) = 0 for

all x outside of S and let g : R+ → R+ be defined according

to

g(y) =
1

n

∫

Sn−1

f(y
1
nu) dσ(u),

where S
n−1 = {u ∈ R

n : ‖u‖ = 1} is the Euclidean sphere

of radius one and σ(u) is the surface measures of the sphere.

We will show that

‖f‖r ≤ (ω(S))
1−r
r ‖g‖r (5)

µns(f) = µs(g). (6)

Then, the stated inequality then follows from applying Propo-

sition 2 to the function g.

In order to prove (5), we begin with a transformation into

polar coordinates:

‖f‖rr =
∫ ∞

0

∫

Sn−1

|f(tu)|rtn−1 dσ(u) dt. (7)

Letting 1cone(S)(x) denote the indicator function of the set

cone(S), the integral over the sphere can be bounded using:
∫

Sn−1

|f(tu)|r dσ(u)

=

∫

Sn−1

1cone(S)(u) |f(tu)|r dσ(u)

(a)

≤
(∫

Sn−1

1cone(S)(u) dσ(u)

)1−r(∫

Sn−1

|f(tu)|dσ(u)
)r

(b)
= n (ω(S))

1−r
gr(tn). (8)

where: (a) follows from Hölder’s inequality with conjugate

exponents 1
1−r and 1

r ; and (b) follows from the definition of

g and the fact that

ω(S) =

∫ 1

0

∫

Sn−1

1cone(S)(u) t
n−1 dσ(u) dt

=
1

n

∫

Sn−1

1cone(S)(u) dσ(u).

Plugging (8) back into (7) and then making the change of

variables t→ y
1
n yields

‖f‖rr ≤ n (ω(S))
1−r

∫ ∞

0

gr(tn)tn−1 dt = (ω(S))
1−r‖g‖rr.

The proof of (6) follows along similar lines. We have

µns(f)
(a)
=

∫ ∞

0

∫

Sn−1

tnsf(tu) tn−1 dσ(u) dt

(b)
=

1

n

∫ ∞

0

∫

Sn−1

ysf(y
1
n u) dσ(u) dy

= µs(g)

where (a) follows from a transformation into polar coordinates

and (b) follows form the change of variable t 7→ y
1
n .

III. RÉNYI ENTROPY BOUNDS

Let X be a random vector that has a density f(x) with

respect to Lebesgue measure on R
n. The differential Rényi

entropy of order r ∈ (0, 1) ∪ (1,∞) is defined according to

[2]:

hr(X) =
1

1− r
log

(∫

Rn

f r(x) dx

)
.

The Rényi entropy is continuous and non-increasing in r. If

the support set S = {x ∈ R
n : f(x) > 0} has finite measure

then the limit as r converges to zero is given by h0(X) =
logVol(S). If the support does not have finite measure then

hr(X) increases to infinity as r decreases to zero. The case

r = 1 is given by the Shannon differential entropy:

h1(X) = −
∫

S

f(x) log f(x) dx.

Given a random variable X that is not identically zero and

numbers p, q, r with 0 < r < 1 and p < 1/r − 1 < q, we

define the function

Lr(X ; p, q) =
rλ

1− r
logE[|X |p] + r(1 − λ)

1− r
logE[|X |q],

where λ = (q + 1− 1/r)/(q − p).
The next result, which follows directly from Proposition 3,

provides an upper bound on the Rényi entropy.

Proposition 4. Let X be a random vector with a density on

R
n. For any numbers p, q, r with 0 < r < 1 and p < 1/r−1 <

q, the Rényi entropy satisfies

hr(X) ≤ logω(S) + logψr(p, q) + Lr(‖X‖n; p, q), (9)

where ω(S) is defined in (3) and ψr(p, q) is defined in (1).

Proof. This result follows immediately from Proposition 3 and

the definition of Rényi entropy.
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The relationship between Proposition 4 and previous results

depends on whether the moment p is equal to zero:

• One-moment inequalities: If p = 0 then there exists

a distribution such that (9) holds with equality. This

is because the zero-moment constraint ensures that the

function that maximizes the Rényi entropy integrates to

one. In this case, Proposition 4 is equivalent to previous

results that focused on distributions that maximize Rényi

entropy subject to a single moment constraint [3]–[5].

With some abuse of terminology we refer to these bounds

as one-moment inequalities1.

• Two-moment inequalities: If p 6= 0 then the right-hand

side of (9) corresponds to the Rényi entropy of a non-

negative function that might not integrate to one. Never-

theless, the expression provides an upper bound on the

Rényi entropy for any density with the same moments.

We refer to the bounds obtained using a general pair (p, q)
as two-moment inequalities.

The contribution of two-moment inequalities is that they

lead to tighter bounds. To quantify the tightness, we define

∆r(X ; p, q) to be the gap between the right-hand side and

left-hand side of (9) corresponding to the pair (p, q), that is

∆r(X ; p, q) = logω(S) + logψr(p, q)

+ Lr(‖X‖n; p, q)− hr(X).

The gaps corresponding to the optimal two-moment and one-

moment inequalities are defined according to:

∆r(X) = inf
p,q

∆r(p, q)

∆̃r(X) = inf
q
∆r(0, q).

A. Some consequences of these bounds

By Lyapunov’s inequality, the mapping s 7→ 1
s logE[|X |s]

is nondecreasing on [0,∞) and thus

Lr(X ; p, q) ≤ Lr(X ; 0, q) =
1

q
logE[|X |q], p ≥ 0. (10)

In other words, the case p = 0 provides an upper bound on

Lr(X ; p, q) for nonnegative p. Alternatively, we also have the

lower bound

Lr(X ; p, q) ≥ r

1− r
logE

[
|X | 1−r

r

]
, (11)

which follows from the convexity of logE[|X |s].
A useful property of Lr(X ; p, q) is that it is additive

with respect to the product of independent random variables.

Specifically, if X and Y are independent, then

Lr(XY ; p, q) = Lr(X ; p, q) + Lr(Y ; p, q). (12)

One consequence is that multiplication by a bounded random

variable cannot increase the Rényi entropy by an amount

that exceeds the gap of the two-moment inequality with

nonnegative moments.

1A more accurate name would be two-moment inequalities under the
constraint that one of the moments is the zeroth moment.

Proposition 5. Let Y be a random vector on R
n with finite

Rényi entropy of order 0 < r < 1, and let X be an independent

random variable that satisfies 0 < X ≤ t. Then,

hr(XY ) ≤ hr(tY ) + ∆r(Y ; p, q),

for all 0 < p < 1/r − 1 < q.

Proof. Let Z = XY and let SZ and SY denote the support

sets of Z and Y , respectively. The assumption that X is non-

negative means that cone(SZ) = cone(SY ). We have

hr(Z)
(a)

≤ logω(SZ) + logψr(p, q) + Lr(‖Z‖n; p, q)
(b)
= hr(Y ) + Lr(|X |n; p; q) + ∆r(Y ; p, q)

(c)

≤ hr(Y ) + n log t+∆r(Y ; p, q),

where: (a) follows from Proposition 4; (b) follows from (12)

and the definition of ∆r(Y ; p, q), and (c) follows from (10)

and the assumption |X | ≤ t. Finally, recalling that hr(tY ) =
hr(Y ) + n log t completes the proof.

B. Example with lognormal distribution

If W ∼ N (µ, σ2) then the random variable X = exp(W )
has a lognormal distribution with parameters (µ, σ2). The

Rényi entropy is given by

hr(X) = µ+
1

2

(
1− r

r

)
σ2 +

1

2
log(2πr

1
r−1 σ2),

and the logarithm of the s-th moment is given by

logE[|X |s] = µs +
1

2
σ2 s2.

With a bit of work, it can be shown that the gap of the optimal

two-moment inequality does not depend on the parameters

(µ, σ2) and is given by

∆r(X) = log

(
B̃

(
r

2(1− r)
,

r

2(1− r)

)√
r

4(1− r)

)

+
1

2
− 1

2
log(2πr

1
r−1 ). (13)

The details of this derivation are given in Appendix B-A.

Meanwhile, the gap of the optimal one-moment inequality is

given by

∆̃r(X) = inf
q

[
log

(
B̃

(
r

1− r
− 1

q
,
1

q

)
1

q

)
+

1

2
qσ2

]

− 1

2

(
1− r

r

)
σ2 − 1

2
log(2πr

1
r−1 σ2). (14)

The functions ∆r(X) and ∆̃r(X) are illustrated in Figure 1

as a function of r for various σ2. The function ∆r(X) is

bounded uniformly with respect to r and converges to zero as

r increases to one. The tightness of the two-moment inequality

in this regime follows from the fact that the lognormal

distribution maximizes Shannon entropy subject to a constraint

on E[logX ]. By contrast, the function ∆̃r(X) varies with the

parameter σ2. For any fixed r ∈ (0, 1), it can be shown that

∆̃r(X) increases to infinity if σ2 converges to zero or infinity.
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Fig. 1. Comparison of upper bounds on Rényi entropy for the lognormal
distribution as a function of the order r for various σ2 .
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1

∆r(Y )

∆̃r(Y )

∆r(X)

Fig. 2. Comparison of upper bounds on Rényi entropy for the multivariate
Gaussian distribution N (0, In) as a function of the dimension n with r = 0.1.
The solid black line is the gap of the optimal two-moment inequality for the
lognormal distribution.

C. Example with multivariate Gaussian distribution

Next, we consider the case where Y ∼ N (0, In) is an

n-dimensional Gaussian vector with mean zero and identity

covariance. The Rényi entropy is given by

hr(Y ) =
n

2
log(2πr

1
r−1 ),

and the s-th moment of the magnitude ‖X‖ is given by

E[‖Y ‖s] = 2
s
2Γ(n+s

2 )

Γ(n2 )
.

As the dimension n increases, it can be shown that the gap

of the optimal two-moment inequality converges to the gap for

the lognormal distribution. The proof of the following result

is given in Appendix B-C.

Proposition 6. If Y ∼ N (0, In) then,

lim
n→∞

∆r(Y ) = ∆r(X),

where X has a lognormal distribution.

The functions ∆r(Y ) and ∆̃r(Y ) are illustrated in Figure 2.

Both functions are increasing in the dimension n. However,

while ∆r(Y ) converges to a finite limit, ∆̃r(Y ) increases

without bound. For any fixed integer n, it can be shown that

both ∆r(Y ) and ∆̃r(Y ) converge to zero as r increases to

one. This behavior follows from the fact that the Gaussian

distribution is the maximum entropy distribution for Shannon

entropy under a second moment constraint.

D. Inequalities for differential entropy

Proposition 4 can also be used to recover some known

inequalities for differential entropy by considering the limiting

behavior as r converges to one. For example, it is well known

that the differential entropy of an n-dimensional random vector

X with finite second moment satisfies

h(X) ≤ 1

2
log
(
2πeE

[
1
n‖X‖2

])
, (15)

with equality if and only if the entries of X are i.i.d. zero-mean

Gaussian. A generalization of this result in terms an arbitrary

positive moment is given by

h(X) ≤ log
Γ
(
n
s + 1

)

Γ
(
n
2 + 1

) + n

2
log π +

n

s
log
(
esE

[
1
n‖X‖s

])
,

(16)

for all s > 0. Note that (15) corresponds to the case s = 2.

Inequality (16) can be proved as an immediate consequence

of Proposition 4 and the fact that hr(X) is non-increasing in

r. Using properties of the beta function given in Appendix A,

it is straightforward to verify that

lim
r→1

ψr(0, q) = (e q)
1
q Γ

(
1

q
+ 1

)
, for all q > 0.

Combining this result with Proposition 4 and (10) leads to

h(X) ≤ logω(S) + log Γ

(
1

q
+ 1

)
+

1

q
log(eqE[‖X‖nq]).

Using (4) and making the substitution s = nq leads to (16).

Another example follows from the fact that the lognormal

distribution maximizes the differential entropy of a positive

random variable X subject to constraints on the mean and

variance of log(X), and hence

h(X) ≤ E[log(X)] +
1

2
log(2πeVar(log(X))), (17)

with equality if and only if X is lognormal. In Appendix B-D,

it is shown how this inequality can be proved using our two-

moment inequalities, by studying the behavior as both p and

q converge to zero as r increases to one.

IV. MUTUAL INFORMATION BOUNDS

A. Relative entropy and chi-square divergence

Let P andQ be distributions defined on common probability

space that that have densities p and q with respect to a

dominated measure µ. The relative entropy (or Kullback–

Leibler) divergence is defined according to

D(P ‖Q) =

∫
p log

(
p

q

)
dµ,

and the chi-square divergence is defined according to,

χ2(P,Q) =

∫
(p− q)2

q
dµ.
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The chi-square divergence is equal to the squared L2

distance between the densities scaled densities p/
√
q and

√
q.

The chi-square can also be interpreted as the first non-zero

term in the power series expansion of the relative entropy [13,

Lemma 4]. More generally, the chi-square provides an upper

bound on the relative entropy, via

D(P ‖Q) ≤ log(1 + χ2(P,Q)). (18)

The proof of this inequality follows straightforwardly from

Jensen’s inequality and the concavity of the logarithm; see

e.g., [21, Theorem 5].

Given a random pair (X,Y ) the mutual information be-

tween X and Y is defined according to

I(X ;Y ) = D(PX,Y ‖PX × PY ).

From (18), we see the the mutual information can always be

upper bounded using

I(X ;Y ) ≤ log(1 + χ2(PX,Y , PX × PY )). (19)

The next section provides bounds on the mutual information

that can improve upon this inequality.

B. Mutual information and variance of conditional density

Let (X,Y ) be a random pair such that the conditional

distribution Y givenX has a density fY |X(y|x) with respect to

Lebesgue measure on R
n. Note that the marginal density of Y

is given by fY (y) = E
[
fY |X(y|X)

]
. To simplify notation, we

will write f(y|x) and f(y) where the subscripts are implicit.

The support set of Y denoted by SY .

The measure of the dependence between X and Y that is

used in our bounds can be understood in terms of the variance

of the conditional density. For each y, the conditional density

f(y|X) evaluated with a random realization of X is a random

variable. The variance of this random variable is given by

Var(f(y|X)) = E

[
(f(y|X)− f(y))

2
]
,

where we have used the fact that the marginal density f(y) is

the expectation of f(y|X). The s-th moment of the variance

of the conditional density is defined according to

Vs(Y |X) =

∫

SY

‖y‖s Var(f(y|X)) dy.

The function Vs(Y |X) is nonnegative and equal to zero if and

only if X and Y are independent.

For t ∈ (0, 1] the function κ(t) is defined according to

κ(t) = sup
u∈(0,∞)

log(1 + u)

ut
.

Properties of this function are given in Appendix C, where it

is shown that 1/(e t) < κ(t) ≤ 1/t with equality on the right

when t = 1.

We are now ready to give the main results of this section,

which are bounds on the mutual information. We begin with a

general upper bound in terms of the variance of the conditional

density.

Proposition 7. For any 0 < t ≤ 1, the mutual information

satisfies

I(X ;Y ) ≤ κ(t)

∫

SY

[f(y)]
1−2t

[Var(f(y |X))]
t
dy.

Proof. We use the following series of inequalities:

I(X ;Y )
(a)
=

∫
f(y)D

(
PX|Y =y

∥∥PX

)
dy

(b)

≤
∫
f(y) log

(
1 + χ2(PX|Y=y, PX)

)
dy

(c)
=

∫
f(y) log

(
1 +

Var(f(y |X))

f2(y)

)
dy

(d)

≤ κ(t)

∫
f(y)

(
Var(f(y |X))

f2(y)

)t

dy,

where: (a) follows from the definition of mutual information;

(b) follows from (18); and (c) follows from Bayes’ rule, which

allows us to write the chi-square in terms of the variance of

the conditional density:

χ2(PX|Y =y, PX) = E

[(
f(y|X)

f(y)
− 1

)2
]
=

Var(f(y|X))

f2(y)
.

Inequality (d) follows from the non-negativity of the variance

and the definition of κ(t).

Evaluating Proposition 7 with t = 1 recovers the well-

known inequality I(X ;Y ) ≤ χ2(PX,Y , PX × PY ). The next

two results follow from the cases 0 < t < 1/2 and t = 1/2,

respectively.

Proposition 8. For any 0 < r < 1, the mutual information

satisfies

I(X ;Y ) ≤ κ(t)
(
ehr(Y ) V0(Y |X)

)t
,

where t = (1 − r)/(2− r).

Proof. Starting with Proposition 7 and applying Hölder’s

inequality with conjugate exponents 1/(1 − t) and 1/t leads

to

I(X ;Y ) ≤ κ(t)

(∫
f r(y) dy

)1−t(∫
Var(f(y |X)) dy

)t

= κ(t) et hr(Y )V t
0 (Y |X),

where we have used the fact that r = (1− 2t)/(1− t).

Proposition 9. For any p < 1 < q, the mutual information

satisfies

I(X ;Y ) ≤ C(λ)

√
ω(SY )V λ

np(Y |X)V 1−λ
nq (Y |X)

(q − p)
,

where λ = (q − 1)/(q − p) and

C(λ) = κ(1/2)

√
πλ−λ(1− λ)−(1−λ)

sin(πλ)
.

Proof. Evaluating Proposition 7 with t = 1/2 gives

I(X ;Y ) ≤ κ(1/2)

∫

SY

√
Var(f(y |X)) dy.
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Evaluating Proposition 3 with r = 1/2 leads to

(∫

SY

√
Var(f(y |X)) dy

)2

≤ ω(SY )ψ1/2(p, q)V
λ
np(Y |X)V 1−λ

nq (Y |X).

Combining these inequalities with the expression for

ψ1/2(p, q) given in (2) completes the proof.

The contribution of Propositions 8 and 9 is that they provide

bounds on the mutual information in terms of quantities

that can be easy to characterize. One application of these

bounds is to establish conditions under which the mutual

information corresponding to a sequence of random pairs

(Xk, Yk) converges to zero. In this case, Proposition 8 provides

a sufficient condition in terms of the Rényi entropy of Yn
and the function V0(Yn|Xn), while Proposition 9 provides a

sufficient condition in terms of Vs(Yn|Xn) evaluated with two

difference values of s. These conditions are summarized in the

following result.

Proposition 10. Let (Xk, Yk) be a sequence of random pairs

such the conditional distribution Yk given Xk has a density

on R
n. The following are sufficient conditions under which

the mutual information of I(Xk;Yk) converges to zero as k
increases to infinity:

(i) There exists 0 < r < 1 such that

lim
k→∞

ehr(Yk)V0(Yk|Xk) = 0.

(ii) There exists p < 1 < q such that

lim
k→∞

V q−1
np (Yk|Xk)V

1−p
nq (Yk|Xk) = 0.

C. Properties of the bounds

The function Vs(Y |X) has a number of interesting proper-

ties. The variance of the conditional density can be expressed

in terms of an expectation with respect to two independent

random variables X1 and X2 with the same distribution as X
via the decomposition:

Var(f(y|X)) = E[f(y|X)f(y|X)− f(y|X1)f(y|X2)].

Consequently, by swapping the order of the integration and

expectation we obtain

Vs(Y |X) = E[Ks(X,X)−Ks(X1, X2)], (20)

where

Ks(x1, x2) =

∫
‖y‖sf(y|x1)f(y|x2) dy.

The function Ks(x1, x2) is a positive definite kernel that does

not depend on the distribution of X . For s = 0, this kernel

has been studied previously in the machine learning literature

[22], where it is referred to as the expected likelihood kernel.

The variance of the conditional density also satisfies a data-

processing inequality. Suppose that U → X → Y forms a

Markov chain. Then, the square of the conditional density of

Y given U can be expressed as

f2
Y |U (y|u) = E

[
fY |X(y|X ′

1)fY |X(y|X ′
2) |U = u

]
,

where (U,X ′
1, X

′
2) ∼ PUPX1|UPX2|U . Combining this expres-

sion with (20) yields

Vs(Y |U) = E[Ks(X
′
1, X

′
2)−Ks(X1, X2)], (21)

where we recall that (X1, X2) are independent copies of X.
Finally, it is easy to verify that the function Vs(Y ) satisfies

Vs(aY |X) = |a|s−nVs(Y |X), for all a 6= 0.

Using this scaling relationship we see that the sufficient

conditions in Proposition 10 are invariant to scaling of Y .

D. Example with Gaussian noise

We now provide a specific example of our bounds on the

mutual information. Let (X,Y ) be distributed according to

Y = X +W, (22)

were W ∼ N (0, 1) is independent of X . In this case, it is

well known that the mutual information satisfies

I(X ;Y ) ≤ 1

2
log(1 + Var(X)), (23)

where equality is attained is X is Gaussian. This inequality

follows straightforwardly from the fact that the Gaussian

distribution maximizes differential entropy subject to a second

moment constraint. One of the limitations of this bound is

that it can be loose when the second moment is dominated

by events that have small probability. In fact, it is easy to

construct examples for which X does not have a finite second

moment and yet I(X ;Y ) is arbitrarily close to zero.

Our results provide bounds on I(X ;Y ) that are significantly

less sensitive to the effects of rare events. To begin, observe

that the product of the conditional densities can be factored

according to

f(y|x1)f(y|x2) = φ

(√
2 y − x1 + x2√

2

)
φ

(
x1 − x2√

2

)
,

where φ(x) = (2π)−1/2 exp(−x2/2) is the density of the

standard Gaussian distribution. Integrating with respect to y
leads to

Ks(x1, x2) = 2−
1+s
2 E

[∣∣∣∣W +
x1 + x2√

2

∣∣∣∣
s]
φ

(
x1 − x2√

2

)
.

For the case s = 0, the function K0(x1, x2) is proportional

the standard Gaussian kernel and we have

V0(Y |X) =
1

2
√
π

[
1− E

[
e−

1
4
(X1−X2)

2
]]
.

This expression shows that V0(Y |X) is a measure of the

variation in X .

A useful property of V0(Y |X) is that the conditions under

which it converges to zero are weaker than the conditions

needed for other measures of variation, such that variance. To

see why, observe that the expectation is bounded uniformly

with respect to (X1, X2). In particular, for every ǫ > 0 and

x ∈ R, we have

1− E

[
e−

1
4
(X1−X2)

2
]
≤ ǫ2 + 2P[|X − x| ≥ ǫ],
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where we have used the inequality 1 − e−x ≤ x and the

fact that P[|X1 −X2| ≥ 2ǫ] ≤ 2P[|X − x| ≥ ǫ]. Therefore,

V0(Y |X) is small provided that X is close a constant value

with high probability.

To study some further properties of these bounds, we now

focus on the case where X is a Gaussian scalar mixture

generated according to

X = A
√
U, A ∼ N (0, 1), U ≥ 0, (24)

with A and U independent. In this case, the expectations with

respect to the kernel Ks(x1, x2) can be computed explicitly,

leading to

Vs(Y |X) =
Γ(1+s

2 )

2π
E

[
(1 + 2U)

s
2 − (1 + U1)

s
2 (1 + U2)

s
2

(1 + 1
2(U1 + U2))

s+1

2

]
.

It can be shown that this expression depends primarily on the

magnitude of U . This is not surprising given that X converges

to a constant if and only if U converges to zero.

Our results can also be used to bound the mutual informa-

tion I(U ;Y ) by noting that U → X → Y forms a Markov

chain, and taking advantage of the characterization provided in

(21). Letting X ′
1 = A1

√
U and X ′

2 = A2

√
U with (A1, A2, U)

mutually independent, leads to

Vs(Y |U) =
Γ(1+s

2 )

2π
E

[
(1 + U)

s−1

2 − (1 + U1)
s
2 (1 + U2)

s
2

(1 + 1
2(U1 + U2))

s+1

2

]
.

In this case, Vs(Y |U) is a measure of the variation in U . To

study it behavior, we consider the simple upper bound

Vs(Y |U) ≤ Γ(1+s
2 )

2π
P[U1 6= U2]E

[
(1 + U)

s−1

2

]
.

This bound shows that if s ≤ 1 then Vs(Y |U) is bounded

uniformly with respect to distributions on U , and if s > 1
then Vs(Y |U) is bounded in terms of the ( s−1

2 )-th moment of

U .

In conjunction with Propositions 8 and 9 the function

Vs(Y |U) provide bounds on the mutual information I(U ;Y )
that can be expressed in terms of simple expectations involving

two independent copies of U . Figure 3 provides an illustration

of the upper bound in Proposition 9 for the case where U is

a discrete random variable supported on two-points and X
and Y are generated according to (22) and (24). This example

shows that there exist sequences of distributions for which our

upper bounds on the mutual information converges to zero

while the chi-square divergence between PXY and PX × PY

is bounded away from zero.

V. CONCLUSION

This paper provides bounds on Rényi entropy and mutual

information that are based on a relatively simple two-moment

inequality. One of the main takeaways from our analysis is

that sometimes two carefully chosen moments are all that is

needed to provide an accurate characterization. Extensions to

inequalities with more moments are also worth exploring.

0 0.1 0.2 0.3 0.4 0.5

ǫ

0

0.2

0.4

0.6

0.8

1

Proposition 9chi-square divergence

upper bound (19)

I(X ;Y )

Fig. 3. Bounds on the mutual information I(U ;Y ) when U ∼ (1 − ǫ)δ1 +
ǫδ

a(ǫ), with a(ǫ) = 1+1/
√
ǫ, and X and Y are generated according to (22)

and (24). The bound from Proposition 9 is evaluated with p = 0 and q = 2.

APPENDIX A

THE GAMMA AND BETA FUNCTIONS

This section reviews some properties of the gamma and beta

functions. For x > 0, the gamma function is defined according

to Γ(x) =
∫∞

0
tx−1e−t dt. Binet’s formula the logarithm of

the gamma function [20, Theorem 1.6.3] gives

log Γ(x) =

(
x− 1

2

)
log x− x+

1

2
log(2π) + θ(x), (25)

where the remainder term θ(x) is convex and non-increasing

with limx→0 θ(x) = ∞ and limx→∞ θ(x) = 0. Euler’s

reflection formula [20, Theorem 1.2.1] gives

Γ(x)Γ(1 − x) =
π

sin(πx)
. (26)

For x, y > 0 the beta function is defined according to

B(x, y) = Γ(x)Γ(y)/Γ(x + y). The beta function can also

be expressed in integral form as [20, pg. 7]

B(x, y) =

∫ ∞

0

sx−1

(1 + s)x+y
ds. (27)

Recall that B̃(x, y) = B(x, y)(x + y)x+yx−xy−y. Using (25)

leads to

log

(
B̃(x, y)

√
x y

2π(x+y)

)
= θ(x) + θ(y)− θ(x+ y). (28)

It can also be shown that [23, Equation (2) pg. 2]

B̃(x, y) ≥ x+ y

xy
. (29)

APPENDIX B

DETAILS FOR RÉNYI ENTROPY EXAMPLES

This appendix studies properties of the two-moment inequal-

ities for Rényi entropy described in Section III.

A. Lognormal distribution

Let X be a lognormal random variable with parameters

(µ, σ2) and consider the parametrization

p =
1− r

r
− (1− λ)

√
(1 − r)u

rλ(1 − λ)

q =
1− r

r
+ λ

√
(1− r)u

rλ(1 − λ)
.
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where λ ∈ (0, 1) and u ∈ (0,∞). Then, we have

ψr(p, q) = B̃

(
rλ

1− r
,
r(1 − λ)

1− r

)√
rλ(1 − λ)

(1− r)u

Lr(X ; p, q) = µ+
1

2

(
1− r

r

)
σ2 +

1

2
uσ2.

Combining these expressions with (28) leads to

∆r(X ; p, q) = θ
( rλ

1−r
)
+ θ
(r(1−λ)

1− r

)
− θ
( r

1−r
)

+
1

2
uσ2 − 1

2
log
(
uσ2

)
− 1

2
log(r

1
r−1 ). (30)

We now characterize the minimum with respect to the

parameters (λ, u). Note that the mapping λ 7→ θ( rλ
1−r ) +

θ( r(1−λ)
1−r ) is convex and symmetric about the point λ = 1/2.

Therefore, the minimum with respect to λ is attained at

λ = 1/2. Meanwhile, mapping u 7→ uσ2− log(uσ2) is convex

and attains it minimum at u = 1/σ2. Evaluating (30) with

these values, we see that the optimal two-moment inequality

can be expressed as

∆r(X) = 2θ

(
r

2(1− r)

)
− θ

(
r

1− r

)
+

1

2
log
(
e r

1
1−r

)
.

By (28), this expression is equivalent to (25). Moreover, the

fact that ∆r(X) decreases to zero as r increases to one follows

from the fact that θ(x) decreases to zero and x increases to

infinity.

Next, we express gap in terms of the pair (p, q). Comparing

the difference between ∆r(X ; p, q) and ∆r(X) leads to

∆r(X ; p, q) = ∆r(X) +
1

2
ϕ

(
rλ(1 − λ)

1− r
(q − p)2σ2

)

+ θ
( rλ

1−r
)
+ θ
(r(1−λ)

1− r

)
− 2θ

( r

2(1−r)
)
,

where ϕ(x) = x− log(x)− 1. In particular, if p = 0, then we

obtain the simplified expression

∆r(X ; 0, q) = ∆r(X) +
1

2
ϕ

((
q − 1− r

r

)
σ2

)

+ θ
( r

1− r
− 1

q

)
+ θ
(1
q

)
− 2θ

( r

2(1−r)
)
.

This characterization shows that the gap of the optimal one-

moment inequality ∆̃r(X) increases to infinity in the limit as

either σ2 → 0 or σ2 → ∞.

B. Multivariate Gaussian distribution

Let Y ∼ N (0, In) is an n-dimensional Gaussian vector and

consider the parametrization

p =
1− r

r
− 1− λ

r

√
2(1− r) z

λ(1− λ)n

q =
1− r

r
+
λ

r

√
2(1− r) z

λ(1− λ)n
.

where λ ∈ (0, 1) and z ∈ (0,∞). The, we have

logω(SY ) =
n

2
log π − log

(n
2

)
− log Γ

(n
2

)

ψr(p, q) = B̃

(
rλ

1− r
,
r(1 − λ)

1− r

)√
rλ(1 − λ)

(1− r)

√
nr

2z
.

Furthermore, if

(1− λ)

√
2(1− r)z

λ(1− λ)n
< 1, (31)

then Lr(‖Y ‖n; p, q) is finite and is given by

Lr(‖Y ‖n; p, q) = Qr,n(λ, z) +
n

2
log 2

+
r

1− r

[
log Γ

( n
2r

)
− log Γ

(n
2

)]
,

where

Qr,n(λ, z) =
rλ

1− r
log Γ

(
n

2r
− 1− λ

r

√
(1− r)nz

2λ(1− λ)

)

+
r(1 − λ)

1− r
log Γ

(
n

2r
+
λ

r

√
(1 − r)nz

2λ(1 − λ)

)

− r

1− r
log Γ

( n
2r

)
. (32)

Combining these expressions and then using (25) and (28)

leads to

∆r(Y ; p, q) = θ
( rλ

1−r
)
+ θ
(r(1−λ)

1− r

)
− θ
( r

1−r
)

+Qr,n(z, λ)−
1

2
log z − 1

2
log
(
r

1
r−1

)

+
r

1− r
θ
( n
2r

)
− 1

1− r
θ
(n
2

)
. (33)

Next, we study some properties of Qr,n(λ, z). The decom-

missions (25) shows that the logarithm of the gamma function

can expressed as the sum of convex functions:

log Γ(x) = ϕ(x) +
1

2
log

(
1

x

)
+

1

2
log(2π)− 1 + θ(x),

where ϕ(x) = x log x+ 1− x. Starting with the definition of

Q(λ, z) and then using Jensen’s inequality yields

Qr,n(z, λ)

≥ rλ

1− r
ϕ

(
n

2r
− 1− λ

r

√
(1 − r)nz

2λ(1− λ)

)

+
r(1 − λ)

1− r
ϕ

(
n

2r
+
λ

r

√
(1− r)nz

2λ(1− λ)

)
− r

1− r
ϕ
( n
2r

)

=
λ

a
ϕ

(
1−

√(
1−λ
λ

)
az

)
+

(1−λ)
a

ϕ

(
1 +

√(
λ

1−λ

)
az

)
,

where a = 2(1−r)/n. Using the inequality ϕ(x) ≥ (3/2)(x−
1)2/(x+ 2) leads to

Qr,n(λ, z) ≥
z

2

[(
1−

√(
1−λ
λ

)
bz

)(
1 +

√(
λ

1−λ

)
bz

)]−1

≥ z

2

(
1 +

√(
λ

1−λ

)
b z

)−1

, (34)
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where b = 2(1− r)/(9n).
Observe that the right-hand side of (34) converges to z/2

as n increases to infinity. It turns out this limiting behavior is

tight. Using (25), it is straightforward to show that Qn(λ, z)
converges pointwise to z/2 as n increases to infinity, that is

lim
n→∞

Qr,n(λ, z) =
1

2
z. (35)

for any fixed pair (λ, z) ∈ (0, 1)× (0,∞).

C. Proof of Proposition 6

Let D = (0, 1) × (0,∞). For fixed r ∈ (0, 1) we use

Qn(λ, z) to denote the function Qr,n(λ, z) defined in (32) and

we use Gn(λ, z) to denote the right-hand side of (33). These

functions are defined to be equal to positive infinity for any

pair (λ, z) ∈ D such that (31) does not hold.

Note that the terms θ(n/(2r)) and θ(n/2) converge to zero

in the limit as n increases to infinity. In conjunction with (35),

this shows that Gn(λ, z) converges pointwise to a limit G(λ, z)
given by

G(λ, z) = θ
( rλ

1−r
)
+ θ
(r(1−λ)

1− r

)
− θ
( r

1−r
)

+
1

2
z − 1

2
log(z)− 1

2
log(r

1
r−1 ).

At this point, the correspondence with the lognormal distribu-

tion can be seen from the fact that G(λ, z) is equal to the

right-hand side of (30) evaluated with uσ2 = z.

To show that the gap corresponding to the lognormal

distribution provides an upper bound on the limit, we use

lim sup
n→∞

∆r(Y ) = lim sup
n→∞

inf
(λ,z)∈D

Gn(λ, z)

≤ inf
(λ,z)∈D

lim sup
n→∞

Gn(λ, z)

= inf
(λ,z)∈D

G(λ, z)

= ∆r(X). (36)

Here, the last equality follows from the analysis in Ap-

pendix B-A, which shows that the minimum of G(λ, z) is

a attained at λ = 1/2 and z = 1.

To prove the lower bound requires a bit more work. Fix any

ǫ ∈ (0, 1) and let Dǫ = (0, 1 − ǫ] × (0,∞). Using the lower

bound on Qn(λ, z) given in (34), it can be verified that

lim inf
n→∞

inf
(λ,z)∈Dǫ

[
Qr,n(z, λ)−

1

2
log z

]
≥ 1

2
.

Consequently, we have

lim inf
n→∞

inf
(λ,z)∈Dǫ

Gn(λ, z) = inf
(λ,z)∈Dǫ

G(λ, z) ≥ ∆r(X). (37)

To complete the proof we will show that for any sequence λn
that converges to one as n increases to infinity, we have

lim inf
n→∞

inf
z∈(0,∞)

Gn(λn, z) = ∞. (38)

To see why this is the case, note that by (28) and (29),

θ
(

rλ
1−r

)
+ θ
( r(1−λ)

1−r

)
− θ
(

r
1−r

)
≥ 1

2
log
( 1− r

2πrλ(1−λ)
)
.

Therefore, we can write

Gn(λ, z) ≥ Qn(λ, z)−
1

2
log(λ(1− λ)z) + cn, (39)

where cn is bounded uniformly for all n. Making the substi-

tution u = λ(1 − λ)z, we obtain

inf
z>0

Gn(λ, z) ≥ inf
u>0

[
Qn

(
λ,

u

λ(1− λ)

)
− 1

2
log u

]
+ cn.

Next, let bn = 2(1− r)/(9n). The lower bound in (34) leads

to

inf
u>0

[
Qn

(
λ,

u

λ(1− λ)

)
− 1

2
log u

]

≥ inf
u>0

[
u

2λ

(
1

1− λ+
√
bnu

)
− 1

2
log u

]
. (40)

The limiting behavior in (38) can now be seen as a conse-

quence of (39) and the fact that, for any sequence λn converg-

ing to one, the right-hand side (40) increases without bound

as n increases. Combining (36), (37), and (38) establishes that

the large n limit of ∆r(Y ) exists and is equal to ∆r(X). This

concludes the proof of Proposition 6

D. Proof of Inequality (17)

Given any λ ∈ (0, 1) and u ∈ (0,∞) let

p(r) =
1− r

r
−
√

1− r

r

(
1− λ

λ

)
u

q(r) =
1− r

r
+

√
1− r

r

(
λ

1− λ

)
u.

We need the following results, which characterize the terms in

Proposition 4 in the limit as r increases to one.

Lemma 11. The function ψr(p(r), q(r)) satisfies

lim
r→1

ψr(p(r), q(r)) =

√
2π

u

Proof. Starting with (28), we can write

ψr(p, q) =
1

q − p

√
2π(1− r)

rλ(1 − λ

× exp

(
θ
( rλ

1−r
)
+ θ
(r(1−λ)

1− r

)
− θ
( r

1−r
))

.

As r converges to one the terms in the exponent converge

to zero. Noting that q(r) − p(r) =
√
rλ(1 − λ)/(1 − r)

completes the proof.

Lemma 12. If X is a random variable such that s 7→ E[|X‖s]
is finite in a neighborhood of zero, then E[log(X)] and

Var(log(X)) are finite, and

lim
r→1

Lr(X ; p(r), q(r)) = E[log |X |] + u

2
Var(log |X |).

Proof. Let Λ(s) = log(E[|X |s]). The assumption that E[|X |s]
is finite in a neighborhood of zero means that E[(log |X |)m]
is finite for all positive integers m that Λ(s) is real-analytic



11

in a neighborhood of zero, that is there exists constants δ > 0
and C <∞, depending on X , such that

∣∣Λ(s)− as+ bs2
∣∣ ≤ C |s|3, for all |s| ≤ δ,

where a = E[log |X |] and b = 1
2 Var(|X |). Consequently, for

all r such that 1 − δ < p(r) < (1 − r)/r < q(r) < 1 + δ, it

follows that

∣∣Lr(X ; p(r), q(r)) − a−
(
1−r
r + u

)
b
∣∣

≤ C
r

1− r

(
λ|p(r)|3 + (1 − λ)|q(r)|3

)
.

Taking the limit as r increases to one completes the proof.

We are now ready to prove Inequality (17). Combining

Proposition 4 with Lemma 11 and Lemma 12 yields

lim sup
r→∞

hr(X) ≤ 1

2
log

(
2π

u

)
+ E[logX ] +

u

2
Var(logX).

The stated inequality follows from evaluating the right-hand

side with u = 1/Var(logX) and recalling that h(X) corre-

sponds to the limit of hr(X) as r increases to one.

APPENDIX C

PROPERTIES OF LOGARITHM-POWER RATIO

This section studies properties of the function κ : (0, 1] →
R+ defined by

κ(t) = sup
u∈(0,∞)

log(1 + u)

ut
. (41)

For t = 1, the bound log(1 + u) ≤ u means that κ(1) ≤ 1.

Noting limu→0 log(1+ u)/u = 1 shows that this inequality is

tight, and thus κ(1) = 1. For any t ∈ (0, 1), it can be verified

via differentiation that the supremum is attained on (0,∞) by

the unique solution u∗t to the fixed-point equation

u = t(1 + u) log(1 + u). (42)

The solution to this equation can be expressed as

u∗t = exp
(
W
(
− 1

t exp
(
− 1

t

))
+ 1

t

)
− 1,

where Lambert’s function W (z) is the solution to the equation

z = x exp(x) on the interval on [−1,∞).

Lemma 13. The function g(t) = tκ(t) is nondecreasing on

(0, 1] with limt→0 g(t) = 1/e and g(1) = 1.

Proof. The fact that g(1) = 1 follows from κ(1) = 1. By the

envelope theorem [24], the derivative of g(t) can be expressed

as

g′(t) =

(
1

t
− log(u∗t )

)
g(t).

Therefore, the derivative satisfies

g′(t) ≥ 0 ⇐⇒ 1

t
− log(u∗t ) ≥ 0

⇐⇒ (1 + u∗t ) log(1 + u∗t )

u∗t
− log(u∗t ) > 0

⇐⇒ (1 + u∗t ) log(1 + u∗t ) ≥ u∗t log(u
∗
t ).

Noting that u 7→ u log u is negative on (0, 1) and nonnegative

and nondecreasing on [1,∞) shows that the last condition is

always satisfied, and hence g′(t) is nonnegative.

To prove the small t limit we can rearrange (42) to see that

u∗t satisfies
u∗t

(1 + u∗t ) log(1 + u∗t )
= t, (43)

and hence

log(g(t)) = log

(
u∗t

1 + u∗t

)
− u∗t log u

∗
t

(1 + u∗t ) log(1 + u∗t )
. (44)

Now, as t decreases to zero, (43) shows that u∗t increases to

infinity. By (44), it then follows that log(g(t)) converges to

negative one, which proves the desired limit.
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