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A Bound on the Shannon Capacity via a Linear

Programming Variation∗

Sihuang Hu† Itzhak Tamo‡ Ofer Shayevitz‡

Abstract

We prove an upper bound on the Shannon capacity of a graph via a linear
programming variation. We show that our bound can outperform both the Lovász
theta number and the Haemers minimum rank bound. As a by-product, we also
obtain a new upper bound on the broadcast rate of Index Coding.

1 Introduction

Let G = (V (G), E(G)) be an undirected graph. An independent set in G is a subset of
pairwise non-adjacent vertices. The independence number of G, denoted by α(G), is the
largest possible size of an independent set in G. For two graphs G and H , their strong
product G⊠H is a graph such that

1. the vertex set of G⊠H is the Cartesian product V (G)× V (H); and

2. any two distinct vertices (u, u′) and (v, v′) are adjacent in G ⊠ H if u ∼ v and
u′ = v′, or u = v and u′ ∼ v′, or u ∼ v and u′ ∼ v′.

The graph Gn is defined inductively by Gn = Gn−1
⊠ G. The Shannon capacity of a

graph G is defined by

Θ(G) := sup
n

n
√

α(Gn) = lim
n→∞

n
√

α(Gn) (1)
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where the limit exists by the supermultiplicativity of α(Gn) and Fekete’s Lemma.
This graph quantity was introduced by Shannon [18] as the zero-error capacity in

the context of channel coding. In this setup, a transmitter would like to communicate
a message to a receiver through the channel, and the receiver must decode the message
without error. This problem can be equivalently cast in terms of the confusion graph G
associated with the channel. The vertices of the confusion graph are the input symbols,
and two vertices are adjacent if the corresponding inputs can result in the same output.
It is easy to check that Gn is the confusion graph for n uses of the channel, and that
α(Gn) is the maximum number of messages that can be transmitted without error over
n uses of the channel.

Despite the apparent simplicity of the problem, a general characterization of Θ(G)
remains elusive. Several lower and upper bounds were obtained by Shannon [18],
Lovász [13] and Haemers [9]. These bounds are briefly reviewed in Section 2. In Sec-
tion 3 we present a new bound on the Shannon capacity via a variation on the linear
program pertaining to the fractional independence number of the graph. Next, we show
that the new bound can simultaneously outperform both the Lovász theta number and
the Haemers minimum rank bound. In Section 4, we leverage our bound to prove a new
upper bound for the broadcast rate of Index Coding. It should be noted that a frac-
tional version of the Haemers minimum rank bound, denoted minrkFf , was introduced
independently by Blasiak [6] and Shanmugam et al. [16], and investigated in more detail
by Bukh and Cox [8] very recently. This bound is at least as good as minrk∗F, one of our
new bounds. Nevertheless minrkFf is very difficult to compute, and our minrk∗F bound is

more tractable and provides a feasible way to approach minrkFf (see Remark 2 below for
more details).

2 Upper Bounds on the Shannon Capacity

In this section, we give a brief overview of three well-known upper bounds on the Shannon
capacity. Throughout this section let G be a graph with vertex set V (G) = {1, 2, . . . , m}.

2.1 Fractional Independence Number

The fractional independence number is the linear programming relaxation of the 0-1
integer linear programming that computes the independence number. More precisely,
the fractional independence number αf(G) is defined as the optimal value of the following
linear program:

maximize
∑

x

w(x)

subject to
∑

x∈C

w(x) ≤ 1 for every clique C in G,

w(x) ≥ 0.

(2)
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(A clique C in G is a subset of the vertices, C ⊆ V (G), such that every two distinct
vertices are adjacent in G.) From the duality theorem of linear programming, αf(G)
can also be computed as follows:

minimize
∑

C

q(C)

subject to
∑

C∋x

q(C) ≥ 1 for each vertex x in G,

q(C) ≥ 0.

(3)

(The optimal value of (3) is also called the fractional clique-cover number of G, and
denoted as χf (G).)

The following bound was first given by Shannon [18], and was also discussed in detail
by Rosenfeld [15].

Theorem 1. [18, Theorem 7] Θ(G) ≤ αf(G).

2.2 Lovász Theta Number

In his seminal paper [13], Lovász solved the long-standing problem of the Shannon
capacity of the pentagon graph, by introducing an important new graph invariant, called
the Lovász theta number. An orthonormal representation of G is a system of unit vectors
v1, . . . , vm in some Euclidean space Rd (d ≥ 1) such that if i and j are nonadjacent then
vi and vj are orthogonal (all vectors will be column vectors). The Lovász theta number
of G is defined as

ϑ(G) := min
c,vi

max
1≤i≤m

1

(cTvi)2

where the minimum is taken over all unit vectors c and all orthonormal representations
{v1, . . . , vm} of G. The following bound is the main result of [13].

Theorem 2. [13, Theorem 1] Θ(G) ≤ ϑ(G).

In the sequel we will also need the following results from [13]. The theta number of
odd cycles was calculated by Lovász [13].

Proposition 1. [13, Corollary 5] For odd n,

ϑ(Cn) =
n cos(π/n)

1 + cos(π/n)
.

In particular, for the pentagon graph, Lovász proved that Θ(C5) ≤ ϑ(C5) =
√
5,

which meets the lower bound given by Shannon [18]. Also, there exists the following
duality between G and its complementary graph G.
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Proposition 2. [13, Theorem 5] Let d range over all unit vectors and let {u1, . . . ,um}
range over all orthonormal representations of G. Then

ϑ(G) = max
d,ui

m
∑

i=1

(dT
ui)

2. (4)

For two graphs G = (V (G), E(G)) and H = (V (H), E(H)), their disjoint union,
denoted as G+H , is the graph whose vertex set is the disjoint union of V (G) and V (H)
and whose edge set is the disjoint union of E(G) and E(H). The Lovász theta number
is multiplicative with respect to the strong product, and additive with respect to the
disjoint union.

Proposition 3.

1. [13, Theorem 7] ϑ(G⊠H) = ϑ(G) · ϑ(H).

2. [11, Section 18] ϑ(G+H) = ϑ(G) + ϑ(H).

2.3 Haemers Minimum Rank Bound

Haemers [9, 10] proved a very useful upper bound based on the matrix rank as follows.
An m×m matrix B over some field is said to fit G if Bii 6= 0 for 1 ≤ i ≤ m, and Bij = 0
whenever vertices i and j are nonadjacent for 1 ≤ i, j ≤ m and i 6= j. Let B⊗n denote
the Kronecker product of n copies of B. It is easy to verify that if B fits G, then B⊗n

fits Gn.

Theorem 3. [10] If a matrix B fits a graph G, then Θ(G) ≤ rank(B).

For a graph G, Haemers [10] introduced the following graph invariant

minrk(G) := min{rank(B) : B fits G},

where the minimization is taken over all fields. By Theorem 3 it follows that Θ(G) ≤
minrk(G). Moreover, for a fixed field F, define

minrkF(G) := min{rank(B) : B over F fits G}.

It is easy to verify that minrkF is submultiplicative with respect to the strong product
and additive with respect to the disjoint union, i.e., for any two graphs G and H ,

minrkF(G⊠H) ≤ minrkF(G) ·minrkF(H),

minrkF(G+H) = minrkF(G) + minrkF(H).

The following example is provided by Haemers [9] to answer some problems raised in [13].
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Example 1. [9] Let G be the complement of the Schläfli graph, which is the unique
strongly regular graph1 with parameters (27, 16, 10, 8). Let A be the adjacency matrix of
G, and let I be the identity matrix of order 27. Then the matrix A− I fits the graph G,
and its rank over R is equal to 7. Hence minrk(G) ≤ minrkR(G) ≤ 7 < 9 = ϑ(G). This
improves the bound given by the Lovász theta number. Moreover, Tims [20, Example
3.8] proved that minrkF(G) ≥ 7 over any field F, and therefore minrk(G) = 7. Similarly,
the rank of the matrix A− I over the field F11 is also equal to 7, hence minrkF11

(G) = 7
(this fact will be used in Example 7 and Remark 3).

3 A Linear Programming Variation

In this section we will prove our main result, providing a new upper bound on the
Shannon capacity by a variation of the linear programming bound given in (2)-(3). For
a subset S ⊂ V (G), the induced subgraph GS is the graph whose vertex set is S and
whose edge set consists of all of the edges in E that have both endpoints in S.

Let f be a real-valued function defined on graphs, and let f ∗(G) be the optimal value
of the following linear program:

maximize
∑

x

w(x)

subject to
∑

x∈S

w(x) ≤ f(GS) for each subset S of V (G),

w(x) ≥ 0.

(5)

By duality f ∗(G) can also be computed as follows:

minimize
∑

S

q(S)f(GS)

subject to
∑

S∋x

q(S) ≥ 1 for each vertex x in G,

q(S) ≥ 0.

(6)

Remark 1. The non-negative real-valued function q : 2V (G) → R in (6), satisfying that
∑

S∋x q(S) ≥ 1 for each vertex x in G, is called a fractional cover of G by Körner,
Pilotto and Simonyi [12]. The fractional cover is used to generalize the local chromatic
number to provide an upper bound for the Sperner capacity of directed graphs2, cf. [12,
Theorem 6]. Note that for undirected graphs, the bounds in [12] are always no stronger

1A strongly regular graph with parameters (v, k, λ, µ) is a regular graph with v vertices and degree k
such that every two adjacent vertices have λ common neighbours, and every two non-adjacent vertices
have µ common neighbours.

2The Sperner capacity of directed graphs is a natural generalization of the Shannon capacity of
undirected graphs. See [12] for definitions of the local chromatic number and the Sperner capacity.
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than the fractional independence number, and hence are not useful upper bounds for
the Shannon capacity.

By taking q(S) = 1 for S = V (G) and q(S) = 0 otherwise, it is readily verified that
f ∗(G) ≤ f(G). In the next two lemmas, we show that if the function f satisfies certain
properties, then these properties are also inherited by f ∗. We say that f is an upper
bound on the independence number if α(G) ≤ f(G) for any graph G.

Lemma 1. If f is an upper bound on the independence number, then so is f ∗.

Proof. This result can be proved directly using the primal linear program (5). However
we would like to present a different proof using the dual linear program (6) and a counting
argument as follows. Let Γ be any independent set in G and q a fractional cover of G.
Since f(GS) ≥ α(GS), we have

∑

S

q(S)f(GS) ≥
∑

S

q(S)α(GS)

≥
∑

S

q(S)α(GS∩Γ)

=
∑

x∈Γ

∑

S∋x

q(S)

≥ |Γ|.

This proves the result.

We say that f is submultiplicative (with respect to the strong product) if for any two
graphs G and H , f(G⊠H) ≤ f(G)f(H).

Lemma 2. If f is submultiplicative, then so is f ∗.

Proof. Let q1 and q2 be optimal solutions of the linear program (6) for G and H respec-
tively. Now we assign weights q(W ) to each subset W of V (G⊠H) as follows: if W =
S × T for some S ⊂ V (G) and T ⊂ V (H), then we set q(W ) = q(S × T ) = q1(S)q2(T );
otherwise we set q(W ) = 0. Then for each vertex (x, y) in V (G⊠H), we have

∑

W∋(x,y)

q(W ) =
∑

S∋x,T∋y

q(S × T )

=
∑

S∋x

q1(S)
∑

T∋y

q2(T )

≥ 1.
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So q is a feasible solution for (6), and

f ∗(G⊠H) ≤
∑

W

q(W )f((G⊠H)W )

=
∑

S,T

q(S × T )f((G⊠H)S×T )

=
∑

S,T

q1(S)q2(T )f(GS ⊠HT )

≤
∑

S

q1(S)f(GS)
∑

T

q2(T )f(HT )

=f ∗(G) · f ∗(H)

in which the second inequality follows from the submultiplicativity of f . This proves the
result.

Now we can prove the following upper bound on the Shannon capacity.

Theorem 4. Let f be a submultiplicative upper bound on the independence number.
Then,

Θ(G) ≤ f ∗(G).

Proof. By Lemma 1 and Lemma 2, we get α(Gn) ≤ f ∗(Gn) ≤ f ∗(G)n.

Any function f that is a submultiplicative upper bound on the independence number
forms by itself an upper bound on the Shannon capacity, i.e., Θ(G) ≤ f(G). Combining
this with Theorem 4 and the fact that f ∗(G) ≤ f(G) we get Θ(G) ≤ f ∗(G) ≤ f(G).
Simply put, this chain of inequalities shows that f ∗ is a bound that is at least as good
as the bound f that we started with in the first place. An immediate question is, can
we get the strict inequality f ∗(G) < f(G)? In other words, can we improve the bound f
on the Shannon capacity by solving the corresponding linear programming problem? In
the sequel, we give an affirmative answer to this question by providing several explicit
examples where a strict inequality holds. Furthermore, we answer the following two
natural questions: 1) which functions f should we use in Theorem 4? and 2) do we
always get a tighter upper bound for any function f?

Before we proceed to answer those questions, we show some simple properties of f ∗,
which are used later. We say that f is superadditive with respect to the disjoint union
if f(G+H) ≥ f(G) + f(H) for any two graphs G and H .

Proposition 4.

1. If f(C) = 1 for each clique C in G, then f ∗(G) ≤ αf(G). In particular, minrk∗F(G) ≤
αf(G).

2. f ∗(G+H) ≤ f ∗(G) + f ∗(H).
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3. If f is superadditive, then f ∗(G+H) = f ∗(G)+f ∗(H). In particular, minrk∗F(G+
H) = minrk∗F(G) + minrk∗F(H).

Proof. 1) Follows directly from (5). 2) Follows directly from (6). 3) Let w1 and w2 be
optimal solutions of the primal linear program (5) for G and H respectively. We define
an assignment w for G +H as follows: w(x) = w1(x) if x ∈ V (G) and w(y) = w2(y) if
y ∈ V (H). By the superadditivity of f , we can verify that w is a feasible solution of (5)
for G + H , and thus f ∗(G + H) ≥ f ∗(G) + f ∗(H). Combining it with 2) proves that
f ∗(G +H) = f ∗(G) + f ∗(H). The second equality follows from the fact that minrkF is
additive with respect to the disjoint union.

3.1 A New Bound minrk∗
F

Now we take f = minrkF which is a submultiplicative upper bound on the Shannon
capacity, and show that there exist graphs such that our new bound minrk∗F can outper-
form both minrk and Lovász theta number. The following three examples show several
instances of it. Example 2 shows a family of graphs where our bound outperforms minrk
but not Lovász theta number.

Example 2. For odd n ≥ 5, it is not hard to verify that minrk(Cn) = minrkR(Cn) =
(n + 1)/2. By 1) of Proposition 4 we have minrk∗R(Cn) ≤ αf (Cn) = n/2 < minrk(Cn).
If we let w(x) = 1/2 for every vertex x of Cn, then we can readily verify that {w(x) :
x ∈ V (Cn)} is a feasible solution of (5). It follows that minrk∗R(Cn) ≥ n/2, and thus
minrk∗R(Cn) = n/2.

Example 3 provides a family of graphs where our bound outperforms simultaneously
both minrk and Lovász theta number, however it might seem a bit artificial since it is a
disjoint union of two graphs.

Example 3. Let G be the complement of the Schläfli graph. Then for odd n ≥ 5,
by Proposition 1, Proposition 3, and Examples 1-2,

ϑ(G + Cn) = ϑ(G) + ϑ(Cn) = 9 +
n cos(π/n)

1 + cos(π/n)
,

minrk(G+ Cn) = minrk(G) + minrk(Cn) = 7 +
n + 1

2
.

On the other hand, by 3) of Proposition 4,

minrk∗R(G+ Cn) = minrk∗R(G) + minrk∗R(Cn) ≤ 7 +
n

2
.

Hence Θ(G+Cn) ≤ minrk∗R(G+Cn) ≤ 7+ n
2
< 7+ n+1

2
= min{minrk(G+Cn), ϑ(G+Cn)}.

In Example 4 we construct a connected graph for which our bound also outperforms
both minrk and Lovász theta number.
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Figure 1: The graph G in Example 4

Example 4. Let G be the graph as plotted in Fig. 1. Note that GT , the induced
subgraph of G on the vertices T = {1, 2, . . . , 27}, is the complement of the Schläfli
graph, and the vertex 28 of G is connected to vertices 1, . . . , 5, 11, 12, 23 and 27. Using
Sagemath [19] one can verify that ϑ(G) = 9. From Proposition 7 in Appendix we see
that minrk(G) = 8. Take f = minrkR, and consider the following linear program:

maximize
∑

x

w(x)

subject to
∑

x∈C

w(x) ≤ minrkR(C) = 1 for every clique C in G,

∑

x∈T

w(x) ≤ minrkR(GT ) = 7,

w(x) ≥ 0.

(7)

Using Sagemath [19] one can compute that the optimal value of (7) is equal to 71/9.
Comparing (7) with (5), we have minrk∗R(G) ≤ 71/9 < 8 = min{minrk(G), ϑ(G)}.

The following result shows that we cannot always get a tighter bound through this
linear programming variation.

Proposition 5. Fix a field F. Let G = (V,E) be a graph such that minrkF(G) < ϑ(G)
and for any subset S ( V we have minrkF(GS) ≥ ϑ(GS). Then minrk∗F(G) = minrkF(G).

Proof. By definition minrk∗F(G) ≤ minrkF(G). Now we show that minrk∗F(G) ≥ minrkF(G).
Suppose that {q(S) : S ⊂ V } is an optimal solution for (6). It is easy to see that

9



q(V ) ≤ 1, otherwise {q(S) : S ⊂ V } is not an optimal solution for (6). We have

minrk∗F(G) =
∑

S

q(S)minrkF(GS)

= q(V )minrkF(G) +
∑

S(V

q(S)minrkF(GS)

≥ q(V )minrkF(G) +
∑

S(V

q(S)ϑ(GS).

By Proposition 6 below we have

ϑ(G) = ϑ∗(G) ≤ q(V )ϑ(G) +
∑

S(V

q(S)ϑ(GS).

Hence

minrk∗F(G) ≥ q(V )minrkF(G) + (1− q(V ))ϑ(G) ≥ minrkF(G).

This concludes our proof.

The following example shows that there exist graphs satisfying the conditions of
Proposition 5.

Example 5. Fix a field F. Let G be a graph such that minrkF(G) < ϑ(G). If
minrkF(GS) ≥ ϑ(GS) for any subset S ( V (G), then minrk∗F(G) = minrkF(G) by
Proposition 5. Otherwise, let S be a subset of V (G) with the smallest size among those
subsets such that minrkF(GS) < ϑ(GS). Obviously, the induced subgraph GS satisfies
the conditions of Proposition 5, hence minrk∗F(GS) = minrkF(GS). (Note that there are
many graphs for which minrkF(G) < ϑ(G), e.g. the complement of the Schläfli graph
for F = R.)

3.2 Bounds for Disjoint Union of Graphs

For the Shannon capacity of the disjoint union of two graphs, we have the following
simple observation.

Corollary 1. Θ(G+H) ≤ min{minrk(G) + αf(H), αf(G) + minrk(H)}.

Proof. Suppose minrk(G) = minrkF(G) for some field F. By Theorem 4 and Proposi-
tion 4, we have Θ(G +H) ≤ minrk∗F(G +H) = minrk∗F(G) + minrk∗F(H) ≤ minrk(G) +
αf(H). Similarly, we can prove that Θ(G + H) ≤ αf (G) + minrk(H). This concludes
the proof.

10



Next, we shall combine the Lovász theta number and minrkF through a weighted
geometric mean to get another upper bound on the Shannon capacity of the disjoint
union. Fix a field F and suppose 0 ≤ a ≤ 1. Then we can easily verify that

ϑaminrk∗1−a
F (G) := ϑ(G)aminrk∗F(G)1−a

is also a submultiplicative upper bound on the independence number.

Corollary 2. For a fixed field F and a number a ∈ [0, 1],

Θ(G+H) ≤ ϑaminrk∗1−a
F (G) + ϑaminrk∗1−a

F (H).

Proof. As ϑaminrk∗1−a
F is a submultiplicative upper bound on the independence number,

by Theorem 4 we have

Θ(G+H) ≤ (ϑaminrk∗1−a
F )∗(G+H)

≤ (ϑaminrk∗1−a
F )∗(G) + (ϑaminrk∗1−a

F )∗(H)

≤ ϑaminrk∗1−a
F (G) + ϑaminrk∗1−a

F (H).

Here the second inequality follows from (2) of Proposition 4.

Example 6. Let G be the complement of the Schläfli graph. Consider the graph H =
G + 7C5. It is not hard to verify that ϑ(H) = 9 + 7

√
5 and minrkR(H) = 28. By

Corollary 2,

Θ(H) ≤ ϑaminrk∗1−a
R (G) + 7 · ϑaminrk∗1−a

R (C5)

= ϑ(G)a ·minrk∗R(G)1−a + 7 · ϑ(C5)
a ·minrk∗R(C5)

1−a

≤ 9a71−a + 7(
√
5)a

(

5

2

)1−a

.

For a = 0.287291 the term 9a71−a + 7(
√
5)a

(

5
2

)1−a
= 24.4721 achieving its minimum

value on [0, 1]. Note that this value is strictly better than ϑ(H) (a = 1) and minrkR(H).

Lastly, if we take f to be the Lovász theta number, our new bound cannot improve
it.

Proposition 6. ϑ∗(G) = ϑ(G).

Proof. From the primal linear program (5) we immediately get ϑ∗(G) ≤ ϑ(G). On the
other hand, let d and {u1, . . . ,um} be an optimal solution for (4). For each vertex
i, 1 ≤ i ≤ m, we set w(i) = (dT

ui)
2. Then for each subset S of V (G), we have

∑

i∈S

w(i) =
∑

i∈S

(dT
ui)

2 ≤ ϑ(GS)

by Proposition 2. Hence {w(i) : 1 ≤ i ≤ m} is a feasible solution for (5), and ϑ(G) =
∑

1≤i≤mw(i) ≤ ϑ∗(G).
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4 A New Upper Bound for Index Coding

In this section we show that our technique also allows us to derive a new bound for the
Index Coding problem to be defined next. In the Index Coding problem, a sender holds
a set of messages to be broadcast to a group of receivers. Each receiver is interested in
one of the messages, and has some prior side information comprising some subset of the
other messages. This variant of source coding problem was first proposed in [5] by Birk
and Kol, and later investigated in [4] by Bar-Yossef et al.

The Index Coding problem can be formalized as follows: the sender holdsmmessages
x1, x2, . . . , xm ∈ Σ where Σ is the set of possible messages, and wishes to send them to
m receivers R1, R2, . . . , Rm. Receiver Rj wants to receive the message xj , and knows
some subset N(j) of the other messages. The goal is to construct an efficient encoding
scheme E : Σm → Ω, where Ω is a finite alphabet to be transmitted by the sender,
such that for any (x1, x2, . . . , xm) ∈ Σm, every receiver Rj is able to decode the message
xj from the value E(x1, x2, . . . , xm) together with his own side information N(j). We
associate a directed graph G with the side-information subset N(j), whose vertex set
is [m] = {1, 2, . . . , m}, and whose edge set consists of all ordered pairs (i, j) such that
xj ∈ N(i). Here and in what follows, we further assume that the side-information graph
G is undirected, that is, if xj ∈ N(i) then xi ∈ N(j). For messages that are t bits long,
i.e. |Σ| = 2t, we use βt(G) to denote the corresponding minimum possible encoding
length ⌈log2 |Ω|⌉. The broadcast rate of the side-information graph G is defined as

β(G) := inf
t

βt(G)

t
= lim

t→∞

βt(G)

t
,

where the limit exists by subadditivity of βt(G) and Fekete’s Lemma. That is to say
that β(G) is the average asymptotic number of broadcast bits needed per bit of input.
This quantity has received significant interest, and in this section we prove a new upper
bound for it. In [5, 4, 14], it was proved that

α(G) ≤ β(G) ≤ minrkF(G) ≤ χ(G) (8)

(here F is an arbitrary finite field and χ(G) is the clique-cover number of G). On the
other hand, Blasiak et al. [7] proved that β(G) ≤ αf(G). For more background and
details on the Index Coding problem, see [5, 4, 2, 7] and references therein.

Similarly as in Section 3, let f be a real-valued function defined on graphs, and let
f ∗(G) be the optimal value of (5). Now we show that if f is an upper bound on the
broadcast rate, that is, β(G) ≤ f(G) for any graph G, then f ∗ is also an upper bound
on the broadcast rate. The proof is a simple extension of [7, Claim 2.8].

Theorem 5. If f is an upper bound on the broadcast rate, then so is f ∗.

Proof. Let q∗ be an optimal solution of the linear program (6). Without loss of generality,
we can assume that each q∗(S), S ⊂ V (G) is a nonnegative rational number, otherwise
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we can choose a rational number arbitrarily close to q∗(S). By (6) we get f ∗(G) =
∑

S q
∗(S)f(GS) and

∑

S∋x q
∗(S) ≥ 1 for every vertex x in G. Let t be a positive integer

such that all the numbers t · q∗(S) are integers, and let yS = t · q∗(S) for each S ⊂ V (G).
Then

t · f ∗(G) =
∑

S

ySf(GS) and
∑

S∋x

yS ≥ t for every vertex x in G.

Namely, we cover the graph G using a collection of yS copies of S for each S ⊂ V (G).
Set p =

∑

S yS. Then, altogether we have a sequence of p subsets S1, S2, . . . , Sp, in which
each S ⊂ V (G) appears yS times, such that every vertex inG appears in at least t of these
subsets. By assumption, for each induced side-information graph GSi

(1 ≤ i ≤ p), the
average asymptotic number of broadcast bits needed per bit of input is upper bounded
by f(GSi

). Concatenating these p individual index codes for the graph GSi
(if for some

vertex x,
∑

S∋x yS > t, then we may ignore extra bits), we can see that the average
asymptotic number of broadcast bits needed per bit of input for graph G is upper
bounded by

∑

i f(GSi
)/t =

∑

S ySf(GS)/t = f ∗(G). This concludes the proof.

Let us now consider the function f(G) = inf
F
minrkF(G) for any graph G, where the

infimum ranges over all finite fields F. By (8) we see that f is an upper bound on
the broadcast rate, hence so is f ∗ by Theorem 5. Note that for different graphs, the
value of f may be obtained as the minimum rank over different fields. Therefore, the
achievable scheme given by an optimal solution of the corresponding linear program (6)
might yield a scheme that uses several different fields simultaneously. More simply, we
can take f(G) = minrkF(G) for some fixed finite field F. As minrkF is an upper bound
for the broadcast rate by (8), we can get the following result directly from Theorem 5.

Corollary 3. For any graph G and any finite field F, β(G) ≤ minrk∗F(G).

By 1) of Proposition 4, minrk∗F(G) ≤ αf (G). Hence the bound minrk∗F is at least
as good as minrkF and αf . The following example shows that sometimes minrk∗F can
simultaneously outperform both minrkF and αf .

Example 7. Let G and T be defined as in Example 4. From Example 1 we have
minrkF11

(GT ) = 7. Similarly as in Example 4 we get minrk∗F11
(G) ≤ 71/9, which is

better than minrkF (as minrk(G) = 8) and αf (as αf (G) ≥ ϑ(G) = 9).

Remark 2. Blasiak [6] and Shanmugam et al. [16] independently3 obtained expressions
for the infimum of the broadcast rate of vector linear broadcasting schemes 4 over all
finite fields as follows. Let G be a graph with vertex set V (G) = {1, 2, . . . , m}, and let B

3Here we adopt the notion in Blasiak [6], which is slightly different from that in Shanmugam et
al. [16].

4A vector linear broadcasting scheme over a finite field F is a scheme in which the message alphabet
Σ is a finite dimensional vector space over F and the encoding and decoding functions are linear.
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be an m×m matrix whose entries are k × k matrices over some field F. We say that B
fractionally represents the side-information graph G over Fk if Bii is the identity matrix
of size k, and Bij is the zero matrix of size k whenever i and j are nonadjacent. The
fractional minrank of G is defined by

minrkFf(G) := inf
k

min{rank(B) : B fractionally represents G over Fk}
k

(9)

and
minrkf(G) := inf

F
minrkFf(G).

It is shown in [6, 16] that minrkFf(G) is the infimum of the broadcast rate of all vector lin-
ear broadcasting schemes over F. On the other hand, we can obtain a vector linear broad-
casting scheme over F of rate minrk∗F(G), by using a vector linear broadcasting scheme
of rate minrkF(GSi

) for each induced subgraph GSi
in the proof of Theorem 5. Hence

β(G) ≤ minrkFf(G) ≤ minrk∗F(G). Note that it is very difficult to compute minrkFf(G)

via (9). But our graph invariant minrk∗F(G) provides a way to approach minrkFf(G),

since we can always get an upper bound for minrk∗F(G), and thus for minrkFf(G), by
solving the linear programming problem (6) or its subproblems obtained by removing
some constraints from (6). Blasiak [6] and Shanmugam et al. [16] also proved that
Θ(G) ≤ minrkFf(G). See [8] for more properties of minrkFf .

Remark 3. In [8] Bukh and Cox asked the following question: Are there graphs for
which ϑ(G) < minrk(G), yet minrkf (G) < ϑ(G)? Example 6 gives an affirmative answer
to this question. Recall that we let G be the complement of the Schläfli graph and
consider the graphG+7C5. Then ϑ(G+7C5) = 9+7

√
5 < minrk(G+7C5) = 7+7·3 = 28.

On the other hand, minrkf(G+ 7C5) ≤ minrk∗F11
(G+ 7C5) ≤ 7 + 7 · 2.5 = 24.5 which is

strictly less than ϑ(G + 7C5).

Remark 4. Shanmugam, Dimakis and Langberg [17] presented an upper bound for
the broadcast rate of general side-information graphs using the local chromatic number.
Later, this bound is further extended by Arbabjolfaei and Kim [3, Theorems 3–4] and
Agarwal and Mazumdar [1, Theorems 3–5] via linear programming. Similarly as in
Remark 1, for undirected graphs, it is not hard to check that those bounds are always
no stronger than the fractional independence number.

Appendix

Lemma 3. [20, Theorem 3.6] Let G be a graph, let I = {v1, . . . , vk} be a maximum
independent set in G, and let u be a vertex not in I. Set J = N(u) ∩ I, which is
nonempty since I is maximum. If there exists another vertex w ∈ V (G)\(I ∪ {u}) that
is adjacent to u but not adjacent to any vertex of J , then delete the edge (u, w), and let
H be the resulting spanning subgraph of G. Then

minrk(G) = α(G) if and only if minrk(H) = α(G).
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Proof. (This proof was given by Tims in [20]). It is easy to see that α(G) ≤ minrk(G) ≤
minrk(H). Hence if minrk(H) = α(G), then minrk(G) = α(G). Now we assume that
minrk(G) = α(G) = k, and let B be a matrix that fits G with rank(B) = k. Without
loss of generality, we can assume that J = {v1, v2, . . . , vl} where 1 ≤ l ≤ k, and all
digonal entries of the matrix B are equal to 1. Then we can write the matrix B as
follows:































v1 v2 ... vl vl+1 ... vk u w

v1 1 0 . . . 0 0 . . . 0 ∗ 0
v2 0 1 . . . 0 0 . . . 0 ∗ 0
...

...
...

. . .
...

...
. . .

...
...

vl 0 0 . . . 1 0 . . . 0 ∗ 0
vl+1 0 0 . . . 0 1 . . . 0 0 ∗
...

...
...

. . .
...

...
. . .

...
...

vk 0 0 . . . 0 0 . . . 1 0 ∗
u ∗ ∗ . . . ∗ 0 . . . 0 1 ∗
w 0 0 . . . 0 ∗ . . . ∗ ∗ 1































.

(Here the entry indicated by ∗ can be any value, and we only present part of the matrix
B.) Since rank(B) = k and the first k rows of B are independent, all the rows of B can
be written as linear combinations of the first k rows. In particular, we can easily verify
that the row indicated by u must be a linear combination of the first l rows, and hence
Buw = 0. Similarly, we have Bwu = 0. Therefore matrix B also fits H , and it follows
that minrk(H) = k = α(G).

Proposition 7. Let G be the graph as plotted in Figure 1. Note that the induced subgraph
of G on the vertices T = {1, 2, . . . , 27} is the complement of the Schläfli graph. Then
minrk(G) = 8.

Proof. It can be checked that the set I = {8, 9, 13, 15, 19, 25, 28} is a maximum indepen-
dent set of G. Hence minrk(G) ≥ |I| = 7. On the other hand, from the minimum rank
of the complement of the Schläfli graph (see Example 1), we have minrk(G) ≤ 7+1 = 8.
Now we use Lemma 3 to show that minrk(G) = 8. First, let u = 6. Then the neighbors
of u are N(6) = {5, 13, 14, 17, 18, 21, 22, 25, 26, 27}, and J = N(6) ∩ I = {13, 25}. Set
W = {5, 17, 18, 21, 22, 27}. We can check that every vertex w in W satisfies the con-
ditions in Lemma 3. Secondly, let u = 17. Then N(17) = {1, 4, 7, 9, 12, 19, 20, 22, 24},
and J = N(17) ∩ I = {9, 19}. Set W = {1, 4, 12, 22, 24}. We can also check that
every vertex w in W satisfies the conditions in Lemma 3. Lastly, we delete the edges
(6, 5), (6, 17), (6, 18), (6, 21), (6, 22), (6, 27), (17, 1), (17, 4), (17, 12), (17, 22), (17, 24) fromG,
and let H be the resulting spanning subgraph of G. It can be checked that the set
{6, 12, 15, 16, 17, 18, 24, 27} is a maximum independent set of H . Therefore, minrk(H) ≥
8 > α(G), and hence minrk(G) > α(G) = 7 by Lemma 3. This concludes the proof.
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