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Abstract—Age of Information is a measure of the freshness
of status updates in monitoring applications and update-based
systems. We study a real-time remote sensing scenario with a
sensor which is restricted by time-varying energy constraints
and battery limitations. The sensor sends updates over a packet
erasure channel with no feedback. The problem of finding an age-
optimal threshold policy, with the transmission threshold being
a function of the energy state and the estimated current age,
is formulated. The average age is analyzed for the unit battery
scenario under a memoryless energy arrival process. Somewhat
surprisingly, for any finite arrival rate of energy, there is a
positive age threshold for transmission, which corresponding to
transmitting at a rate lower than that dictated by the rate of
energy arrivals. A lower bound on the average age is obtained
for general battery size.

I. I NTRODUCTION

The Age of Information(AoI), or status age, was proposed
[1], [2] as a quality metric for monitoring applications [3], [4]
where the freshness of real-time information is crucial. AoI
is defined as the amount of time that has elapsed since the
most recently received status update or sample was generated
at the source. Accordingly, the smaller the age, the closer the
information at the receiver to the actual status at the sender.

Recent literature contains analyses of age under various
service policies and queuing models [1], [2], [5]–[11]. A
common observation in these studies was that the minimization
of age distinctly differs from delay or throughput optimiza-
tion. Besides these queuing theoretic studies, the transmission
scheduling setup in [12] also revealed that throughput and
delay optimal update policies can be suboptimal with respect
to age. Within the user scheduling formulation in [13] for
example, average-age optimal scheduling policies turn outto
be throughput-optimal, whereas the converse is not always
true.

Optimal transmission of a discrete Markov source observed
by an energy harvesting sensor was studied in [14] where the
optimal transmission strategy of the sensor was described by
a threshold policy.

Minimizing age under energy harvesting constraints was
considered in [15], which investigated a scenario where an
energy harvesting sender device generates and transmits status
updates “at will”. Age optimal policies were found under the
assumption that the transmission delay for status updates is
negligible or deterministic. The model captured operational
scenarios where inter-update intervals are much greater than
transmission delay.

Energy constraints were also considered in [16], where
the update rate is subject to an upperbound dictated by the
average power available to the sensor. In [16], in contrast to
[15], the randomness is not in the energy arrival process but
in the transmission delay or service time. Interestingly, this
results in a similar “lazy” policy for packet transmissionsas
in [15]. The result was further generalized in [12] showing that
the optimal policy will impose a non-zero waiting time in a
large class of service time distributions, thus sending updates
at a slower rate than that allowed by constraints. A recent
study [17] similarly showed that, in remote estimation of a
Wiener process where samples are forwarded over a channel
with random delay, the optimal sampling policy entails a non-
zero waiting time between samples even in the absence of a
sampling-rate constraint.

In this paper, we follow the framework in [15] with two ma-
jor differences: unlike [15], we consider finite energy storage
capability. This places a limit on the burstiness of the updating
process as updating opportunities (i.e. energy packets) that are
not used may be wasted. Secondly, we consider an infinite
horizon problem as opposed to a finite time window. As
suggested in [15], we consider update policies of threshold-
type which are optimal in continuous time for the problem
of minimizing average age under stationary energy harvesting
processes.

The contributions of the paper may be summarized as
follows: Long term average age achieved by a threshold type
policy is analyzed for a packet erasure channel (as in [7])
where status updates are lost with probability1− p. Under a
Poisson energy arrival process, a lower bound for the minimum
average age achieved over this channel is expressed based
on the minimum average achieved over the lossless channel
(p = 1). For a system with a unit-energy buffer, the average
age achieved over the lossless channel is derived for Poisson
energy arrivals. It is observed that regardless of the energy
arrival rate there is a positive age threshold for transmission,
such that the average age can be lower that the average age
achieved by the zero-wait policy. This is somewhat unex-
pected as zero-wait is the only energy-conserving and work-
conserving policy. Moreover, we show, echoing the result by
Yates [16], that the age optimal threshold policy sends updates
at a slower rate than the upperbound on update rate imposed by
the energy arrival process. In particular, the mean inter-update
duration is≈ 1.307 times longer than the mean inter-arrival
duration of the energy packets.
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II. SYSTEM DESCRIPTION
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Fig. 1. The System Model.

Consider an energy harvesting transmitterTX that can send
update packets to a destinationD through a channel/network
but receives no feedback fromD. The timing of status updates
are controlled by a scheduler and samplerS which monitors
the energy buffer ofTX and the status of a system in real time.
the Age of Information observed atD which is measured as
follows:

∆(t) = t− U(t)

whereU(t) is the time stamp of the most recent status update
packet received byD.

SupposeTX has a battery size ofB energy units and
consumes a unit energy per update transmission where updates
are transmitted successfully with probabilityp.

Let NU (t) be the total number of updates transmitted by
TX in the time interval(0, t] which is a counting process that
can expressed asNU (t) =

∑

k

u(t− tk) whereu(t) is the unit

step function andtk is thekth update instant.
S is unaware of the age observed atD yet it can compute

the expected agê∆(t) at timet based on its previous updates
{NU (w)}w≤t, i.e. ∆̂(t) = E[∆(t) | {NU(w)}w≤t] assuming
∆(0) = 0. The change in∆̂(t) can be tracked by the
differential equation in below:

d

dt
∆̂(t) = 1− p∆̂(t)

d

dt
NU (t) (1)

TX harvests energy in order to send its update packets
where energy harvests come in unit energy1 chunks. LetNH(t)
be the total number of unit energy harvests received byTX
in the time interval(0, t] (NH(0) = 0) which is a counting
process similar toNU (t). Let E(t) be the battery state ofS
at time t, i.e. the number of unit energy harvests stored inS.

1While energy packets can refer to actual energy that becomesavailable to
the sender (through energy harvesting, for example), they can also represent
transmission opportunities. For example, the energy packets could be replaced
with “tokens” that allow the transmission of update packetsin a particular sys-
tem where update transmission are regulated by “tokens” either intentionally
or due to some physical constraints.

The change inE(t) is governed by the following differential
equation:

d

dt
E(t) = 1{E(t) 6=B}

d

dt
NH(t)−

d

dt
NU (t) (2)

III. M INIMIZING AVERAGE AGE

In the problem of minimizing average age, the update policy
of S will be taken as a threshold-type policy as suggested by
Theorem 3 in [15]. Accordingly, for a given threshold function
τ(·) : {0, 1, 2, ....., B} → [0,+∞) such thatτ(0) = +∞, the
update policy satisfiesNU (0) = 0 and:

d

dt
NU (t) = 1{∆̂(t)≥τ(E(t))}δ(t) (3)

whereδ(t) is the Dirac delta function.
Note that the vector of thresholds given by[τ1, τ2, ......, τB ]

for which τm = τ(m) also identifies an update policy.
We consider the minimization of the average age∆̄:

∆̄ = lim sup
T→∞

E

[
∫ T

0

∆(t)dt

]

T
(4)

for update policies with threshold constraints as defined in(3).
As ∆̂(t) = E[∆(t) | {NU (w)}w≤t], the average age can be

also expressed as follows:

∆̄ = lim sup
T→∞

E

[
∫ T

0

∆̂(t)dt

]

T
(5)

Definition 1. An optimal threshold policy is defined as a
threshold policy that obeys (3) and minimizes (5).

Remark 1. In any optimal threshold policy,τ(0) = +∞ and
τ(m) → 0 asm = +∞.

Proof: Clearly, τ(0) = +∞ asS cannot send an update
without energy. At the other extreme of infinite stored energy,
sending an update does not affect the energy state while only
lowering age, hence it is optimal to send an update at any
positive value of age.

Definition 2. A zero-wait policy is defined as a policy that
obeys (3) withτ(m) = 0 for all 1 ≤ m ≤ B andτ(0) = +∞.

The average age achieved by any update policy is character-
ized by the inter-update durations and the expected cumulative
age between updates. LetXk = tk+1 − tk be the inter-
update duration andck be the expected cumulative age , i.e.

ck = E

[∫ tk+1

tk

∆̂(t)dt

]

, between the updates attk andtk+1.

Define X̄N as X̄N = 1
N

N∑

k=0

Xk and C̄N as C̄N = 1
N

N∑

k=0

ck,

then according to the below lemma, the average age can be
computed as the ratio of the limits̄XN and C̄N .



Lemma 1. For all policies and energy arrival processes for
which the limits in (6) and (7) exist, the average age can be
computed as̄∆ = C̄/X̄.

lim
N→∞

X̄N = X̄, a.s. (6)

where lim
N→∞

X̄N is evaluated for all sample realizations except

a set of probability zero.

lim
N→∞

C̄N = C̄ (7)

Proof: Consider the inequalities below:

lim
T→∞

NU (T )
∑

k=0

ck

T
≤ ∆̄ ≤ lim

T→∞

NU (T )+1
∑

k=0

ck

T

where

lim
T→∞

NU (T )
∑

k=0

ck

T
= lim

N→∞

N∑

k=0

ck/N

N∑

k=0

Xk/N

=
C̄

X̄

and similarly lim
T→∞

NU (T )+1
∑

k=0

ck

T
=

C̄

X̄
. Therefore,∆̄ = C̄/X̄.

A. Poisson Arrivals

Under Poisson energy arrivals, we investigate policies in the
form2 (3) that minimize∆̄.

Proposition 1. WhenNH(t) arrival process with rateµH ,
(i) The average age achieved by zero-wait policy is1

pµH
.

(ii) The arrival process atD is Poisson process with rate
pµH .

Proof: For zero-wait policy, the inter-update durations
Xks are identical to the inter-arrival durations of the energy
arrival process. Accordingly, under the assumption thatNH(t)
is a Poisson arrival process,Xks are independently and
exponentially distributed with rateµH . Therefore,

lim
N→∞

X̄N =
1

µH

which means the limit in (6) of Lemma 1 exists.

Considerck = E

[∫ tk+1

tk

∆̂(t)dt

]

which can be computed

as:
ck =

1

2
E
[
X2

k

]
+ E

[

∆̂(tk)Xk

]

As Xk is independent from̂∆(tk) for the zero-wait policy,

2The policies in the form (3) are particularly suitable for memoryless energy
arrivals as these policies are oblivious to the history of energy arrivals.

E

[

∆̂(tk)Xk

]

= 1
µH

E

[

∆̂(tk)
]

, hence:

ck =
1

µ2
H

+
1

µH

E

[

∆̂(tk)
]

As ∆̂(tk+1) = (1 − p)(∆̂(tk) +Xk):

lim
k→∞

E

[

∆̂(tk)
]

= (
1− p

p
)
1

µH

which means the limit in (7) of Lemma 1 exists and̄C =
1

µ2
H

+ (1−p

p
) 1
µ2
H

. Therefore,

∆̄ =
1

µH

+ (
1− p

p
)
1

µH

=
1

pµH

Note that the arrival process atD is a splitting of the update
process with probabilityp, thus it is a Poisson process with
ratepµH .

Remark 2. Under Poisson energy arrivals, there is always a
threshold policy that obeys (3) and achieves a finite average

age such that min
{τ1,τ2,....,τB}∈[0,+∞)B

∆̄ ≤
1

pµH

.

Proposition 2. WhenNH(t) is a Poisson arrival process with
rateµH , for every policy that obeys (3),E[Xk] andE[X2

k ] are
upper bounded as in the following inequalities:

E[Xk] ≤ τmax +
1

µH

e−µHτmax

E[X2
k ] ≤ τ2max + (

2

µ2
H

+
2

µH

τmax)e
−µHτmax

whereτmax = max{τ1, τ2, ...., τB}

Proof: The expectations ofE[Xk] andE[X2
k ] can be upper

bounded by the law of total expectations as follows:

E[Xk] = E[E[Xk | ∆̂(tk), E(tk)]]

≤ max
∆,m

E[Xk | ∆̂(tk) = ∆, E(tk) = m]

E[X2
k ] = E[E[X2

k | ∆̂(tk), E(tk)]]

≤ max
∆,m

E[X2
k | ∆̂(tk) = ∆, E(tk) = m]

Let R be the residual time (exponentially distributed with
mean 1

µH
) to the next energy arrival for any given time.

Then,E[Xk | ∆̂(tk) = ∆, E(tk) = m] andE[X2
k | ∆̂(tk) =

∆, E(tk) = m] can be upper bounded as in below:

(i) For m = 0:

E[Xk | ∆̂(tk) = ∆, E(tk) = 0] ≤

(τmax−∆)Pr(R ≤ τ1−∆)+E[R | R > τ1 −∆]
︸ ︷︷ ︸

E[R]+[τ1−∆]+

Pr(R > τ1−∆)

E[X2
k | ∆̂(tk) = ∆, E(tk) = 0] ≤

(τmax−∆)2Pr(R ≤ τ1−∆)+E[R2 |R > τ1 −∆]
︸ ︷︷ ︸

E[(R+[τ1−∆]+)2]

Pr(R > τ1−∆)



(i-a) For∆ ≥ τ1,

E[Xk | ∆̂(tk) = ∆ ≥ τm, E(tk) = 0] = E[R] =
1

µH

E[X2
k | ∆̂(tk) = ∆ ≥ τm, E(tk) = 0] = E[R2] =

2

µ2
H

(i-b) For ∆ < τ1,

E[Xk | ∆̂(tk) = ∆ < τm, E(tk) = 0] ≤

(τmax −∆)(1 − e−µH(τ1−∆)) + (τ1 −∆+
1

µH

)e−µH (τ1−∆)

E[X2
k | ∆̂(tk) = ∆ < τm, E(tk) = 0] ≤

(τmax −∆)2(1− e−µH (τ1−∆))

+(
2

µ2
H

+
2

µH

(τ1 −∆) + (τ1 −∆)2)e−µH (τ1−∆)

As both of the upper bounds are nondecreasing withτ1 −∆,
they are maximized whenτ1 −∆ is maximized where∆ = 0
andτ1 = τmax. Therefore,

E[Xk | ∆̂(tk) = ∆, E(tk) = 0] ≤

τmax(1− e−µHτmax) + (τmax +
1

µH

)e−µHτmax

E[X2
k | ∆̂(tk) = ∆, E(tk) = 0] ≤

τ2max(1− e−µHτmax) + (
2

µ2
H

+
2

µH

τmax + τ2max)e
−µHτmax

(ii) For m > 0:

E[Xk | ∆̂(tk) = ∆, E(tk) = m] ≤ τmax −∆

≤ τmax(1− e−µHτmax) + (τmax +
1

µH

)e−µHτmax

E[X2
k | ∆̂(tk) = ∆, E(tk) = m] ≤ (τmax −∆)2

≤ τ2max(1− e−µHτmax) + (
2

µ2
H

+
2

µH

τmax + τ2max)e
−µHτmax

Definition 3. Define∆̄∗
B(µH , p) as the the minimum average

age achievable by any policy that obeys (3) for anS that
transmits update packets with success probabilityp and has
an energy buffer ofB units which receives Poisson energy
arrivals with rateµH .

Lemma 2. Under Poisson energy arrivals, the minimum
average age is lower bounded by the minimum average age
achieved over the lossless channel as in the following:

∆̄∗
B(pµH , 1) ≤ ∆̄∗

B(µH , p) (8)

Proof:
Note that the system withp < 1 corresponds to each energy

packet that is used to send an update, being wasted due to
an erasure with probabilityp, independently of the battery
state. Let there be two types of energy packets: type-1 energy
packets that, when consumed, cause the packet to be lost, and

type-2 energy packets that, when consumed result in successful
transmission. The success process is independent of the battery
state, and each packet is independently type-1 or type-2 with
probabilitiesp and1 − p. Suppose energy packets are stored
in two different internal buffers of the sender corresponding
their type, i.e. type-1 and type-2 buffers. When a packet is
lost, an energy packet is used from the type-1 buffer, so on.
The capacity of type-2/type-1 buffers are also dynamically
determined by the number of type-1/type-2 packets as the
total capacity of these buffers isB. If S cannot differentiate
the type of recieved energy packets, then this interpretation
does not change the system operation. Now, supposeS can
differentiate type-1 and type-2 energy packets, so it simply
rejects type-1 energy packets while storing others. Clearly,
the age can be reduced in this case asS no longer wastes
its buffer capacity and serving time on type-1 buffer which
does not produce succesfullly transmitted packets. Note that
by independent splitting, this is equivalent to having Poisson
energy arrivals with ratepµH and success probability1.

According to the above result, for a particular buffer limit
B, the minimum average age found assumingp = 1 gives a
lower bound on the minimum average forp < 1 case. The
case forp = 1 is more tractable as the age is always reset to
zero after an update. In this case, inter-update durations are
generated by a Markov renewal process depending only on
energy states rather than the age itself.

Next, we consider the scenario whereB = 1 and derive the
expression for the average age in the following theorem.

Theorem 1. Whenp = 1 andB = 1, the average agē∆ can
be expressed as follows:

∆̄ =
1

2

τ21 + ( 2
µ2
H

+ 2
µH

τ1)e
−µHτ1

τ1 +
1

µH
e−µHτ1

(9)

and ∆̄ is minimized to
2W ( 1

√

2
)

µH
, i.e. ∆̄∗

1(µH , 1) =
2W ( 1

√

2
)

µH

whenτ1 =
2W ( 1

√

2
)

µH
whereW (·) is the Lambert-W function.

Proof: As p = 1, the expected age just after an update
instant is always reset to zero and the policies forB = 1 can
be described by only one threshold which isτ1. In particular,
the inter-update durationsXks are i.i.d. which meansE[X0] =
E[X1] = .... = E[Xk] andE[X2

0 ] = E[X2
1 ] = .... = E[X2

k ].
The limits in (6) and (7) of Lemma 1 exist asXks are i.i.d.
andck = 1

2E[X
2
k ] is finite.

Accordingly, the average agē∆ is equal to E[X2
k
]

2E[Xk]
for any

k. The values ofE[X2
k ] and E[Xk] for a given τ1 can be

computed by the law of total expectations as follows:

E[X2
k ] = τ21 (1− e−µHτ1) + (

2

µ2
H

+
2

µH

τ1 + τ21 )e
−µHτ1

E[Xk] = τ1(1 − e−µHτ1) + (τ1 +
1

µH

)e−µHτ1



Therefore,

∆̄ =
1

2

τ21 (1− e−µHτ1) + ( 2
µ2
H

+ 2
µH

τ1 + τ21 )e
−µHτ1

τ1(1− e−µHτ1) + (τ1 +
1

µH
)e−µHτ1

Consider the ratio∆̄/∆̄min where ∆̄min = min
τ1≥0

∆̄(τ1).

As ∆̄
∆̄min

≥ 1, arg min
τ1≥0

∆̄(τ1) = arg min
τ1≥0

J(τ1) where

arg min
τ1≥0

J(τ1) = 0 and

J(τ1) = τ21+(
2

µ2
H

+
2

µH

τ1)e
−µHτ1−∆̄min

[

2τ1 +
2

µH

e−µHτ1

]

When
d

dτ1
J(τ1) = 0, (τ1 − ∆̄min)(1 − e−µHτ1) = 0 which

meansarg min
τ1≥0

J(τ1) = ∆̄min since(1−e−µHτ1) > 0. Hence,

∆̄min is the fixed point of∆̄(τ1) which satisfies∆̄2
min =

2
µH

e−µH∆̄min . Therefore∆̄min =
2W ( 1

√

2
)

µH
.

Corollary 1. For B = 1 and p = 1, as the optimal value

of the thresholdτ1 is
2W ( 1

√

2
)

µH
, the mean inter-update duration

E[Xk] = τ1+
1

µH
e−µHτ1 is 2W ( 1√

2
)+e

−2W ( 1
√

2
) times larger

than 1
µH

. As W (·) is the Lambert-W function,2W ( 1√
2
) +

e
−2W ( 1

√

2
) is approximately1.307.
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Fig. 2. Average agē∆ versusτ1 whenB = 1 andp = 1.

A consequence of the above theorem is that∆̄∗
1(µH , p) ≥

2W ( 1
√

2
)

pµH
which means, with a unit buffer, a threshold policy

can achieve up to10% (2W ( 1√
2
) ≈ 0.901) lower average age

than that of the zero-wait policy.
In the below theorem, we show a more general lower bound

on ∆̄∗
B(µH , p) for any buffer limitB ≥ 1.

Theorem 2. When the energy arrival process is Poisson,
∆̄∗

B(µH , p) ≥ 1
2pµH

for anyB and p.

Proof: First, consider the case forp = 1 where ck =
1
2E[X

2
k ] and E[Xk] are finite by Proposition 2. This means

that the average age can be expressed as follows by Lemma
1:

∆̄ =
limN→+∞

1
2N

∑N

k=0 E[X
2
k ]

limN→+∞
1
N

∑N

k=0 E[Xk]

As E[X2
k ] ≥ E[Xk]:

1
2N

∑N

k=0 E[X
2
k ]

1
N

∑N

k=0 E[Xk]
≥

1
2N

∑N

k=0 E[Xk]
2

1
N

∑N

k=0 E[Xk]

By Jensen’s inequality, 1
N

∑N

k=0 E[Xk]
2 ≥

(
1
N

∑N

k=0 E[Xk]
)2

hence∆̄ ≥ limN→+∞
1
2N

∑N

k=0 E[Xk]

which means∆̄ ≥ 1
2µH

as limN→+∞
1
N

∑N

k=0 E[Xk] cannot
be lower than 1

µH
for a given Poisson energy arrival process

with rate µH . Accordingly, ∆̄∗
B(µH , 1) = 1

2µH
+ f∗

B(µH)
wheref∗

B(µH) is a nonnegative function ofµH . Therefore,
by Lemma 2,∆̄∗

B(µH , p) ≥ 1
2pµH

+ f∗
B(pµH).

Theorem 3. WhenB = ∞ and p = 1, the threshold policy
that obeys (3) and has thresholdsτ = τm = 1

µH
+ ǫ for every

m > 0 and an arbitrary ǫ > 0, achieves the average age
∆̄ = 1

2 (
1

µH
+ ǫ) as the energy arrival process is Poisson with

rate µH .

Proof:
Consider the case whereE(tk−1) ≥ 2 for somek > 1.

If E(tk−1) ≥ 2, it is guaranteed that̂∆(tk) = 0 andXk =
1

µH
+ ǫ. Accordingly,

E

[∫ tk+1

tk

∆̂(t)dt | E(tk−1) ≥ 2

]

=
1

2
(
1

µH

+ ǫ)2

E [Xk | E(tk−1) ≥ 2] =
1

µH

+ ǫ

Now consider the energy stateE(t) at an arbitrary timet
which satisfiesE(t) = NH(t)−NU (t) from Eq.2. As∆̂(t) =
0 after every update, age increases linearly toward the thresh-
old τ = 1

µH
+ ǫ, inter-update durations cannot be shorter than

1
µH

+ǫ SoNU (t) ≤ t/( 1
µH

+ǫ) andE(t) ≥ NH(t)− t/( 1
µH

+
ǫ). The energy harvested until timet is Poisson distributed
with meantµH which meansPr( lim

t→+∞
NH(t)/t = µH) = 1,

accordinglyPr( lim
t→+∞

E(t)/t ≥ µH −
µH

1 + µHǫ
) = 1 thus

for any M > 0 lim
t→+∞

Pr(E(t) ≤ M) = 0. This shows

lim
k→+∞

Pr(E(tk) ≤ M) = 0 (**) for any finite M . As,

ck = E

[∫ tk+1

tk

∆̂(t)dt | E(tk−1) ≥ 2

]

Pr(E(tk−1) ≥ 2)

+E

[∫ tk+1

tk

∆̂(t)dt | E(tk−1) < 2

]

Pr(E(tk−1) < 2)

(*)
As k → +∞, the second term in the RHS of (*) vanishes

by (**) hence we obtain lim
k→+∞

ck =
1

2
(
1

µH

+ ǫ)2 similarly,



lim
k→+∞

E[Xk] =
1

µH

+ ǫ.

Therefore, by Lemma 1,

∆̄ =

lim
N→+∞

1

N

N∑

k=0

ck

lim
N→+∞

1

N

N∑

k=0

E[Xk]

=
1

2
(
1

µH

+ ǫ)

Note that the policy in Theorem 3 achieves the lower limit
on the average age in Theorem 2, forp = 1 when ǫ is
arbitrarily small.
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