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Abstract—The Cadambe-Mazumdar bound gives a necessary
condition for a code to have a certain locality in case of a single
erasure in terms of length, dimension, and Hamming distance
of the code and of certain shortened codes. The bound has been
generalized by Rawat, Mazumdar, and Vishwanath to recover
multiple erasures in a cooperative repair scenario. In this paper,
the generalized Hamming weights of the code and its shortened
codes, which include the Hamming distance as one component,
are incorporated to obtain bounds on locality to recover a single
erasure or multiple erasures cooperatively. The new bounds give
sharper necessary conditions than existing bounds.

I. INTRODUCTION

A. Background

In cloud storage, data is stored on multiple nodes at

geographically different locations. The effects of localized

disruption of service can be effectively mitigated if the system

has the ability to recover the data stored at a failed node by

accessing other nodes that form a repair set for the failed

node. In order to achieve this, coding is employed where

data stored at a failed node is considered as an erasure in

coding-theoretic terminology. The ability of a code to recover

from node failures is measured by the well-known concept

of Hamming distance. Inevitably coding introduces storage

overhead to store redundant data and transmission overhead

to exchange information between nodes in order to recover

the lost data. Storage overhead is measured in terms of

redundancy, a classical coding-theoretic concept. As a measure

of transmission overhead, Gopalan et al. [2] introduced the

new concept of locality, which is the number of nodes that

need to be accessed in the repair process. In particular, a code

has r-locality if the data stored at any given node can be
recovered by accessing at most r other nodes, i.e., each node
has a repair set of size at most r.
The above concept of locality assumes that only one node

fails. This guarantees that all nodes in a repair set of a failed

node are reliable. However, based on practical considerations,

it is natural to address the case of more than one failed node.

One approach proposes having multiple disjoint repair sets,

each of size at most r. In particular, if each node has e disjoint
repair sets and if the total number of failed nodes in the system

is at most e, then each failed node has at least one repair set
that does not contain any failed nodes. In this case, the code is

said to have availability [9]. Another approach proposed in [7]

associates to each node a set of at most r + e− 1 other nodes
such that if the node fails and up to e − 1 nodes in the set

also fail, the remaining nodes in the set form a repair set for

the node associated with the set. In the above two approaches,

repairing e failed nodes may require accessing data from er
nodes as each failed node may require accessing r nodes to
repair it.

To keep the number of accessed nodes from growing lin-

early with e, Rawat, Mazumdar, and Vishwanath [8] proposed
a third approach in which each set of e nodes is assigned
a disjoint repair set of at most r nodes, called cooperative
repair set. If up to e nodes fail, then a repair set associated
with the failing nodes can be used to recover the data stored

at the e failed nodes. In this approach, the e failed nodes are
not repaired independently as in the previous two approaches

where r nodes are involved in the repair process of each
failing node, but rather collectively as r nodes are involved
in the repair process of all the failed nodes. Therefore, a code

achieving this requirement is said to have (r, e)-cooperative
locality. For each one of the three approaches, considerable

literature is devoted to both the study of bounds on the

code’s length, redundancy, Hamming distance, locality, and the

number of failed nodes allowed, as well as the construction of

codes that are optimal in the sense of achieving these bounds.

In case e = 1, these three approaches reduce to the concept
of r-locality as proposed in [2].
In this paper, we consider bounds on linear codes with

(r, e)-cooperative locality as proposed in [8], including the
special case in which e = 1. Our approach is based on the
concept of generalized Hamming weights, proposed by Wei

[10] as a generalization of Hamming distance of a linear code.

This allows us to generalize many known bounds on such

codes leading to bounds which, for some code parameters,

improve upon the tightest bounds known in the literature.

The concept of generalized Hamming weights has been used

already in [7] to bound locality but not in the cooperative

scenario. Furthermore, even in the common case of e = 1,
our approach and results are different from [7].

B. Known Bounds

A fundamental inequality relating the parameters of any

linear code over Fq of length n, dimension k, and Hamming
distance d, i.e., an [n, k, d]q linear code, with r-locality in case
of a single erasure was derived in [2] and states that

d ≤ n − k −

⌈

k

r

⌉

+ 2. (1)



Notice that this implies the Singleton bound

d ≤ n − k + 1 (2)

and suggests that there is a price to be paid in terms of

Hamming distance for being able to correct a single erasure

with small locality. Also, (1) implies that

k ≤
r

r + 1
n. (3)

A much stronger bound on k, due to Cadambe and Mazumdar
[1], states that

k ≤ min
1≤t≤⌊ k−1

r
⌋

{

tr + kopt[n − t(1 + r), d]q
}

, (4)

where kopt[n, d]q denotes the maximum dimension, k, of
an [n, k, d]q linear code

∗. By setting t to ⌈k/r⌉ − 1 in the
Cadambe-Mazumdar (CM)-bound (4) and bounding kopt[n−
t(r + 1), d]q by n− t(r + 1)− d + 1 based on (2), the bound
(1) follows.
For (r, e)-cooperative repair, Rawat, Mazumdar, and Vish-
wanath [8] generalized the bounds (1), (3), and (4) as

d ≤ n − k − e

⌈

k

r

⌉

+ e + 1, (5)

k ≤
r

r + e
n, (6)

and

k ≤ min
1≤t≤⌊(k−1)/r⌋

{tr + kopt[n − t(e + r), d)]q}. (7)

C. Our Contributions

Our main result is Theorem 2 which bounds the parameters

of any linear code over Fq of length n, dimension k, and κth-

generalized Hamming weight dκ that has (r, e)-cooperative
locality. In particular, we show that for 1 ≤ κ ≤ k − r,

k ≤ min
1≤t≤⌊(k−κ)/r⌋

{tr + kopt
κ [n − t(e + r), dκ)]q}.

Here kopt
κ [n, dκ]q denotes the maximum dimension, k, of a

linear code of length n over Fq with κth-generalized Hamming

weight equal to dκ. Notice that by setting κ = 1, we obtain
(7) as d1 equals the Hamming distance, d, of the code. We
also show that

dκ ≤ n − k − e

⌈

k − κ + 1

r

⌉

+ e + κ.

Again by setting κ = 1, we obtain (5). We also prove that

d ≤
qκ − qκ−1

qκ − 1

(

n − k − e

⌈

k − κ + 1

r

⌉

+ e + κ

)

for 1 ≤ κ ≤ k − r. This gives a new condition derived from
the generalized Hamming weights that does not involve any

of them except for the Hamming distance.
The rest of this paper is organized as follows. Section II

derives basic results on cooperative repair sets leading to the

new bounds presented in Section III. The paper is concluded

in Section IV.

∗The Cadambe-Mazumdar bound holds also for nonlinear codes. However,
here we restrict it to linear codes.

II. COOPERATIVE REPAIR SETS

We are interested in the use of an [n, k, d]q linear code, C,
for repairing erasures, i.e., retrieving symbols erased during

transmission. Suppose that a codeword c = (c1, c2, . . . , cn) is
transmitted and, due to failures, symbols with indices in a set

E ⊆ {1, 2, . . . , n} are erased. Then, the codeword c becomes

the word v = (v1, v2, . . . , vn), where vi =? for i ∈ E and
vi = ci for i 6∈ E . Here ? denotes an erasure and E is called
an erasure set. From v, we would like to retrieve the codeword

c, i.e., repair all the erased symbols. This is possible if and

only if c is the only codeword in the code that agrees with

v in all its unerased symbols, i.e., symbols with indices in

Ē = {1, 2, . . . , n}\E . In this case, it is possible to retrieve the
erased symbols with indices in E by examining the symbols
with indices in Ē . However, it may be sufficient to examine
only symbols with indices in a subset of Ē to retrieve all the
erased symbols with indices in E . Let R ⊆ Ē be a set of
indices such that the erased symbols vi, for all i ∈ E , can be
repaired using the unerased symbols vi, i ∈ R. Then, we say
thatR is a cooperative repair set for the set E . This is the case
if and only if all codewords that agree on symbols indexed by

R also agree on symbols indexed by E . By linearity of C, this
is the same as saying that every codeword in C which is zero
on R is also zero on E . Since we only consider linear codes in
this paper, it is convenient to take this criterion as a definition

of cooperative repair sets.

Definition 1. Let C be an [n, k, d]q linear code. The set R ⊆
{1, 2, . . . , n} is a cooperative repair set for a set E , disjoint
from R, if every codeword in C which is zero on R is also
zero on E .

In general, a set may have more than one cooperative repair

set. In practice, for a given set, it is desirable to specify a

cooperative repair set of smallest size. From Definition 1, it

follows that if R is a cooperative repair set for E , then any
superset of R disjoint from E is also a cooperative repair set
for E . Also, if R is a cooperative repair set for the set E , then
it is a cooperative repair set for any subset E ′ ⊆ E .
Recall that the support of a vector (c1, c2, . . . , cn) is the
set {i : 1 ≤ i ≤ n, ci 6= 0}. Then, from the definition,
it follows that a necessary and sufficient condition for a

nonempty set E to have a cooperative repair set is that it does
not contain the support of a nonzero codeword in C. Based on
this condition, we conclude that for the [n, k, d]q linear code,
C, every nonempty subset of {1, 2, . . . , n} of size less than d
has a cooperative repair set, there is at least one subset of size

d that has no repair set, and every subset of size greater than
n − k has no repair set.
The following lemma gives a necessary and sufficient con-

dition for a set R to be a cooperative repair set for a set E in
terms of a generator matrix of a code.

Lemma 1. Let C be an [n, k, d]q linear code with generator
matrix G. The set R ⊆ {1, 2, . . . , n} is a cooperative repair
set for the nonempty set E ⊆ {1, 2, . . . , n} disjoint from R if
and only if every column in G indexed by E is in the space



spanned by the columns in G indexed by R.

Proof. From the definition, R is a cooperative repair set for
E if and only if for every vector u = (u1, u2, . . . , uk) over
Fq for which the components of uG indexed by R are zeros,
the components of uG indexed by E are also zeros. This is
the same as saying that every vector u in the null space of the

columns in G indexed by R is orthogonal to every column in
G indexed by an element in E . This is the case if and only
if the space spanned by the columns indexed by R contains
every column of G indexed by an element in E . �

Since G has at most k linearly independent columns, if a
nonempty set E ⊆ {1, 2, . . . , n} has a cooperative repair set
R of size greater than k, then there is a subset of R of size
not greater than k which is a cooperative repair set for E .

Lemma 1 gives a characterization of cooperative repair

sets in terms of generator matrices. The next lemma gives

a characterization in terms of parity-check matrices. Let C⊥

be the dual code of C, i.e., the vector space composed of all
vectors over Fq orthogonal to every codeword in C.

Lemma 2. Let C be an [n, k, d]q linear code. The set R ⊆
{1, 2, . . . , n} is a cooperative repair set for the nonempty set
E ⊆ {1, 2, . . . , n} disjoint from R if and only if there are
|E| vectors xi = (xi,1, xi,2, . . . , xi,n), i ∈ E , in C⊥ such that

for each i ∈ E , xi,i = 1 and xi,j = 0 for j 6∈ R ∪ {i}.
Hence, R ⊆ {1, 2, . . . , n} is a cooperative repair set for the
set E ⊆ {1, 2, . . . , n} disjoint from R if and only if C has a
parity-check matrix that includes xi, i ∈ E , as rows.

Proof. From Lemma 1, R is a cooperative repair set for E if
and only if every column in G indexed by i ∈ E is a linear
combination of the columns indexed by R. This is the case if
and only if for every index i ∈ E , there is such a vector xi in

C⊥. �

Next, we define the cooperative locality of a code.

Definition 2. An [n, k, d]q linear code C has (r, e)-cooperative
locality, where 1 ≤ e < d, if every set E of size e has a
cooperative repair set of size r or less.

Example 1. We consider the [2m − 1, 2m − m − 1, 3]2
Hamming code. Any parity-check matrix of the code is of size

m× (2m − 1), the columns of which are the 2m − 1 nonzero
vectors of length m. It follows that each row has weight
2m−1. From Lemma 2, a set R ⊆ {1, 2, . . . , 2m − 1}\{i}
is a cooperative repair set for {i}, where 1 ≤ i < 2m, if and

only if there is such a row, xi = (xi,1, xi,2, . . . , xi,2m−1), for
which xi,i = 1 and xi,j = 0 for all j 6∈ R ∪ {i}. Hence, the
smallest value of r such that the code has (r, 1)-cooperative
locality is r = 2m−1 − 1. (Notice that this result is derived in
[5] for cyclic Hamming codes.) Furthermore, from Lemma 2,

a set R ⊆ {1, 2, . . . , 2m − 1}\{i1, i2} is a cooperative repair
set for {i1, i2}, where 1 ≤ i1 < i2 < 2m, if and only

if there are two rows xi1 = (xi1,1, xi1,2, . . . , xi1,2m−1) and
xi2 = (xi2,1, xi2,2, . . . , xi2,2m−1) in a parity-check matrix of
the code for which xi1,i1 = xi2,i2 = 1, xi1,i2 = xi2,i1 = 0,
and xi1,j = xi2,j = 0 for all j 6∈ R ∪ {i1, i2}. Since the sum

of any two rows of weight 2m−1 in the parity-check matrix is

a vector of the same weight, it follows that xi1,j = xi2,j = 0
for exactly 2m−2 − 1 values of j, 1 ≤ j < 2m. Hence, the

smallest value of r such that the code has (r, 2)-cooperative
locality is r = (2m − 1)− 2− (2m−2− 1) = 3× 2m−2− 2. �

In general, finding for each e the smallest r for which a
given code has (r, e)-cooperative locality can be difficult. In
the next section we give lower bounds on such r.

III. BOUNDS USING GENERALIZED HAMMING WEIGHTS

In the following, we give a generalization and a strength-

ening of the bounds (1), (4), (5), and (7) using generalized

Hamming weights.

Recall that the support, χ(C), of a code C is the set of
not-always-zero symbol positions, i.e.,

χ(C) = {i : ∃ (c1, c2, . . . , cn) ∈ C, ci 6= 0}.

For 1 ≤ κ ≤ k, the κth generalized Hamming weight, dκ(C),
of an [n, k, d]q linear code C is the size of a smallest support
of a κ-dimensional linear subspace of C, i.e.,

dκ(C) = min{|χ(D)| :D is a linear subcode of C

of dimension κ}.

In particular, d1(C) equals the Hamming distance, d, of the
linear code. In [10], Wei studied the generalized Hamming

weights of linear codes and has shown that they obey a

generalized Singleton bound [10, Corollary 1] given by

dκ(C) ≤ n − k + κ. (8)

We start with the following result.

Theorem 1. For an [n, k, d]q linear code C with (r, e)-
cooperative locality, where 1 ≤ e < d, we have

r ≥ de(C
⊥) − e.

Proof. Let E ⊆ {1, 2, . . . , n} be a set of size e with a repair set
R of size at most r. From Lemma 2, the space spanned by the
vectors xi, i ∈ E , which are linearly independent, is a subcode
of C⊥ of dimension e with support in E ∪ R of size at most
e+r. According to the definition of the generalized Hamming
weight, the size of this support gives an upper bound on the

eth generalized Hamming weight, de(C
⊥), of C⊥. �

Example 2. It follows from [10, Corollary 3] that the dual

code, C⊥, of the [2m−1, 2m−m−1, 3]2 Hamming code C has
generalized Hamming weights given by dκ(C⊥) =

∑κ
i=1 2m−i

for 1 ≤ κ ≤ m. Hence, for e = 1, we have r ≥ 2m−1− 1 and
for e = 2, we have r ≥ 3 × 2m−2 − 2. From Example 1, we
notice that these bounds are tight. �

Although Theorem 1 gives the smallest value of locality in

Example 2, it is not always tight. For example, consider an

[n, k, d]q linear code C for which the dual code, C⊥, has a

codeword of weight two. Then, d1(C
⊥) ≤ 2 and Theorem 1

does not eliminate the possibility that C has (1, 1)-cooperative
locality regardless of its Hamming distance or rate. However,



this possibility is eliminated by the simple bound (3) if the

rate is greater than 1/2.
Next, we proceed to give a generalization of the bounds (4)

and (7) that involves generalized Hamming weights. We start

with two lemmas.

Lemma 3. Let C be an [n, k, d]q linear code. If E is a
nonempty set of size e that has a cooperative repair set R
of size r < k, then there exists a linear code Cr over Fq of

length at most n− (e + r), dimension k − r, and generalized
Hamming weight dκ(Cr) ≥ dκ(C) for 1 ≤ κ ≤ k − r.

Proof. As the space spanned by the columns of G is of

dimension k and the space spanned by the columns of G

indexed by R is of dimension at most r, there is a set
S ⊆ {1, 2, . . . , n} of size k − r such that the columns in
G indexed by S are linearly independent and none of them
is a linear combination of the r columns in G indexed by

R. As R is a repair set for E , it follows, from Lemma 1,
that S and E are disjoint. For each j ∈ S, there is a
nonzero vector, u(j), of length k which is orthogonal to every
column of G indexed by R∪S\{j} but not orthogonal to the
column indexed by j. Hence, u(j)

G is a nonzero codeword

c
(j) = (c

(j)
1 , c

(j)
2 , . . . , c

(j)
n ) in C such that c

(j)
j 6= 0 and c

(j)
j′ = 0

for all j′ ∈ R ∪ S\{j}. Since c
(j) is zero on R, which is a

repair set for E , then c
(j) is also zero on E . The collection

of the k − r vectors c(j), j ∈ S, spans a (k − r)-dimensional
subcode of C, the support of which does not intersect with
E ∪ R of size e + r. In particular, this support is of size at
most n − (e + r). Deleting the symbols with indices not in
this support gives the code Cr. Clearly, dκ(Cr) ≥ dκ(C) for
1 ≤ κ ≤ k − r. �

Lemma 4. Let C be an [n, k, d]q linear code with (r, e)-
cooperative locality, where 1 ≤ e < d, and let 1 ≤ κ ≤ k− r.
Then, for 1 ≤ t ≤ ⌊(k − κ)/r⌋, there exists a linear code Ctr

over Fq of length at most n− t(e + r), dimension k− tr, and
generalized Hamming weight dκ(Ctr) ≥ dκ(C).

Proof. We iteratively construct a subset of {1, 2, . . . , n} of
size te that has a cooperative repair set of size at most tr.
Pick a subset E1 ⊆ {1, 2, . . . , n} of size e and let R1 be a

cooperative repair set of size at most r for E1. Let E
′
1 = E1

and R′
1 = R1. Next, if |E

′
1 ∪ R′

1| ≤ n − e, pick a subset
E2 ⊆ {1, 2, . . . , n} of size e disjoint from E ′

1∪R′
1. Let R2 be

a cooperative repair set of size at most r for E2 and

R′
2 = (R′

1 ∪R2)\E
′
1. (9)

We will argue, using Definition 1, that R′
2 is a cooperative

repair set for E ′
2 = E ′

1 ∪ E2. Consider an arbitrary codeword

in C which is zero on R′
2. Since R′

1 ⊆ R′
2 as E

′
1 and R′

1

are disjoint, then such a codeword is zero on E ′
1. From (9), it

follows that the codeword is zero on R2 and, hence, is zero

on E2 as well. This proves that R
′
2 is a cooperative repair set

for E ′
2. Notice that E

′
2 is of size 2e and R′

2 is of size at most

2r. This procedure can be repeated to form a set E ′
i of size

ie with a cooperative repair set R′
i of size at most ir. Indeed,

suppose that we have a set R′
i−1 of size at most (i−1)r which

is a cooperative repair set for E ′
i−1 = E1 ∪ E2 ∪ · · · ∪ Ei−1.

If |E ′
i−1 ∪ R′

i−1| ≤ n − e, pick a subset Ei ⊆ {1, 2, . . . , n}
of size e disjoint from E ′

i−1 ∪R′
i−1. Let Ri be a cooperative

repair set of size at most r for Ei and

R′
i = (R′

i−1 ∪Ri)\E
′
i−1.

Using the same argument stated above for i = 2, it follows
that R′

i is a cooperative repair set for E
′
i = E ′

i−1 ∪ Ei. Notice

that E ′
i is of size ie and R′

i is of size at most ir. Since t ≤
⌊(k − κ)/r⌋, then from (6), we have t ≤ (n − κ)/(e + r),
(t − 1)(e + r) ≤ n − e, and the procedure can continue until
i = t. Hence, we can indeed construct a set E = E ′

t of size te
with a cooperative repair set R of size tr where R = R′

t if

|R′
t| = tr or a superset of R′

t obtained by adding tr − |R′
t|

indices not in E ∪ R′
t to R′

t if |R
′
t| < tr. The result then

follows from Lemma 3. �

Let dopt
κ [n, k]q denote the κth generalized Hamming weight,

dκ, maximized over all linear codes over Fq of length n
and dimension k. Let kopt

κ [n, dκ]q denote the dimension, k,
maximized over all linear codes over Fq of length n and κth

generalized Hamming weight equal to dκ. Let nopt
κ [k, dκ]q

denote the length, n, minimized over all linear codes over Fq

of dimension k and κth generalized Hamming weight equal

to dκ. In case κ = 1, we drop the subscript κ. The following
result is a direct consequence of Lemma 4.

Theorem 2. Let C be an [n, k, d]q linear code with (r, e)-
cooperative locality, where 1 ≤ e < d. Let dκ be the κth

generalized Hamming weight of the code, where 1 ≤ κ ≤ k−r.
Then,

dκ ≤ min
1≤t≤⌊(k−κ)/r⌋

{dopt
κ [n − t(e + r), k − tr]q},

k ≤ min
1≤t≤⌊(k−κ)/r⌋

{tr + kopt
κ [n − t(e + r), dκ)]q},

n ≥ max
1≤t≤⌊(k−κ)/r⌋

{t(e + r) + nopt
κ [k − tr, dκ]q}.

From Theorem 2, we have the following explicit bound

on the parameters of an [n, k, d]q linear code with (r, e)-
cooperative locality.

Theorem 3. Let C be an [n, k, d]q linear code with (r, e)-
cooperative locality, where 1 ≤ e < d. Then, for 1 ≤ κ ≤
k − r,

dκ(C) ≤ n − k − e

⌈

k − κ + 1

r

⌉

+ e + κ.

Proof. Bounding dopt
κ [n−t(e+r), k−tr]q in Theorem 2 using

the generalized Singleton bound (8), we get

dκ(C) ≤ min
1≤t≤⌊(k−κ)/r⌋

{n− t(e + r) − (k − tr) + κ}

= min
1≤t≤⌊(k−κ)/r⌋

{n− k − te + κ}.

Setting t = ⌊(k − κ)/r⌋ = ⌈(k − κ + 1)/r⌉ − 1, we get the
stated result. �

Example 3. It follows from [10, Corollary 4] that the

[15, 11, 3]2 Hamming code C has

dκ(C) = 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15



TABLE I
LOWER BOUNDS ON r FOR (r, e)-COOPERATIVE LOCALITY OF THE

[15, 11, 3]2 HAMMING CODE FOR e = 1 AND e = 2 BASED ON
THEOREM 3.

e\κ 1 2 3 4 5 6 7 8 9 10 11
1 4 5 5 4 7 6 5 4 3 2 1
2 6 10 9 8 7 6 5 4 3 2 1

for κ = 1, 2, . . . , 11, respectively. Applying Theorem 3 in the
cases e = 1 and e = 2, we obtain the lower bounds on r given
in Table I. From this table, it is clear that the sharpest bounds

on r for e = 1 and e = 2, which are 7 and 10, are attained
for κ = 5 and κ = 2, respectively, and both significantly
improve upon the corresponding bounds for κ = 1. Actually,
from Example 1, we have r = 7 and r = 10 for e = 1 and
e = 2, respectively. In general, for the [2m−1, 2m−m−1, 3]2
Hamming code C, we show that Theorem 3 gives r ≥ 2m−1−1
and r ≥ 3×2m−2−2 for e = 1 and e = 2, respectively. From
[10, Corollary 4], it can be deduced that d2s−s(C) = 2s + 1
for 1 ≤ s ≤ m − 1. For e = 1, setting s = m − 1 and
κ = 2m−1 − (m − 1) in Theorem 3 gives r ≥ 2m−1 − 1.
For e = 2, setting s = m − 2 and κ = 2m−2 − (m − 2) in
Theorem 3 gives r ≥ 3×2m−2−2. Again, these bounds agree
with the smallest values of r for e = 1 and 2 as deduced in
Example 1. �

Example 4. The binary second order Reed-Muller code,

RM(2, 5), has length n = 32, dimension k = 16, and
Hamming distance d = 8. It is shown in [5] to have 7-locality
to correct e = 1 erasure. We show that the number 7 is the
minimum locality for this code, i.e., it does not have 6-locality.
It is reported in [10] that d10 = 26. With κ = 10, Theorem 3
eliminates the possibility that r = 6. On the other hand, using
the tables in [3], we notice that the CM bound (4) does not

eliminate the possibility that r = 3. �

In applying Theorems 2 and 3, the generalized Hamming

weights need to be known. The reader may refer to [10]

where the generalized Hamming weights are determined for

Hamming codes, Reed-Muller codes, binary Golay code, and

Reed-Solomon codes, and to [6, Chapter 1, Section 3] for

references for other codes. However, in general it is not easy

to determine the generalized Hamming weights for an arbitrary

code. We can weaken Theorem 3 to obtain a bound on locality

that does not involve any of the generalized Hamming weights

except for the Hamming distance. Consider an [n, k, d]q linear
code, C, with κth generalized Hamming weight equal to dκ,

where 1 ≤ κ ≤ k − 1. Let D be a linear subcode of C
of dimension κ that has support of size dκ. Deleting all the

symbols with indices not in the support of D from its code-
words gives a code of length dκ, dimension κ, and Hamming
distance at least d. Applying the Griesmer bound [6, Chapter 1,
Theorem 3.12] to this code yields dκ(C) ≥

∑κ−1
i=0 ⌈d/qi⌉. (See

also [4, Corollary 2] where this inequality is first stated for

q = 2.) Bounding dκ(C) in Theorem 3 using this inequality,
we have the following result.

Theorem 4. Let C be an [n, k, d]q linear code with (r, e)-
cooperative locality, where 1 ≤ e < d. Then, for 1 ≤ κ ≤
k − r,

κ−1
∑

i=0

⌈

d

qi

⌉

≤ n − k − e

⌈

k − κ + 1

r

⌉

+ e + κ,

which implies that

d ≤
qκ − qκ−1

qκ − 1

(

n − k − e

⌈

k − κ + 1

r

⌉

+ e + κ

)

.

In simplicity, the bounds in Theorem 4 are comparable to

the bounds (1) and (5) as they give an explicit necessary

condition for an [n, k, d]q linear code to have a given r-locality
or a given (r, e)-cooperative locality. Actually, setting κ = 1
in Theorem 4 gives the bound in (5) which reduces to that in

(1) for e = 1. However, tighter bounds may be obtained by
setting κ > 1.

Example 5. For the [15, 11, 3]2 Hamming code, (1) and (5)
eliminate the possibilities that the code has (3, 1) and (5, 2)-
cooperative localities but not the possibilities that the code

has (4, 1) and (6, 2)-cooperative localities. On the other hand,
with κ = 2, the second, and weaker, inequality in Theorem 4
eliminates the last two possibilities. Actually, this inequality

shows that the code does not have (9, 2)-cooperative locality.
This is sharp as it is shown in Example 1 that the code has

(10, 2)-cooperative locality. �

IV. CONCLUSION

By incorporating the generalized Hamming weights, new

bounds on cooperative localities are derived. Through exam-

ples, it is shown that these bounds improve upon other bounds

available in the literature.
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