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A VARIATIONAL CHARACTERIZATION OF R ÉNYI
DIVERGENCES
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ABSTRACT: Atar, Chowdhary and Dupuis have recently exhibited a variational formula for exponen-
tial integrals of bounded measurable functions in terms of Rényi divergences. We develop a variational
characterization of the Rényi divergences between two probability distributions on a measurable space
in terms of relative entropies. When combined with the elementary variational formula for exponential
integrals of bounded measurable functions in terms of relative entropy, this yields the variational formula
of Atar, Chowdhary and Dupuis as a corollary.

We also develop an analogous variational characterizationof the Rényi divergence rates between two
stationary finite state Markov chains in terms of relative entropy rates. When combined with Varadhan’s
variational characterization of the spectral radius of square matrices with nonnegative entries in terms of
relative entropy, this yields an analog of the variational formula of Atar, Chowdary and Dupuis in the
framework of finite state Markov chains.
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1 Introduction

Evaluating how far away a given probability distribution isfrom another can be done in many ways. The
Kullback-Leibler divergence or relative entropy, which isclosely tied to Shannon’s notion of entropy,
is one such measure prominent in statistical applications.It belongs to a larger family of divergences,
the so-called Rényi divergences, which are closely tied toRényi’s notion of entropy. Rényi divergences
also have numerous applications in problems of interest in statistics and information theory, see [4] for a
survey of some of their basic properties and some indicationof their applications. The Rényi divergences,
with a minor change in scaling relative to the definition in [4], are the topic of this article. We treat the
Rényi divergences as parametrized by a real numberα ∈ R, α ≠ 0, α ≠ 1.

We were prompted to write this document by reading a recent paper of Atar, Chowdhary and Dupuis
[1], which provides a variational formula for exponential integrals of bounded measurable functions in
terms of Rényi divergences. We show that the variational characterization in [1] is a simple consequence
of a variational characterization for Rényi divergences in terms of relative entropies, which we also
develop. For the case of probability distributions on a finite set, and in the rangeα > 0, α ≠ 1, our
variational characterization for Rényi divergences was developed by Shayevitz, [10] and [11, Thm. 1].
More recently, for mutually absolutely continuous probability distributions on a measurable space, in
the caseα > 0, α ≠ 1, parts of this variational characterization appear in a paper of Sason, see [8,
Lem. 4 and Cor. 2]. The ability to derive the variational formula of [1] from inequalities for the Rényi
divergences in terms of relative entropies, in the caseα > 1, is also remarked on in a recent paper of Liu,
Courtade, Cuff, and Verdú [6, Sec. II-A]. To the best of our knowledge, however, a full treatment of this
variational characterization of Rényi divergences in terms of relative entropies, covering an arbitrary pair
of probability distributions on a measurable space and all possible values forα, does not appear to be in
the literature and so it seems worth writing down. It is also worth noting how easily the full variational
formula of [1], in all cases, falls out of this variational characterization of Rényi divergences.

Section2 presents the notational conventions and the definitions of the main quantities used in this
document in the i.i.d. case. The main result in the i.i.d. case, Theorem1, is stated in Section3. The
result of [1] that prompted this paper is presented in Section4, and is derived there as a consequence of
Theorem1 and the elementary variational formula for exponential integrals in (2). Theorem1 itself is
proved in Section5.

We then turn to a development of analogs of the preceding results in the case of stationary finite
state Markov chains. Section6 makes the necessary definitions and gathers some standard facts about
the asymptotic properties of iterated powers of a square matrix with nonnegative entries, which we need
for our discussion. It also contains the analog of the elementary variational formula in the context of
finite state Markov chains, in (17), which is Varadhan’s variational characterization in terms of relative
entropy of the spectral radius of square matrices with nonnegative entries. The main results in the case
of stationary finite state Markov chains are stated in Section 7. These are Theorem2, which gives a
variational characterization of each Rényi divergence rate between two stationary finite state Markov
chains in terms of relative entropy rates, and Theorem3, which gives an analog of the variational formula
of [1] in the context of finite state Markov chains. A proof of Theorem3 assuming the truth of Theorem
2, and using (17), is also provided in this section. The proof of Theorem2 is provided in Section8. We
end the paper in Section9 with some thoughts about directions for future work.

In order to maintain the flow of the main exposition, the details of several proofs are relegated to
appendices.
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2 Setup

Let (S,F) be a measurable space.B(S) denotes the set of bounded measurable real-valued functions
andP(S) the set of probability measures on(S,F). For ν, θ ∈ P(S), ν ⪯ θ is notation forν being
absolutely continuous with respect toθ, see [2, pg. 442] for the definition. Ifν ⪯ θ, then dν

dθ
denotes the

Radon-Nikodym derivative ofν with respect toθ; any two choices of Radon-Nikodym derivative differ
only on aθ-null set, see [2, Thm. 32.2]. The relative entropyD(ν∥θ) of ν with respect toθ is defined by

D(ν∥θ) ∶= ⎧⎪⎪⎨⎪⎪⎩
∫S (log dν

dθ
)dν , if ν ⪯ θ,

∞ if ν â θ.
(1)

From the convexity of thex log x function for nonnegativex, one can check thatD(ν∥θ) ≥ 0.
Here, and in the rest of the paper,∶= is notation for equality by definition. Logarithms can be assumed

to be to the natural base. For two measurable functionsf andg on (S,F), not necessarily bounded, and
η ∈ P(S), f =η g denotes equality off andg except possibly on anη-null set. Similarly, forC,D ∈ F ,
C =η D denotes equality ofC andD up toη-null sets andC ⊆η D denotes the containment ofC in D up
to η-null sets.

The variational characterization in (2) below of exponential integrals of bounded measurable func-
tions is elementary. For anyµ ∈ P(S) andg ∈ B(S) we have

log∫
S
egdµ = sup

θ∈P(S)

(∫
S
gdθ −D(θ∥µ)) = sup

θ∈P(S) ∶ θ⪯µ

(∫
S
gdθ −D(θ∥µ)) . (2)

We provide a proof in AppendixA.
For anyα ∈ R/{0,1}, andν, θ ∈ P(S), the Rényi divergenceRα(ν∥θ) is defined as in eqn. (2.1) of

[1], by first defining it forα > 0, α ≠ 1, by

Rα(ν∥θ) ∶=
⎧⎪⎪⎨⎪⎪⎩
∞ if α > 1 andν â θ

1

α(α−1) log ∫{ν′θ′>0}(ν′θ′ )αdθ otherwise,
(3)

whereν′ ∶= dν
dη

andθ′ ∶= dθ
dη

, whereη ∈ P(S) is an arbitrary probability distribution such thatν ⪯ η and
θ ⪯ η. It is straightforward to check that every choice ofη, subject to the absolute continuity conditions,
results in the same value of the Rényi entropy. Then, forα < 0, we use the definition

Rα(ν∥θ) ∶= R1−α(θ∥ν) . (4)

Remark 1. Even though the definition ofRα(ν∥θ) is broken up into cases above, a single formula would
work, if suitably interpreted. One could write

Rα(ν∥θ) = 1

α(α − 1) log∫S(ν′)α(θ′)1−αdη , for all α ∈ R/{0,1}.
In this formula, ifη(ν′ > 0, θ′ = 0) > 0 andα > 1, then because(ν′)α(θ′)1−α = (ν′)α

(θ′)α−1 = ∞ on this event,
we are forced to intepretRα(ν∥θ) as being∞. A similar argument forces us to interpretRα(ν∥θ) as∞
if η(ν′ = 0, θ′ > 0) > 0 andα < 0. Rather than requiring of the reader the mental gymnastics needed to
keep track of such interpretations, we prefer to break the discussion up into cases.
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Remark 2. It is clear thatRα(ν∥θ) ≥ 0 (possibly∞) if α > 1 or α < 0. For 0 < α < 1, an application of
Hölder’s inequality withp ∶= 1

α
andq ∶= 1

1−α (so 1

p
+ 1

q
= 1) gives

∫
{ν′θ′>0}

(ν′
θ′
)αdθ = ∫

{ν′θ′>0}
(ν′)α(θ′)1−αdη

= ∫
S
(ν′)α(θ′)1−αdη

≤ (∫
S
ν′dη)α (∫

S
θ′dη)1−α

= 1 .

Hence we also haveRα(ν∥θ) ≥ 0 (possibly∞) if 0 < α < 1. Note in particular that ifη(ν′θ′ > 0) = 0,
thenRα(ν∥θ) =∞ for all α ∈ R/{0,1}.

3 Statement of the main result in the i.i.d. case

Our main result in the i.i.d case is the following variational characterization of Rényi divergence.

Theorem 1. Letα ∈ R/{0,1} andν, θ ∈ P(S). Then, ifα > 1, we have

Rα(ν∥θ) = sup
{µ∈P(S) ∶ µ⪯ν}

( 1
α
D(µ∥θ) − 1

α − 1D(µ∥ν)) , (5)

while, if 0 < α < 1, we have

Rα(ν∥θ) = inf
{µ∈P(S) ∶ µ⪯ν,µ⪯θ}

( 1
α
D(µ∥θ) − 1

α − 1D(µ∥ν)) , (6)

and, ifα < 0, we have

Rα(ν∥θ) = sup
{µ∈P(S) ∶ µ⪯θ}

( 1
α
D(µ∥θ) − 1

α − 1D(µ∥ν)) . (7)

Further, when0 < α < 1, one can findµ ∈ P(S), µ ⪯ ν, µ ⪯ θ, achieving the infimum on the RHS of(6),
whenever{µ ∈ P(S) ∶ µ ⪯ ν,µ ⪯ θ} is nonempty. ◻

Remark 3. The case by case structure of this result is partly a consequence of the normalization cho-
sen for the Ŕenyi divergences (which is necessary to make Rényi divergence nonnegative) and partly a
consequence of the need to apply the correct absolute continuity conditions. If it considered desirable to
write a singe formula covering all cases, this can be done by consideringΛα(ν∥θ) ∶= α(α − 1)Rα(ν∥θ),
for α ∈ R/{0,1}. Then one has the single formula

Λα(ν∥θ) = sup
{µ∈P(S) ∶ µ⪯ν or µ⪯θ}

((α − 1)D(µ∥θ) − αD(µ∥ν)) ,
for all α ∈ R/{0,1}. Note, however, that the set over which the supremum is beingtaken need not be
convex in general. This is essential to avoid encountering expressions of the form∞−∞.
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4 Discussion

Atar, Chowdhary and Dupuis [1] have recently established a variational formula for exponential integrals
of bounded measurable functions. This is established in twoforms. For anyα ∈ R/{0,1}, ν ∈ P(S), and
g ∈ B(S), eqn. (2.6) of [1] states that

1

α − 1
log∫

S
e(α−1)gdν = inf

θ∈P(S)
( 1
α
log∫

S
eαgdθ +Rα(ν∥θ)) , (8)

while eqn. (2.7) of [1] states that for anyα ∈ R/{0,1}, θ ∈ P(S), andg ∈ B(S) we have

1

α
log∫

S
eαgdθ = sup

ν∈P(S)

( 1

α − 1
log∫

S
e(α−1)gdν −Rα(ν∥θ)) . (9)

It is straightforward to exhibit the equivalence of these two forms. For instance, assuming (8), letβ ∶= 1−α
andh ∶= −g, and conclude that for allβ ∈ R/{0,1}, ν ∈ P(S), andh ∈ B(S) we have

−
1

β
log∫

S
eβhdν = inf

θ∈P(S)
( 1

1 − β
log∫

S
e(β−1)hdθ +R1−β(ν∥θ)) ,

or equivalently that

1

β
log∫

S
eβhdν = sup

θ∈P(S)

( 1

β − 1
log∫

S
e(β−1)hdθ −Rβ(θ∥ν)) ,

which is (9). One can similarly go in the opposite direction. We will therefore focus only on the form in
(9). As observed in Remark 2.3 of [1], taking the limit asα→ 1 in (9) recovers the elementary variational
formula for exponential integrals of bounded measurable functions in (2).

The structure of Theorem1 is motivated by the variational characterization in (9). We will now
demonstrate that Theorem1 is at least as strong as (9) by deriving (9) from Theorem1 and the elementary
variational formula (2).

First of all, we show that for anyα ∈ R/{0,1}, θ ∈ P(S), andg ∈ B(S) one can findν ∈ P(S)
achieving the supremum in (9). This proof does not depend on Theorem1 and (2). In fact, the supremum
is achieved by the choice1

Z
e−gdν = dθ, whereZ is the normalization factor, and it is elementary to prove

this. For completeness, a proof is included in AppendixB.
It remains to prove that for anyα ∈ R/{0,1}, g ∈ B(S), andθ, ν ∈ P(S), we have

1

α
log∫

S
eαgdθ ≥

1

α − 1
log∫

S
e(α−1)gdν −Rα(ν∥θ) . (10)

Assuming the truth of Theorem1, and using (2), this is proved in AppendixC.

5 Proof of Theorem1

We now prove Theorem1.
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Consider first the caseα > 1. Supposeν â θ. Then the LHS of (5) is∞. Also, in this case, we can
chooseµ ∈ P(S) such thatµ ⪯ ν butµ â θ, which makes the RHS of (5) also equal to∞. Thus we may
assume thatν ⪯ θ. GivenK > 0 sufficiently large, defineµK ∈ P(S) by

µ′K ∶=
1

ZK

(ν′)α(θ′)1−α1((ν′)α(θ′)1−α ≤K)
whereη ∈M(S × S) is chosen such thatθ ⪯ η, and we defineν′ ∶= dν

dη
, θ′ ∶= dθ

dη
, andµ′K ∶=

dµK

dη
. Further,

ZK ∶= ∫
{(ν′)α(θ′)1−α≤K}

(ν′)α(θ′)1−αdη ,

andK sufficiently large means thatZK > 0. We note thatµK ⪯ ν (and soµK ⪯ θ). Then

1

α
D(µK∥θ) − 1

α − 1
D(µK∥ν)

=
1

α
∫
{µ′

K
>0}
(log µ′K

θ′
)dµK −

1

α − 1
∫
{µ′

K
>0}
(log µ′K

ν′
)dµK

=
1

α
∫
{µ′

K
>0}
(log (ν′)α

ZK(θ′)α)dµK −
1

α − 1
∫
{µ′

K
>0}
(log (θ′)1−α

ZK(ν′)1−α)dµK

=
1

α(α − 1) logZK ,

which, asK →∞, converges to

Rα(ν∥θ) = 1

α(α − 1) log∫{ν′θ′>0} (
ν′

θ′
)α dθ = 1

α(α − 1) log∫S(ν′)α(θ′)1−αdη .

It remains to show that, in the caseα > 1, for all ν, θ ∈ P(S) such thatν ⪯ θ, we have, for allµ ∈ P(S)
such thatµ ⪯ ν, the inequality

Rα(ν∥θ) ≥ 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν) . (11)

Pick η ∈ P(S) such thatθ ⪯ η (so we also haveν ⪯ η andµ ⪯ η), and letν′ ∶= dν
dη

, θ′ ∶= dθ
dη

, andµ′ ∶= dµ

dη
.

Multiplying the RHS of (11) by α(α − 1) gives

(α − 1)∫
{ν′θ′µ′>0}

log
µ′

θ′
dµ − α∫

{ν′θ′µ′>0}
log

µ′

ν′
dµ = ∫

{ν′θ′µ′>0}
log
(ν′)α(θ′)1−α

µ′
dµ .

On the other hand, we have

α(α − 1)Rα(ν∥θ) = log∫
{ν′θ′>0}

(ν′
θ′
)αdθ ≥ log∫

{ν′θ′µ′>0}
(ν′
θ′
)α θ′

µ′
dµ ,

so (11) follows from the concavity of the logarithm.
Next, consider the case when0 < α < 1. Pickη ∈ P(S) such thatν ⪯ η andθ ⪯ η, and letν′ ∶= dν

dη
and

θ′ ∶= dθ
dη

. If {ν′θ′ > 0} =η ∅, then∫{ν′θ′>0}(ν′θ′ )αdθ = 0, and so

Rα(ν∥θ) ∶= 1

α(α − 1) log∫{ν′θ′>0}(
ν′

θ′
)αdθ =∞ .
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But we also have{µ ∈ P(S) ∶ µ ⪯ ν,µ ⪯ θ} = ∅, so the RHS of (6) equals∞. We may therefore assume
thatη(ν′θ′ > 0) > 0. Now, an application of Hölder’s inequality withp ∶= 1

α
andq ∶= 1

1−α (so 1

p
+

1

q
= 1)

gives

∫
{ν′θ′>0}

(ν′
θ′
)αdθ = ∫

{ν′θ′>0}
(ν′)α(θ′)1−αdη

= ∫
S
(ν′)α(θ′)1−αdη

≤ (∫
S
ν′dη)α (∫

S
θ′dη)1−α

= 1

Let µ ∈ P(S) be defined byµ′ ∶= 1

Z
(ν′)α(θ′)1−α, whereZ ∶= ∫S(ν′)α(θ′)1−αdη. Note thatRα(ν∥θ) =

1

α(α−1) logZ. We haveµ ⪯ ν andµ ⪯ θ, as required on the RHS of (6). Now,

1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν)

=
1

α
∫
{µ′>0}

(log µ′
θ′
)dµ − 1

α − 1
∫
{µ′>0}

(log µ′
ν′
)dµ

=
1

α
∫
{µ′>0}

(log (ν′)α
Z(θ′)α)dµ −

1

α − 1
∫
{µ′>0}

(log (θ′)1−α
Z(ν′)1−α)dµ

=
1

α(α − 1) logZ ,

which equalsRα(ν∥θ). It remains to show that, in the case0 < α < 1, for all ν, θ ∈ P(S) such that
η(ν′θ′ > 0) > 0, we have, for allµ ∈ P(S) such thatµ ⪯ ν andµ ⪯ θ, the inequality

Rα(ν∥θ) ≤ 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν) . (12)

To see this, note that

α(1 − α)( 1
α
D(µ∥θ) − 1

α − 1
D(µ∥ν))

= (1 − α)D(µ∥θ) + αD(µ∥ν)
= (1 − α)∫

{µ′>0}
(log µ′

θ′
)dµ + α∫

{µ′>0}
(log µ′

ν′
)dµ

= ∫
{µ′>0}

(log µ′

(ν′)α(θ′)1−α)dµ
= ∫

S
f((ν′)α(θ′)1−α

µ′
)µ′dη

≥ f (∫
S
(ν′)α(θ′)1−αdη)

= − log∫
S
(ν′)α(θ′)1−αdη

= α(1 − α)Rα(ν∥θ) .
7



wheref(⋅) is the negative logarithm function, which is decreasing andconvex. This establishes (12).
Note that we have also estabished the claim in Theorem1 that when0 < α < 1 one can findµ realizing
the infimum in (6) whenever{µ ∈ P(S) ∶ µ ⪯ ν,µ ⪯ θ} is nonempty.

It remains to consider the case whereα < 0. Let β ∶= 1 − α. Thenβ > 1. By definitionRα(ν∥θ) =
Rβ(θ∥ν). However, we have already proved that

Rβ(θ∥ν) = sup
{µ∈P(S) ∶ µ⪯θ}

( 1
β
D(µ∥ν) − 1

β − 1
D(µ∥θ)) .

This reads

Rα(ν∥θ) = sup
{µ∈P(S) ∶ µ⪯θ}

( 1
α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) ,

which establishes (7) in this case also and completes the proof of Theorem1.

6 Rényi divergence rate between stationary finite state Markovchains

In this section we set the stage to present analogs of the preceding results involving the Rényi diver-
gence rates between two stationary finite state Markov chains. Extensions to general state space Markov
processes in both discrete and continuous time of a form similar to those we will present for stationary
finite state Markov chains no doubt exist, under suitable conditions on the transition kernel, but may be
considered topics for future work.

From this point onwards in this document we takeS = {1, . . . , d} andF to be comprised of all the
subsets ofS. LetM(S ×S) denote the set of Markov probability distributions on(S ×S,F ×F), where
ν ∈M(S × S) if ν(i, j) ≥ 0 for all (i, j) ∈ S × S, ∑i,j∈S ν(i, j) = 1, andν(k,∗) = ν(∗, k) for all k ∈ S,
whereν(k,∗) ∶= ∑j∈S ν(k, j) andν(∗, k) ∶= ∑i∈S ν(i, k). HereF ×F is comprised of all the subsets of
S × S.

Givenν ∈ M(S × S), let Sν ∶= {k ∶ ν(k,∗) > 0}. Sν is a subset ofS, and is called thesupport
of ν. For i ∈ Sν andj ∈ S, we defineν(j∣i) ∶= ν(i,j)

ν(i,⋅) . Note thatν(j∣i) = 0 if i ∈ Sν andj ∉ Sν , and

∑j∈S ν(j∣i) = 1. For i ∉ Sν , we defineν(j∣i) = 0 for all j. This may seem strange, but is an important
notational convention for the equations we are going to write. Note that∑j∈S ν(j∣i) = 0 for i ∉ Sν .

Given ν, θ ∈ M(S × S) we sayν is absolutely continuous with respect toθ, denotedν ⪯ θ, if
θ(i, j) = 0 ⇒ ν(i, j) = 0 for all (i, j) ∈ S × S. The relative entropyD(ν∥θ) of ν with respect toθ is
defined by

D(ν∥θ) ∶=
⎧⎪⎪⎨⎪⎪⎩

∑i,j∈Sν
ν(i, j) log ν(j∣i)

θ(j∣i) , if ν ⪯ θ,

∞ if ν â θ.
(13)

It can be checked thatD(ν∥θ) ≥ 0.
We need certain basic facts about the asymptotic propertiesof iterated powers of square matrices

with nonnegative entries. We will state these facts in narrative form. Proofs can be extracted from several
books that provide standard treatments of the theory of nonnegative matrices or finite state Markov chains,
see e.g. [9, Chap. 1].

LetM = [mij] be ad × d matrix with nonnegative entries. Then the limit

ρ(M) ∶= lim
n→∞

1

n
log∑

i,j

m(n)(i, j) , (14)
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exists, wherem(n)(i, j) denotes the(i, j) entry ofMn. We can associate toM a directed graph on the
vertex set{1, . . . , d}, where we have a directed edge fromi to j iff mij > 0. This graph may have self
loops. Thenρ(M) = −∞ iff this directed graph does not have a directed cycle. Otherwiseρ(M) is finite.
We callρ(M) thegrowth rateof M .

Supposeρ(M) is finite. We sayµ ∈M(S ×S) is absolutely continuous with respect toM if µ(i, j) >
0⇒m(i, j) > 0 for all i, j ∈ S Let µ1, µ2 ∈M(S × S) be absolutely continuous with respect toM . Then
so is 1

2
(µ1 + µ2). Thus there is a maximum elementµ ∈M(S × S) that is absolutely continuous with

respect toM , in the sense that every otherν ∈M(S ×S) that is absolutely continuous with respect toM

satisfiesν ⪯ µ. This maximum element need not be unique. Pick any such maximum element, call itτ .
Let M ′ ∶= [m(i, j)1(i, j ∈ Sτ)]. Thenρ(M ′) = ρ(M).

Let µ ∈ M(S × S), which we also think of as a nonnegatived × d matrix. The support ofµ can
be uniquely written as a disjoint union of subsets, called classes,Sµ = ⊍lk=1Ck, for somel ≥ 1, such that
µ(i, j) = 0 if i, j ∈ Sµ are in distinct classes, and such that, for each1 ≤ k ≤ l, if we consider the restriction
of the directed graph associated toµ to the vertices in the classCk, then this directed graph is irreducible,
in the sense that there is a directed path in the graph betweenany pair of vertices inCk.

Givenµ ∈M(S × S) and ad × d matrixM with nonnegative entries, we sayM is compatiblewith
µ if m(i, j) > 0⇔ µ(i, j) > 0. Let Sµ = ⊍lk=1Ck be the decomposition of the support ofµ into classes.
For each1 ≤ k ≤ l, the restriction ofM to the coordinates inCk defines a∣Ck∣ × ∣Ck∣ irreducible matrix
with nonnegative entries. This matrix has an associated Perron-Frobenius eigenvalue, which we denote
by λk(M). We haveλk(M) > 0 for all 1 ≤ k ≤ l. We haveρ(M) = logmax1≤k≤l λk(M). Also, for
each1 ≤ k ≤ l, the restriction ofM to the coordinates inCk has a left eigenvector associated to the
eigenvalueλk(M), which has all its coordinates strictly positive and is unique up to scaling, and also a
right eigenvector associated to the eigenvalueλk(M), which has all its coordinates strictly positive and
is unique up to scaling.

Givenν ∈M(S × S), what we mean by the stationary Markov chain defined byν is the following:
for eachn ≥ 1 define a probability distributionνn on (Sn,Fn), whereFn is comprised of all subsets of
Sn, by setting

ν1(k) = ν(k,∗) , for all k ∈ S ,

ν2(i, j) = ν(i, j) , for all i, j ∈ S ,

⋮

νn(i1, . . . , in) = ν(i1, i2) n−1∏
k=2

ν(ik+1∣ik) , for all (i1, . . . , in) ∈ Sn ,

⋮ .

It is straightfoward to check that for alln ≥ 2 andν, θ ∈M(S × S) we have

ν ⪯ θ⇔ νn ⪯ θn . (15)

The following fact, which will be very useful later, is easy to verify from the definitions. It holds for
all ν, θ ∈M(S × S).

D(ν∥θ) = lim
n→∞

1

n
D(νn∥θn) , (16)
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where on the RHS of this defintion the notationD(νn∥θn) refers to the relative entropy between proba-
bility distributions on(Sn,Fn).

We are now in a position where we can state the analog for stationary finite state Markov chains
of the elementary variational formula (2). Let G = [g(i, j)] ∈ Rd×d andµ ∈ M(S × S). We have
the following variational characterization of the growth rate of the exponential integral ofG along the
stationary Markov chain defined byµ.

ρ([eg(i,j)µ(j∣i)]) = sup
θ∈M(S×S)

(∑
i,j∈S

g(i, j)θ(i, j) −D(θ∥µ)) (17)

= sup
θ∈M(S×S) ∶ θ⪯µ

(∑
i,j∈S

g(i, j)θ(i, j) −D(θ∥µ)) .

The proof is in AppendixD. The result is standard, being Varadhan’s characterization of the spectral
radius of nonnegative matrices, see e.g. [3, Exer. 3.1.19].

We are also in a position to define the Rényi divergence ratesbetween two stationary finite state
Markov chains. This definition is classical, see e.g. the paper of Rached, Alajaji, and Campbell [7],
which also considers the nonstationary case, and the references therein. Givenν, θ ∈ M(S × S) and
α ∈ R/{0,1}, we define the Rényi divergence rate ofν with respect toθ, denotedRα(ν∥θ), by

Rα(ν∥θ) ∶= lim
n→∞

1

n
Rα(νn∥θn) , (18)

where on the RHS of this defintion the notationRα(νn∥θn) refers to the Rényi divergence between prob-
ability distributions on(Sn,Fn) defined as in (3) and (4). The proofs of the existence of the limit in (18)
as well as of the properties of the Rényi divergence rate of interest to us, which are stated in the following
proposition, are in AppendixE.

Proposition 1. Givenν, θ ∈M(S×S), the Ŕenyi divergence rate, as defined in(18), satisfies the following
properties:

Rα(ν∥θ) =
⎧⎪⎪⎨⎪⎪⎩
∞ if α > 1 andν â θ ,

1

α(α−1)ρ([ν(j∣i)αθ(j∣i)1−α]) if 0 < α < 1 or if α > 1 andν ⪯ θ ,

and
Rα(ν∥θ) = R1−α(θ∥ν) , if α < 0 .

7 Main results in the Markov case

Our first main result in the Markov case is the following variational characterization of the Rényi diver-
gence rate, which is a direct analog of Theorem1.

Theorem 2. Letα ∈ R/{0,1} andν, θ ∈M(S × S). Then, ifα > 1, we have

Rα(ν∥θ) = sup
{µ∈M(S×S) ∶ µ⪯ν}

( 1
α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) , (19)
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while, if 0 < α < 1, we have

Rα(ν∥θ) = inf
{µ∈M(S×S) ∶ µ⪯ν,µ⪯θ}

( 1
α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) , (20)

and, ifα < 0, we have

Rα(ν∥θ) = sup
{µ∈M(S×S) ∶ µ⪯θ}

( 1
α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) . (21)

Further, one can findµ ∈M(S × S) achieving the extremum on the RHS in all three cases, except in the
case where0 < α < 1 and{µ ∈M(S × S) ∶ µ ⪯ ν,µ ⪯ θ} is empty. ◻

Our second main result in the Markov case is the following analog of the variational formula of [1].

Theorem 3. For anyα ∈ R/{0,1}, ν ∈M(S × S), andG = [g(i, j)] ∈ Rd×d, we have

1

α − 1
ρ([e(α−1)g(i,j)ν(j∣i)]) = inf

θ∈M(S×S)
( 1
α
ρ([eαg(i,j)θ(j∣i)]) +Rα(ν∥θ)) , (22)

and for anyα ∈ R/{0,1}, θ ∈M(S × S), andG = [g(i, j)] ∈ Rd×d we have

1

α
ρ([eαg(i,j)θ(j∣i)]) = sup

ν∈M(S×S)
( 1

α − 1
ρ([e(α−1)g(i,j)ν(j∣i)]) −Rα(ν∥θ)) . (23)

It is straightforward to exhibit the equivalence of the claims in (22) and (23). This is done is Appendix
F. It therefore suffices to focus only on the form in (23). It is straightforward to show that for each
θ ∈M(S × S) andG ∈ Rd×d, one can findν ∈M(S × S) achieving the supremum on the RHS of (23).
AppendixF also contains a demonstration of this fact. A proof of Theorem 3, assuming the truth of
Theorem2, and using (17), is also provided in AppendixF.

8 Proof of Theorem2

Supposeα > 1. If ν â θ, takingµ = ν on the RHS of (19) makes the RHS equal∞, which is also the
value of the LHS. We may therefore assume thatν ⪯ θ.

LetM ∶= [ν(j∣i)αθ(j∣i)1−α]. This matrix is compatible withν. LetSν = ⊍lk=1Ck be the decomposition
of the support ofν into classes. We may choose the indexing of the classes in such a way thatρ(M) =
logλ1(M).

Let u be a1 × d row vector whose entries are zero in the coordinates that arenot in C1, while its
restriction toC1 is a nonzero left eigenvector of the restriction ofM to C1. All the entries ofu in the
coordinates inC1 are strictly positive. Similarly, letw be ad × 1 column vector whose entries are zero
in the coordinates that are not inC1, while its restriction toC1 is a nonzero right eigenvector of the
restriction ofM to C1. All the entries ofw in the coordinates inC1 will be strictly positive. Fori, j ∈ S,
we define

µ(i, j) ∶= 1

Z
u(i)ν(j∣i)αθ(j∣i)1−αw(j) ,
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whereZ ∶= ∑i,j∈S u(i)ν(j∣i)αθ(j∣i)1−αw(j), which is strictly positive. Note thatµ ∈ M(S × S) and
µ ⪯ ν. We also have, for alli ∈ S,

µ(i,∗) ∶= ∑
j∈S

µ(i, j) = 1

Z
λ1(M)u(i)w(i) ,

so we get

µ(j∣i) = ⎧⎪⎪⎨⎪⎪⎩
ν(j∣i)αθ(j∣i)1−αw(j)

λ1(M)w(i)
if i, j ∈ C1

0 otherwise,

where we have used the fact thatSµ = C1.
Multiplying the RHS of (19) by α(α − 1) for this choice ofµ gives

(α − 1)D(µ∥θ) −αD(µ∥ν) = ∑
i,j∈C1

µ(i, j) log ν(j∣i)αθ(j∣i)1−α
µ(j∣i)

= ∑
i,j∈C1

µ(i, j) log λ1(M)w(i)
w(j)

= logλ1(M) ,
which also equalsα(α − 1) times the LHS of (19). This establishes the existence ofµ ∈ M(S × S)
satisfyingµ ⪯ ν and achieving equality in (19).

It remains to check that for allµ ∈M(S × S) satisfyingµ ⪯ ν we have the inequality

Rα(ν∥θ) ≥ 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν) . (24)

But, in view of (15), in (5) applied to probability distributions on(Sn,Fn), for n ≥ 2, we have already
proved that

Rα(νn∥θn) ≥ 1

α
D(µn∥θn) − 1

α − 1
D(µn∥νn) .

Dividing by n, lettingn →∞, and appealing to (16) establishes (24).
Next, consider the case where0 < α < 1. If the directed graph associated to the matrixM ′ ∶=[ν(j∣i)αθ(j∣i)1−α] has no cycles, thenRα(ν∥θ) = ∞, and{µ ∈M(S × S) ∶ µ ⪯ ν,µ ⪯ θ} = ∅, so the

RHS of (20) is also∞, and so (20) holds in this case. We may therefore assume that{µ ∈M(S×S) ∶ µ ⪯
ν,µ ⪯ θ} is nonempty. Pick anyτ ∈M(S × S) that is a maximum element among all the elements ofM(S × S) that are absolutely continuous with respect toM ′. Let M ∶= [ν(j∣i)αθ(j∣i)1−α1(i, j ∈ Sτ)].
Thenρ(M ′) = ρ(M). Further,M is compatible withτ .

Let Sτ = ⊍lk=1Ck be the decomposition of the support ofτ into classes. We may choose the indexing
of the classes in such a way thatρ(M) = logλ1(M).

Let u be a1 × d row vector whose entries are zero in the coordinates that arenot in C1, while its
restriction toC1 is a nonzero left eigenvector of the restriction ofM to C1. All the entries ofu in the
coordinates inC1 are strictly positive. Similarly, letw be ad × 1 column vector whose entries are zero
in the coordinates that are not inC1, while its restriction toC1 is a nonzero right eigenvector of the
restriction ofM to C1. All the entries ofw in the coordinates inC1 will be strictly positive. Fori, j ∈ S,
we define

µ(i, j) ∶= 1

Z
u(i)ν(j∣i)αθ(j∣i)1−αw(j) ,
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whereZ ∶= ∑i,j∈S u(i)ν(j∣i)αθ(j∣i)1−αw(j), which is strictly positive. Note thatµ ∈ M(S × S) and
µ ⪯ τ , soµ ⪯ ν andµ ⪯ θ. We also have, for alli ∈ S,

µ(i,∗) ∶= ∑
j∈S

µ(i, j) = 1

Z
λ1(M)u(i)w(i) ,

so we get

µ(j∣i) = ⎧⎪⎪⎨⎪⎪⎩
ν(j∣i)αθ(j∣i)1−αw(j)

λ1(M)w(i)
if i, j ∈ C1

0 otherwise,

where we have used the fact thatSτ = C1.
Multiplying the RHS of (20) by α(1 − α) for this choice ofµ gives

(1 − α)D(µ∥θ) +αD(µ∥ν) = ∑
i,j∈C1

µ(i, j) log µ(j∣i)
ν(j∣i)αθ(j∣i)1−α

= ∑
i,j∈C1

µ(i, j) log w(j)
λ1(M)w(i)

= − log λ1(M) ,
which also equalsα(1 − α) times the LHS of (20). This establishes the existence ofµ ∈ M(S × S)
satisfyingµ ⪯ ν andµ ⪯ θ and achieving equality in (20).

It remains to check that for allµ ∈M(S × S) satisfyingµ ⪯ ν andµ ⪯ θ we have the inequality

Rα(ν∥θ) ≤ 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν) . (25)

But, in view of (15), in (6) applied to probability distributions on(Sn,Fn), for n ≥ 2, we have already
proved that

Rα(νn∥θn) ≤ 1

α
D(µn∥θn) − 1

α − 1
D(µn∥νn) .

Dividing by n, lettingn →∞, and appealing to (16) establishes (25).
It remains to consider the caseα < 0. Let β ∶= 1 − α. Thenβ > 1. By definitionRα(ν∥θ) = Rβ(θ∥ν).

However, we have already proved that

Rβ(θ∥ν) = sup
{µ∈P(S) ∶ µ⪯θ}

( 1
β
D(µ∥ν) − 1

β − 1
D(µ∥θ)) .

This reads

Rα(ν∥θ) = sup
{µ∈P(S) ∶ µ⪯θ}

( 1
α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) ,

which establishes (21) in this case also and completes the proof of Theorem2.

9 Concluding remarks

We have given a variational characterization of Rényi divergence between two arbitrary probability dis-
tributions on an arbitrary measurable space in terms of relative entropies, for all values of the parameter
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defining the Rényi divergence. We also gave a variational characterization of the Rényi divergence rate
between two stationary finite state Markov chains in terms ofrelative entropy rates, for all values of the
parameter defining the Rényi divergence rate. A consequence of the latter development was an analog of
the variational formula of [1] for stationary finite state Markov chains.

While we restricted ourselves to stationary finite state Markov chains in the latter discussion, it is to be
expected that there will be versions of this variational characterization of Rényi divergence rate in a much
broader setting involving Markov ork-th order Markov processes in discrete time, and also in continuous
time. It would also be interesting to consider to what extentsuch a variational characterization might
generalize to the Rényi divergence rates between an arbitrary pair of stationary processes, assuming the
existence of the defining limit to start with, since even the understanding of the relative entropy rate at
this level of generality is somewhat limited [5].
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Rényi Divergence”,SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, pp. 18 -33, 2015.

[2] Patrick Billingsley.Probability and Measure.Second Edition, John Wiley & Sons Inc., New York,
1986.

[3] Amir Dembo and Ofer Zeitouni.Large Deviations Techniques and Applications.Second Edition.
Applications of Mathematics, Stochastic Modelling and Applied Probability, Vol. 38, Springer-
Verlag, New York, 1998.
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[8] Igal Sason. “On the Rényi Divergence, Joint Range of Relative Entropies, and a Channel Coding
Theorem”,IEEE Transactions on Information Theory, Vol. 62, No. 1, pp. 23 -34, 2016.

14



[9] E. Seneta.Non-negative Matrices and Markov Chains. Revised Printing, Springer Science + Busi-
ness Media Inc., New York, 2006.
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A Proof of the elementary variational formula in (2)

The second equality in (2) follows from the fact thatD(θ∥µ) =∞ if θ â µ.
Givenµ ∈ P(S) andg ∈ B(S), defineθ ∈ P(S) by dθ = 1

Z
egdµ, whereZ ∶= ∫S egdµ. Note thatθ ⪯ µ.

Then

∫
S
gdθ −D(θ∥µ) = ∫

S
gdθ − ∫

S
log(eg

Z
)dθ = logZ ,

which also equals of the LHS of (2).
It remains to show that for allθ ⪯ µ we have

log∫
S
egdµ ≥ ∫

S
gdθ −D(θ∥µ) .

Let θ′ ∶= dθ
dµ

. We have

log∫
S
egdµ ≥ log∫

{θ′>0}

eg

θ′
dθ ≥ ∫

{θ′>0}
(g − log θ′)dθ = ∫

S
gdθ −D(θ∥µ) ,

where the second step is justified by the concavity of the logarithm. This completes the proof. ◻

B Proof that the supremum in (9) is achieved

Givenθ ∈ P(S) andg ∈ B(S), let ν ∈ P(S) be defined by1
Z
e−gdν = dθ, whereZ ∶= 1

∫ egdθ
. Note thatν

andθ are mutually absolutely continuous.
Thus, for allα > 0, α ≠ 1, we have

Rα(ν∥θ) = 1

α(α − 1) log∫S Zαeαgdθ =
1

α − 1
logZ +

1

α(α − 1) log∫S eαgdθ .
On the other hand

1

α − 1
log∫

S
e(α−1)gdν −

1

α
log∫

S
eαgdθ =

1

α − 1
log∫

S
Zeαgdθ −

1

α
log∫

S
eαgdθ

=
1

α − 1
logZ +

1

α(α − 1) log∫S eαgdθ ,
which is the same.
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Suppose now thatα < 0. Letβ ∶= 1 −α. Thenβ > 1. For anyθ ∈ P(S) andg ∈ B(S), let ν ∈ P(S) be
defined by1

Z
e−gdν = dθ. Then 1

W
e−hdθ = dν, whereh ∶= −g andW = 1

∫S ehdν
= 1

Z
. We have then already

proved that

Rα(ν∥θ) ∶= Rβ(θ∥ν)
=

1

β − 1
logW +

1

β(β − 1) log∫S eβhdν
=

1

α
logZ +

1

α(α − 1) log∫S e(α−1)gdν
=

1

α − 1
logZ +

1

α(α − 1) log∫S eαgdθ ,
which completes the proof. ◻

C Proof of (10)

Consider first the caseα > 1. We may then assume thatν ⪯ θ, since otherwise the right hand side of (10)
is −∞. From (2), we have, for allµ ∈ P(S) such thatµ ⪯ ν that

1

α
∫
S
eαgdθ ≥ ∫

S
gdµ −

1

α
D(µ∥θ) .

From (5) we have

Rα(ν∥θ) ≥ 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν) ,

which means that
1

α
∫
S
eαgdθ ≥ ∫

S
gdµ −

1

α − 1
D(µ∥ν) −Rα(ν∥θ) .

Taking the supremum overµ ⪯ ν on the RHS of the preceding equation and using (2) gives

1

α
∫
S
eαgdθ ≥

1

α − 1
log∫

S
e(α−1)gdν −Rα(ν∥θ) ,

which was to be shown.
Next, suppose0 < α < 1. Giveng ∈ B(S) andν, θ ∈ P(S), if {ν′θ′ > 0} =η ∅ for some (and hence

every)η ∈ P(S) such thatν ⪯ η andθ ⪯ η (whereν′ ∶= dν
dη

andθ′ ∶= dθ
dη

), thenRα(ν∥θ) = ∞, and so
(10) is true. Otherwise, we can findµ ∈ P(S) such thatµ ⪯ ν andµ ⪯ θ. We know from the elementary
variational formula (2) that for everyµ ∈ P(S) we have

1

α
log∫

S
eαgdθ ≥ ∫

S
gdµ −

1

α
D(µ∥θ) ,

and
1

1 −α
log∫

S
e(1−α)hdν ≥ ∫

S
hdµ −

1

1 − α
D(µ∥ν) ,

whereh ∶= −g. Hence

1

α
log∫

S
eαgdθ +

1

1 −α
log∫

S
e(1−α)hdν ≥ −( 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) .
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But, from Theorem1, we know that there existsµ ∈ P(S) for which the RHS of the preceding equation
equals−Rα(ν∥θ). This shows that

1

α
log∫

S
eαgdθ ≥

1

α − 1
log∫

S
e(1−α)hdν −Rα(ν∥θ) ,

which establishes (10) in this case.
It remains to consider the caseα < 0. Let β ∶= 1 −α, soβ > 1. We have already proved that

1

β
log∫

S
eβhdν ≥

1

β − 1
log∫

S
e(β−1)hdθ −Rβ(θ∥ν) ,

whereh ∶= −g. Observing thatRβ(θ∥ν) = Rα(ν∥θ), this can be rewritten as

1

1 − α
log∫

S
e(α−1)gdν ≥ −

1

α
log∫

S
eαgdθ −Rα(ν∥θ) ,

which is (10) in this case, and completes the proof. ◻

D Proof of (17)

The second equality in (17) follows from the fact thatD(θ∥µ) =∞ if θ â µ.
Given µ ∈ M(S × S) andG = [g(i, j)] ∈ Rd×d, the matrixM ∶= [eg(i,j)µ(j∣i)] has nonnegative

entries and is compatible withµ, so ρ(M), i.e. the LHS of (17), is finite. LetSµ = ⊍lk=1Ck be the
decomposition of the support ofµ into classes. We may choose the indexing of the classes in such a way
thatρ(M) = logλ1(M).

Let u be a1 × d row vector whose entries are zero in the coordinates that arenot in C1, while its
restriction toC1 is a nonzero left eigenvector of the restriction ofM to C1. Note that all the entries ofu
in the coordinates inC1 are strictly positive. Similarly, letw be ad × 1 column vector whose entries are
zero in the coordinates that are not inC1, while its restriction toC1 is a nonzero right eigenvector of the
restriction ofM to C1. All the entries ofw in the coordinates inC1 will be strictly positive. Fori, j ∈ S,
we define

θ(i, j) ∶= 1

Z
u(i)eg(i,j)µ(j∣i)w(j) ,

whereZ ∶= ∑i,j∈S u(i)eg(i,j)µ(j∣i)w(j), which is strictly positive. Note thatθ ∈M(S × S) andθ ⪯ µ.
We also have, for alli ∈ S,

θ(i,∗) ∶= ∑
j∈S

θ(i, j) = 1

Z
λ1(M)u(i)w(i) ,

so we get

θ(j∣i) = ⎧⎪⎪⎨⎪⎪⎩
eg(i,j)µ(j∣i)w(j)

λ1(M)w(i)
if i, j ∈ C1

0 otherwise,

where we have used the fact thatSθ = C1.
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We may now compute

∑
i,j∈S

g(i, j)θ(i, j) −D(θ∥µ) = ∑
i,j∈S

g(i, j)θ(i, j) − ∑
i,j∈C1

θ(i, j) log ( eg(i,j)w(j)
λ1(M)w(i))

= ∑
i,j∈C1

w(i)θ(i, j) − ∑
i,j∈C1

θ(i, j)w(j) + logλ1(M)
= ρ(M) ,

which also equals of the LHS of (17). This establishes that for eachµ ∈M(S×S) andG = [g(i, j)] ∈ Rd×d

there existsθ ∈M(S × S) achieving equality in (17).
It remains to show that for allθ ∈M(S × S) such thatθ ⪯ µ we have

ρ([eg(i,j)µ(j∣i)]) ≥ ∑
i,j∈S

g(i, j)θ(i, j) −D(θ∥µ) . (26)

But, using (2) applied to the probability distributionµn on (Sn,Fn), for n ≥ 2, with g(i1, . . . , in) ∶=
∑n−1

k=1 g(ik, ik+1), we have already proved that

log ∑
i1,...,in

µ(i1,∗) n−1∏
k=1

eg(ik ,ik+1)µ(ik+1∣ik) ≥ ∑
i1,...,in

n−1

∑
k=1

g(ik, ik+1)µn(i1, . . . , in) −D(θn∥µn) .
Divide both sides byn and take the limit asn → ∞. Appealing to (16) and the definition of the growth
rate in (14) proves (26). This completes the proof of (17). ◻

E Proof of the existence of the limit in(18), and of Proposition1

Supposeα > 1 andν â θ. Thenνn â θn for all n ≥ 2 and so the limit on the RHS of (18) exists and equals
∞, as claimed in Proposition1.

If α > 1 andν ⪯ θ, thenνn ⪯ θn for all n ≥ 2, and so

Rα(νn∥θn) = 1

α(α − 1) ∑i1,...,in (ν(i1, i2)
n−1

∏
k=2

ν(ik+1∣ik))
α

(θ(i1, i2) n−1∏
k=2

θ(ik+1∣ik))
1−α

.

This is also the formula forRα(νn∥θn) when0 < α < 1, irrespective of whetherν ⪯ θ or not. It fol-
lows from the definition of the growth rate in (14) that the limit on the RHS of (18) exists and equals

1

α(α−1)ρ([ν(j∣i)αθ(j∣i)1−α]), as claimed in Proposition1.
Finally, supposeα < 0. Let β ∶= 1 − α. Then we haveβ > 1. We have therefore already proved

that limn→∞
1

n
Rβ(θn∥νn) exists and equalsR1−α(θ∥ν), as given in Proposition1. ButRβ(θn∥νn) equals

Rα(νn∥θn). Therefore the limit on the RHS of (18) exists, and since this is what we callRα(ν∥θ) it must
be the case thatRα(ν∥θ) equalsR1−α(θ∥ν), as claimed in Proposition1. This completes the proof. ◻

F Proof of Theorem 3 assuming the truth of Theorem2 and using
(17), and proofs of the two claims about(23)

We first verify the truth of the two claims about (23) which were made just after the statement of Theorem
3.

18



To exhibit the equivalence of the two forms (22) and (23) appearing in Theorem3, assume, for
instance, the truth of (22). Let β ∶= 1 − α andH = [h(i, j)] = −G, and conclude that for allβ ∈ R/{0,1},
ν ∈M(S × S), andH ∈ Rd×d we have

−
1

β
ρ([eβh(i,j)ν(j∣i)]) = inf

θ∈M(S×S)
( 1

1 − β
ρ([e(β−1)h(i,j)θ(j∣i)]) +R1−β(ν∥θ)) ,

or equivalently that

1

β
ρ([eβh(i,j)ν(j∣i)]) = sup

θ∈M(S×S)
( 1

β − 1
ρ([e(β−1)h(i,j)θ(j∣i)]) −Rβ(θ∥ν)) ,

which is (23). One can similarly go in the opposite direction.
To verify that the supremum on the RHS of (23) is achieved, givenθ ∈M(S×S), G = [g(i, j)] ∈ Rd×d,

andα ∈ R/{0,1}, observe thatN ∶= [eαg(i,j)θ(j∣i)] is compatible withθ. Let Sµ = ⊍lk=1Ck be the
decomposition of the support ofθ into classes. We may choose the indexing of the classes in such a way
thatρ(N) = logλ1(N).

Let M ∶= [eg(i,j)θ(j∣i)]. Observe thatM is also compatible withθ. Let u be a1 × d row vector
whose entries are zero in the coordinates that are not inC1, while its restriction toC1 is a nonzero left
eigenvector of the restriction ofM toC1. All the entries ofu in the coordinates inC1 are strictly positive.
Similarly, letw be ad × 1 column vector whose entries are zero in the coordinates thatare not inC1,
while its restriction toC1 is a nonzero right eigenvector of the restriction ofM to C1. All the entries of
w in the coordinates inC1 will be strictly positive. Fori, j ∈ S, we define

ν(i, j) ∶= 1

Z
u(i)eg(i,j)µ(j∣i)w(j) ,

whereZ ∶= ∑i,j∈S u(i)eg(i,j)µ(j∣i)w(j), which is strictly positive. Note thatν ∈M(S × S) andν ⪯ θ.
We also have, for alli ∈ S,

ν(i,∗) ∶= ∑
j∈S

ν(i, j) = 1

Z
λ1(M)u(i)w(i) ,

so we get

ν(j∣i) = ⎧⎪⎪⎨⎪⎪⎩
eg(i,j)θ(j∣i)w(j)

λ1(M)w(i)
if i, j ∈ C1

0 otherwise,

where we have used the fact thatSν = C1.
We now note that

ν(j∣i)αθ(j∣i)1−α = ⎧⎪⎪⎨⎪⎪⎩
eαg(i,j)θ(j∣i)w(j)α

λ1(M)αw(i)α
if i, j ∈ C1

0 otherwise.

Then we have

ρ([ν(j∣i)αθ(j∣i)1−α]) = ρ([eαg(i,j)θ(j∣i)1(i, j ∈ C1)]) − αρ(M) ,
= ρ([eαg(i,j)θ(j∣i)] − αρ(M) ,
= ρ(N) − αρ(M) (27)
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Here the first step can be seen by observing that thew(i)α terms fori ∈ C1 cancel each other out by
successive cancellation in the defintion of the growth rate as a limit. Equality in the second step depends
on the fact that we have chosenC1 such thatρ(N) = logλ1(N).

We also note that

e(α−1)g(i.j)ν(j∣i) = ⎧⎪⎪⎨⎪⎪⎩
eαg(i,j)θ(j∣i)w(j)

λ1(M)w(i)
if i, j ∈ C1

0 otherwise,

so we have

ρ([e(α−1)g(i.j)ν(j∣i)]) = ρ([eαg(i,j)θ(j∣i)w(j)
λ1(M)w(i) 1(i, j ∈ C1)]) ,

= ρ([eαg(i,j)θ(j∣i)1(i, j ∈ C1)]) − ρ(M) ,
= ρ([eαg(i,j)θ(j∣i)]) − ρ(M) ,
= ρ(N) − ρ(M) . (28)

Here the first step can be seen by observing that thew(i) terms fori ∈ C1 cancel each other out by
successive cancellation in the defintion of the growth rate as a limit, and equality in the second step
depends on the fact that we have chosenC1 such thatρ(N) = logλ1(N).

Sinceν ⪯ θ, we have

Rα(ν∥θ) = 1

α(α − 1)ρ([ν(j∣i)αθ(j∣i)1−α]) .
Multiplying (27) through by 1

α(α−1) and using (28) gives

Rα(ν∥θ) = 1

α − 1
ρ([e(α−1)g(i.j)ν(j∣i)]) − 1

α
ρ(N) ,

which demonstrates thatν works to show what what was claimed.
In order to prove Theorem3, it remains to show that for everyθ, ν ∈M(S ×S), G = [g(i, j)] ∈ Rd×d,

andα ∈ R/{0,1}, we have

1

α
ρ([eαg(i,j)θ(j∣i)]) ≥ 1

α − 1
ρ([e(α−1)g(i,j)ν(j∣i)]) −Rα(ν∥θ) . (29)

We prove this, assuming the truth of Theorem2, using (17). The proof is almost a verbatim copy of
that in AppendixC, except that we are now dealing with the case of stationary finite state Markov chains
rather than with the i.i.d. case.

Consider first the caseα > 1. We may then assume thatν ⪯ θ, since otherwise the right hand side of
(29) is −∞. From (17), we have, for allµ ∈M(S × S) such thatµ ⪯ ν that

1

α
ρ([eαg(i,j)θ(j∣i)]) ≥ ∑

i,j∈S

g(i, j)µ(i, j) − 1

α
D(µ∥θ) .

From (19) we have

Rα(ν∥θ) ≥ 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν) ,
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which means that

1

α
ρ([eαg(i,j)θ(j∣i)]) ≥ ∑

i,j∈S

g(i, j)µ(i, j) − 1

α − 1
D(µ∥ν) −Rα(ν∥θ) .

Taking the supremum overµ ⪯ ν on the RHS of the preceding equation and using (17) gives

1

α
ρ([eαg(i,j)θ(j∣i)]) ≥ 1

α − 1
ρ([e(α−1)g(i,j)ν(j∣i)]) −Rα(ν∥θ) ,

which was to be shown.
Next, suppose0 < α < 1. There is noµ ∈M(S × S) such thatµ ⪯ ν andµ ⪯ θ precisely when the

directed graph associated to[ν(i, j)αθ(i, j)1−α] has no cycles, and in this caseRα(ν∥θ) =∞, so (29) is
true. Therefore, we may assume that we can findµ ∈ P(S) such thatµ ⪯ ν andµ ⪯ θ. We know from
(17) that for everyµ ∈M(S × S) we have

1

α
ρ([eαg(i,j)θ(j∣i)]) ≥ ∑

i,j∈S

g(i, j)µ(i, j) − 1

α
D(µ∥θ) ,

and
1

1 − α
ρ([e(1−α)h(i,j)ν(j∣i)]) ≥ ∑

i,j∈S

h(i, j)µ(i, j) − 1

1 − α
D(µ∥ν) ,

whereh ∶= −g. Hence

1

α
ρ([eαg(i,j)θ(j∣i)]) + 1

1 −α
ρ([e(1−α)h(i,j)ν(j∣i)]) ≥ −( 1

α
D(µ∥θ) − 1

α − 1
D(µ∥ν)) .

But, from Theorem2, we know that there existsµ ∈ M(S × S) for which the RHS of the preceding
equation equals−Rα(ν∥θ). This shows that

1

α
ρ([eαg(i,j)θ(j∣i)]) ≥ 1

α − 1
ρ([e(1−α)h(i,j)ν(j∣i)]) −Rα(ν∥θ) ,

which establishes (29) in this case.
It remains to consider the caseα < 0. Let β ∶= 1 −α, soβ > 1. We have already proved that

1

β
ρ([eβh(i,j)ν(j∣i)]) ≥ 1

β − 1
ρ([e(β−1)h(i,j)θ(j∣i)]) −Rβ(θ∥ν) ,

whereh ∶= −g. Observing thatRβ(θ∥ν) = Rα(ν∥θ), this can be rewritten as

1

1 − α
ρ([e(α−1)g(i,j)ν(j∣i)]) ≥ − 1

α
ρ([eαg(i,j)θ(j∣i)]) −Rα(ν∥θ) ,

which is (29) in this case, and completes the proof. ◻
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