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Abstract—A distributed binary hypothesis testing problem, in
which multiple observers transmit their observations to a detector
over noisy channels, is studied. Given its own side information,
the goal of the detector is to decide between two hypotheses for
the joint distribution of the data. Single-letter upper and lower
bounds on the optimal type 2 error exponent (T2-EE), when
the type 1 error probability vanishes with the block-length are
obtained. These bounds coincide and characterize the optimal
T2-EE when only a single helper is involved. Our result shows
that the optimal T2-EE depends on the marginal distributions
of the data and the channels rather than their joint distribution.
However, an operational separation between HT and channel
coding does not hold, and the optimal T2-EE is achieved by
generating channel inputs correlated with observed data.

I. INTRODUCTION

Statistical inference and learning have assumed prime im-

portance in the fields of machine learning, data analytics and

communications applications. An important problem arising

in these scenarios is that of discerning the statistics of the

available data. This leads to the formulation of a hypothesis

testing (HT) problem, in which the objective is to identify the

underlying probability distribution of the data samples, from

among a set of candidate distributions. With the increasing

adaption of distributed sensing technologies and the Internet

of Things (IoT) paradigm, the data is often collected from

multiple remote locations and communicated to the detector

over noisy communication links. This naturally leads to the

problem of distributed statistical inference over noisy commu-

nication channels.

In this paper, we study the problem of distributed binary

HT over noisy channels depicted in Fig. 1. The detector is

interested in determining whether the data (U1, . . . , UL, V, Z)
is distributed according to PU1...ULV Z or QU1...ULV Z un-

der hypotheses H0 and H1, respectively. Each encoder l,

l = 1, . . . , L, observes k samples independent and identically

distributed (i.i.d) according to PUl
, and communicates its ob-

servation to the detector by n uses of the discrete memoryless

channel (DMC), characterized by the conditional distribution

PYl|Xl
. The detector decides between the two hypotheses H0

and H1 based on the channel outputs Y n
1 , . . . , Y n

L as well as

its own observations V k and Zk. Our goal is to characterize

the optimal type 2 error exponent (T2-EE) for this model

as a function of the bandwidth ratio, τ = n
k

, under the

constraint that the type 1 error probability is less than a

specified value. We will focus mostly on the special case

in which PU1...ULV Z = PU1...ULV |ZPZ and QU1...ULV Z =

PU1...UL|ZPV |ZPZ , known as the testing against conditional

independence (TACI) problem.

Distributed statistical inference under communication con-

straints was originally formulated by Berger in [1]. A simpli-

fied version of this is considered in [2], which studies binary

HT for the model in Fig. 1 when L = 1, Z is absent and the

channel between the encoder and the detector is a noise-free

channel of rate R. Ahlswede and Csiszár establish a single-

letter characterization of the optimal T2-EE for the testing

against independence (TAI) problem (including a strong con-

verse), along with single-letter lower bounds for the general

HT problem in [2]. For the same model, [3] provides a tighter

lower bound on the T2-EE, which coincides with that of [2]

for the TAI problem. An improved lower bound for the same

problem is obtained in [4] by introducing “binning” at the

encoder. HT for the model in Fig. 1 with noise free rate-

limited channels is studied in [5], and the authors establish

the optimality of binning for the TACI problem. A single-letter

characterization of the optimal T2-EE for the multi-terminal

TAI problem is obtained in [6] under a certain Markovian

condition. In a slightly different setting with two decision

centers, the optimal T2-EE for a three terminal dependence

testing problem is characterized in [7]. The optimal T2-EE,

when multiple interactions between the encoder and detector

are allowed, is studied in [8],[9]. We remark here that all the

above works consider rate-limited bit-pipes from the observers

to the detector, and to the best of our knowledge, HT over

noisy channels has not been studied previously.

Notations: The support of a random variable (r.v.) is de-

noted by calligraphic letters, e.g., X for r.v. X . The cardinality

of X is denoted by |X |. The joint distribution of r.v.’s X

and Y is denoted by PXY and its marginals by PX and PY .

X − Y −Z denotes that X, Y, Z form a Markov chain. For

m ∈ Z
+, Xm denotes the sequence X1, . . . , Xm, while Xm

l

denotes Xl,1, . . . , Xl,m associated with observer l. The group

of m r.v’s Xl,((j−1)m+1), . . . , Xl,((jm) is denoted by Xm
l (j),

and the infinite sequence Xm
l (1), Xm

l (2), . . . is denoted by

{Xm
l (j)}j∈Z+ . Similarly, for a subset S = {l1, . . . , ls}

of observers,
{

Xm
l1
, . . . , Xm

ls

}

,
{

Xm
l1
(j), . . . , Xm

ls
(j)
}

and
{

{

Xm
l1
(j)
}

j∈Z+ , . . . ,
{

Xm
ls
(j)
}

j∈Z+

}

are denoted by Xm
S ,

Xm
S (j) and {Xm

S (j)}
j∈Z+ , respectively. Following the nota-

tion in [10], TP and Tm
[X]δ

(or Tm
δ when there is no ambiguity)

denote the set of sequences of type P and the set of PX−
typical sequences of length m, respectively. D(P ||Q) denotes
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Fig. 1: Illustration of a distributed hypothesis testing system

over noisy channels

the Kullback-Leibler (KL) divergence between distributions P

and Q [10]. All logarithms are to the base 2. 1 denotes the

indicator function.

II. SYSTEM MODEL

All the r.v.’s considered henceforth are discrete with finite

support. Let k, n ∈ Z
+ be arbitrary. Let L = {1, . . . , L}

denote the set of observers which communicate to the detector

over orthogonal noisy channels, as shown in Fig. 1. For l ∈ L,

encoder l observes Uk
l and transmits Xn

l = f
(k,n)
l (Uk

l ),

where f
(k,n)
l : Uk

l → Xn
l is a stochastic mapping. Let

τ , n
k

denote the bandwidth ratio. The channel output

Y n
L is given by the probability law PY n

L
|Xn

L
(ynL|x

n
L) =

∏L

l=1

∏n

j=1 PYl|Xl
(yl,j |xl,j), i.e., the channels between the

observers and the detector are orthogonal and discrete mem-

oryless. Depending on the received symbols Y n
L and samples

(V k, Zk), the detector makes a decision between the two

hypotheses H0 : PULV Z or H1 : QULV Z according to the

decision rule g(k,n) : Yn
L × Vk × Zk → {0, 1} given by

g(k,n)(ynL, v
k, zk) = 1

(

(ynL, v
k, zk) ∈ Ac

)

, where A denotes

the acceptance region for H0. It is assumed that the r.v’s

UL, V and Z have the same marginal distributions under

both H0 and H1 and that QULV Z(uL, v, z) > 0 for all

(uL, v, z) ∈ UL×V×Z . In this paper, we focus mostly on the

special case when H0 : PULV |ZPZ and H1 : PUL|ZPV |ZPZ ,

i.e, TACI between V and UL given Z .

Let ᾱ
(

k, n, f
(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)

, PY n
L
V kZk(Ac)

and β̄
(

k, n, f
(k,n)
1 , . . . , f

(k,n)
1 , g(k,n)

)

, QY n
L
V kZk(A) de-

note the type 1 and type 2 error probabilities, respectively.

Define

β′
(

k, n, f
(k,n)
1 , . . . , f

(k,n)
L , ǫ

)

,

inf
g(k,n)

β̄
(

k, n, f
(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)

(1)

such that

ᾱ
(

k, n, f
(k,n)
1 , . . . , f

(k,n)
L , g(k,n)

)

≤ ǫ, (2a)

(Zk, V k)− Uk
l −Xn

l = f
(k,n)
l (Uk

l )− Y n
l , l ∈ L, (2b)

and let

β(k, τ, ǫ) , inf
f
(k,n)
1 ,...,f

(k,n)
L

,

n≤τk

β′
(

k, n, f
(k,n)
1 , . . . , f

(k,n)
L , ǫ

)

.

(3)

Note that β(k, τ, ǫ) is a non-increasing function of k and ǫ.

A T2-EE κ′ is said to be (τ, ǫ) achievable if there exists a

sequence of integers k, encoding functions f
(k,nk)
l : Uk →

Xnk , l ∈ L and decoding function g(k,n) such that nk ≤ τk,

∀ k, and for any δ > 0,

lim sup
k→∞

log (β(k, τ, ǫ))

k
≤ −(κ′ − δ). (4)

Let κ(τ, ǫ) , sup{κ′ : κ′ is (τ, ǫ) achievable}.

For k ∈ Z
+, we define

θ(k, τ) , sup
f
(k,n)
1 ,...,f

(k,n)
L

n≤τk

D
(

PY n
L
V kZk ||QY n

L
V kZk

)

k
, (5)

and

θ(τ) , sup
k

θ(k, τ). (6)

In this paper, we obtain single-letter upper and lower bounds

on κ(τ, ǫ) for the TACI problem. It is shown that the two

bounds coincide when L = 1. Our approach is similar to that

in [2], where we first obtain bounds for κ(τ, ǫ) in terms of

θ, and then show that θ has a single-letter characterization

in terms of information theoretic quantities. We establish

this characterization by considering the joint source-channel

coding (JSCC) problem with noisy helpers. The next lemma

obtains the bounds for κ(τ, ǫ) in terms of θ.

Lemma 1. For any bandwidth ratio τ > 0, we have

(i) lim supk→∞
log(β(k,τ,ǫ))

k
≤ −θ(τ), ǫ ∈ (0, 1).

(ii) limǫ→0 lim infk→∞ log
(

β(k,τ,ǫ)
k

)

≥ −θ(τ).

Proof: The proof is similar to that of Theorem 1 in

[2]. We prove (i) and omit the proof of (ii) due to space

limitations. Let k ∈ Z
+ and ǫ̃ > 0 be arbitrary, and ñk,

f̃
(k,ñk)
l , l ∈ L, and Ỹ ñk

L be the channel block length,

encoding functions and channel outputs respectively, such that

kθ(k, τ)−D
(

P
Y

ñk
L

V kZk ||QY
ñk
L

V kZk

)

< kǫ̃ . For each l ∈ L,
{

Ỹ ñk

l (j)
}

j∈Z+
form an infinite sequence of i.i.d. r.v.’s indexed

by j. Hence, by the application of Stein’s Lemma [2] to the

sequences
{

Ỹ ñk

L (j), V k(j), Zk(j)
}

j∈Z+
, we have

lim sup
j→∞

log (β(kj, τ, ǫ))

kj
≤ −(θ(k, τ)− ǫ̃). (7)

For m ≥ kj, β(m, τ, ǫ) ≤ β(kj, τ, ǫ). Hence,

lim sup
m→∞

log (β(m, τ, ǫ))

m
≤ lim sup

j→∞

log (β(kj, τ, ǫ))

kj
≤ −(θ(k, τ) − ǫ̃).



Note that the left hand side (L.H.S) of the above equation does

not depend on k. Taking supremum with respect to k on both

sides of the equation and noting that ǫ̃ is arbitrary, proves (i).

Remark 2. Part (ii) of Lemma 1 is known as the weak

converse for the HT problem in the literature, since it holds

only when type 1 error probability tends to zero. Also, (i) and

(ii) together imply that θ(τ) is the optimal T2-EE as ǫ → 0,

i.e., limǫ→0 κ(τ, ǫ) = θ(τ).

Part (i) of Lemma 1 proves the achievability of the T2-

EE θ(τ) using Stein’s Lemma. In Appendix A, we show an

explicit proof of the achievability by computing the type 1

and type 2 errors for a block-memoryless stochastic encoding

function at the observer and a joint typicality detector.

Note that for the TACI problem, the KL-divergence becomes

mutual information, and we have

θ(τ) = sup
f
(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

I(V k;Y n
L |Zk)

k

s.t. (Zk, V k)− Uk
l −Xn

l = f
(k,n)
l (Uk

l )− Y n
l , ∀ l ∈ L

Although Lemma 1 implies that θ(τ) is an achievable T2-

EE, it is in general not computable as it is defined in terms

of a multi-letter characterization. However, as we will show

below, for the TACI problem, single-letter bounds for θ(τ) can

be obtained. By the memoryless property of the sequences V k

and Zk, we can write

θ(τ) = H(V |Z)− inf
f
(k,n)
1 ,...,f

(k,n)
L

k,n≤τk

H(V k|Y n
L , Zk)

k
: (8)

(Zk, V k)− Uk
l −Xn

l = f
(k,n)
l (Uk

l )− Y n
l , ∀ l ∈ L.

In the next section, we introduce the L−helper JSCC

problem and show that the multi-letter characterization of this

problem coincides with obtaining the infimum in (8). The

computable characterization of the lower and upper bounds

for (8) then follows from the single-letter characterization of

the L−helper JSCC problem.

III. L−HELPER JSCC PROBLEM

Consider the model shown in Fig. 2 where there are L+ 2
correlated discrete memoryless sources (UL, V, Z) i.i.d. with

joint distribution PULV Z . For 1 ≤ l ≤ L, encoder l observes

the sequence Uk
l and transmits Xn

l = f
(k,n)
l (Uk

l ) over the

corresponding noisy channel, where f
(k,n)
l : Uk

l → Xn
l ,

whereas encoder L+ 1 observes V k, and outputs fk
L+1(V

k),
fk
L+1 : Vk → M = {1, . . . , 2kR}. The decoder has access

to side-information Zk, receives fk
L+1(V

k) error-free, and

also observes Y n
L , the output of the DMCs PYl|Xl

, l ∈ L.

The output of the decoder is given by the mapping g(k,n) :
(M,Yn

L,Z
k) → V̂ k. The decoder is interested in reconstruct-

ing V k losslessly. For a given bandwidth ratio τ , a rate R is

said to be achievable for the L−helper JSCC problem if for

Uk
1

Uk
L

Encoders

PY1|X1

PYL|XL

Vk

Yn
L

f
(k,n)
1 (Uk

1)...

Xn
1

f
(k,n)
L (Uk

L)
Xn

L

Yn
1

V̂k

Zk
fkL+1(V

k)

Decoder

g(k,n)
(

Yn
1 , . . . ,Y

n
L, fL+1(V

k),Zk
)

Fig. 2: L−helper JSCC problem.

every λ ∈ (0, 1], there exist a sequence of numbers δk ≥ 0

with limk→∞ δk = 0, encoders fk
L+1(·), f

(k,nk)
l (·), l ∈ L,

and decoder g(k,nk)(·, ·, ·), such that nk ≤ τk and

Pr
(

g(k,nk)
(

fk
L+1(V

k), Y nk

L , Zk
)

= V k
)

≥ 1− λ,

and
log(|M|)

k
≤ R+ δk.

The infimum of all achievable rates R for the L−helper JSCC

problem with bandwidth ratio τ is denoted by R(τ).

Next, we show that the problem of obtaining the infimum

in (8) coincides with the multi-letter characterization of R(τ)
for the L−helper JSCC problem. Let

Rk , inf
f
(k,n)
1 ,...,f

(k,n)
L

n≤τk

H(V k|Y n
L , Zk)

k
(9)

s.t. (Zk, V k)− Uk
l −Xn

l = f
(k,n)
l (Uk

l )− Y n
l , l ∈ L.

Theorem 3. For the L−helper JSCC problem,

R(τ) = inf
k
Rk.

Proof: The proof is given in Appendix B.

Having shown the equivalence between the multi-letter

characterizations of θ(τ) for the TACI problem over noisy

channels and R(τ) for the L−helper JSCC problem, our next

step is to obtain computable single-letter lower and upper

bounds on R(τ), which can then be used to obtain bounds on

θ(τ). For this purpose, we use the source-channel separation

theorem [11, Th. 2.4] for orthogonal multiple access channels.

The theorem states that all achievable average distortion-cost

tuples in a multi-terminal JSCC (MT-JSCC) problem over an

orthogonal multiple access channel (MAC) can be obtained

by the intersection of the rate-distortion region and the MAC

region. We need a slight generalization of this result when

there is side information Z at the decoder, which can be proved

similar to [11]. Note that the L−helper JSCC problem is a

special case of the MT-JSCC problem with L + 1 correlated

sources PULV and side information Z available at the decoder,

where the objective is to reconstruct V losslessly. Although

the above theorem proves that separation holds, a single-

letter expression is not available in general for the multi-

terminal rate distortion problem [12]. However, single-letter

inner and outer bounds have been given in [12], which enable



us to obtain single-letter upper and lower bounds on R(τ) as

follows.

Theorem 4. Let Cl , maxPXl
I(Xl;Yl), l ∈ L denote the

capacity of the channel PYl|Xl
, and τ the bandwidth ratio for

the L−helper JSCC problem. Define

Ri(τ) , inf
WL

max
S⊆L

FS , (10)

where

FS = H(V |WSc , Z) + I(US ;WS |WSc , V, Z)− τ
∑

l∈S

Cl

for some auxiliary r.v.’s Wl, l ∈ L, such that

(Z, V, Ulc , Wlc)− Ul −Wl, (11)

|Wl| ≤ |Ul|+ 4, and for all subsets S ⊆ L,

I(US ;WS |V,WSc , Z) ≤ τ

(

∑

l∈S

Cl

)

. (12)

Similarly, let Ro(τ) denote the right hand side (R.H.S) of (10),

when the auxiliary r.v.’s Wl, l ∈ L, satisfy (12), |Wl| ≤ |Ul|+4
and

(V, Ulc , Z)− Ul −Wl. (13)

Then,

Ro(τ) ≤ R(τ) ≤ Ri(τ), (14)

H(V |Z)−Ri(τ) ≤ θ(τ) ≤ H(V |Z)−Ro(τ). (15)

Proof: From the source-channel separation theorem, an

upper bound on R(τ) can be obtained by the intersection of

the Berger-Tung (BT) inner bound [12, Th. 12.1] with the

capacity region (C1, . . . , CL, CL+1), where CL+1 is the rate

available over the noiseless link from the encoder of source

V to the decoder. Writing the BT inner bound 1 explicitly, we

obtain that for all S ⊆ L (including the null-set),

I(US ;WS |V,WSc , Z) ≤
∑

l∈S

τCl,

I(US ;WS |V,WSc , Z) +H(V |WSc , Z) ≤
∑

l∈S

τCl + CL+1,

where the auxiliary r.v.’s WL satisfy (11) and |Wl| ≤ |Ul|+4.

Taking the infimum of CL+1 over all such WL and denoting it

by Ri(τ), we obtain the second inequality in (14). The other

direction in (14) is obtained similarly by using the BT outer

bound [12, Th. 12.2]. Since R(τ) is equal to the infimum in

(8), substituting (14) in (8) proves (15).

The BT inner bound is tight for the two terminal case,

when one of the distortion requirements is zero (lossless) [12,

Ch.12]. Thus, we have the following result (for convenience,

we drop the index 1 from the associated variables).

1
R

i(τ) can be improved by introducing a time sharing r.v. T (independent
of all the other r.v.’s) in the BT inner bound, but it is omitted here for
simplicity.

Lemma 5. For the TACI problem with L = 1 and bandwidth

ratio τ ,

θ(τ) = sup
W

I(V ;W |Z) (16)

such that I(U ;W |Z) ≤ τC, (17)

(Z, V )− U −W, |W| ≤ |U|+ 4 (18)

Proof: Note that the Markov chain conditions in (11) and

(13) are identical for L = 1. Hence,

Ri(τ) = Ro(τ) = R(τ). (19)

Using the BT inner bound in [12, Ch.12], we obtain R(τ) as

the infimum of R′ such that

H(V |Z,W ) ≤ R′ (20)

I(U ;W |V, Z) ≤ τC (21)

H(V |Z,W ) + I(U ;W |Z) ≤ τC +R′ (22)

for some auxiliary r.v. W satisfying (18). Hence,

R(τ) = inf
W

max
(

H(V |W,Z), H(V |W,Z)

+ I(U ;W |Z)− τC
)

(23)

such that (18) and (21) hold. We next prove that (23) can be

simplified as

R(τ) = inf
W

H(V |Z,W ) (24)

such that (17) and (18) are satisfied. This is done by showing

that, for every r.v. W for which I(U ;W |Z) > τC, there

exists a r.v. W̄ such that I(U ; W̄ |Z) = τC, H(V |W̄ , Z) ≤
H(V |W,Z)+I(U ;W |Z)−τC and (18) and (21) are satisfied

with W replaced by W̄ . Setting

W̄ =

{

W, with probability 1-p,

constant, with probability p,

suffices, where we choose p such that I(U ; W̄ |Z) = τC. The

details can be found in [13, Lemma 5]. Eqn. (16) now follows

from (15), (19) and (24).

Remark 6. We note here that the single-letter T2-EE char-

acterization in Lemma 5 exhibits a separation between the

distributions of the data sources U, V, Z and the channel

distribution PY |X . Together with the fact that the optimal R(τ)
in the L−helper JSCC problem is achieved by separate source

and channel coding, one might be inclined to assume that θ(τ)
for the TACI problem over noisy channels can also be achieved

by a communication scheme that performs independent HT

and channel coding, and the optimal T2-EE can be obtained

by simply replacing the rate constraints in the TACI T2-EE

expressions in [5] with the corresponding channel capacity

values. Although such a scheme is intuitively pleasing, the

T2-EE analysis for such a scheme would involve a tradeoff

between two competing error exponents, one being the T2-EE

assuming that an error does not occur in channel decoding,

and the other being the reliability function Er of the channel

PY |X [10]. The details of the analysis can be found in [13].



IV. CONCLUSIONS

We have studied the T2-EE for the distributed HT problem

over orthogonal noisy channels with side information available

at the detector. For the special case of TACI, single-letter upper

and lower bounds are obtained for the T2-EE, which are shown

to be tight when there is a single observer in the system. It is

interesting to note that the reliability function of the channel

does not play a role in the T2-EE, and a strict operational

separation between HT and channel coding does not apply

in general, even though the optimal T2-EE can be evaluated

using the marginal distributions of the data sources and the

channels, rather than their joint distributions. Obtaining single-

letter bounds for the general HT problem, and analyzing the

error exponents for the weighted sum of the type 1 and type

2 errors in the Bayesian setting are some of the interesting

problems for future research.

APPENDIX A

T2-EE USING JOINT TYPICALITY DETECTOR

Here, we provide the proof for the case L = 1. For given

arbitrary integers k and n such that n ≤ kτ , fix f
(k,n)
1 =

PXn
1 |Uk

1
. For any integer j and sequence u

kj
1 , the observer

transmits X
nj
1 = f

(kj,nj)
1 (ukj

1 ) generated i.i.d. according to
∏j

j′=1 PXn
1 |Uk

1 =uk
1 (j

′). The detector declares H0 : PU1V Z if
(

Y
nj
1 , V kj , Zkj

)

∈ T
j

[Y n
1 V kZk]δj

(here δj → 0 as j → ∞)

and H1 : QU1V Z otherwise. To simplify the exposition, we

denote (Y n
1 , V k, Zk) and T

j

[Y n
1 V kZk]δj

by Wk,n and T
j

[Wk,n]δj
,

respectively. By the Markov lemma [12], the type 1 error

probability tends to zero as j → ∞. The type 2 error

probability is bounded by

β′
(

kj, nj, f
(kj,nj)
1 , ǫ

)

≤ Q
Y

nj
1 V kjZkj

(

T
j

[Y n
1 V kZk]δj

)

≤
∑

P̃∈T
j

[Wk,n]δj

∑

w
j

k,n
∈TP̃

Q
W

j

k,n
(wj

k,n)

(a)
=

∑

P̃∈T
j

[Wk,n]δj

∑

w
j

k,n
∈TP̃

2−j(H(P̃ )+D(P̃ ||QWk,n))

(b)
=

∑

P̃∈T
j

[Wk,n]δj

2−jD(P̃ ||QWk,n)
(c)

≤ (j + 1)|Wk,n|2−jB(k,n)

where

Bk,n(j) , min
P̃∈T

j

[Wk,n]δj

D(P̃ ||QWk,n
).

(a), (b) and (c) follow from Lemma’s 2.3, 2.6 and 2.2 in [10],

respectively. Hence,

log
(

β′
(

kj, nj, f
(kj,nj)
1 , ǫ

))

kj
≤ −

Bk,n(j)

k
+ δ′k,n(j),

where δ′k,n(j) ,
|Wk,n| log(j+1)

kj
and |Wk,n| ≤ |Y|n|V|k|Z|k.

Note that for any k and n, δ′k,n(j) → 0 as j → ∞. Also,

since δj is chosen such that it tends to 0 as j → ∞,

Bk,n(j) converges to D(PWk,n
||QWk,n

) by the continuity of

D(P̃ ||QWk,n
) in P̃ for fixed QWk,n

. Since k, n and f
(k,n)
1 are

arbitrary, it follows from (4) and (6) that θ(τ) is an achievable

T2-EE for any upper bound ǫ on the type 1 error probability.

It is easy to see that this scheme can be generalized to L > 1.

APPENDIX B

PROOF OF THEOREM 3

For the achievability part, consider the following scheme.

Encoding: Fix k, n ∈ Z
+ and PXn

l
|Uk

l
at encoder l,

l ∈ L. Let j ∈ Z
+. On observing u

kj
l , encoder l

transmits X
nj
l = f

(kj,nj)
l (Ukj

l ) generated i.i.d. according

to
∏j

j′=1 PXn
l
|Uk

l
=uk

l
(j′). Encoder L + 1 performs uniform

random binning on V k, i.e, f
kj
L+1 : Vkj → M =

{1, 2, · · · , 2kjR}. By uniform random binning, we mean that

f
kj
L+1(V

kj) = m, where m is selected uniformly at random

from the set M.

Decoding: Let M denote the received bin index, and

δ > 0 be an arbitrary number. If there exists a

unique sequence V̂ kj such that f
kj
L+1(V̂

kj) = M and

(V̂ kj , Y
nj
L , Zkj) ∈ T

j

[V kY n
L
Zk]δ

, then the decoder outputs

g(kj,nj)(M,Y
nj
L , Zkj) = V̂ kj . Else, an error is declared.

It can be shown that the probability of decoding error tends

to 0 as j → ∞, if R > H(V k|Y n
L , Zk) + δ. The details can

be found in [13, Appendix B], along with the proof of the

converse.
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