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Abstract

A minimax-converse has been suggested for the general ehaading problem([[1]. This converse comes in two flavors.
The first flavor is generally used for the analysis of the cggiroblem with non-vanishing error probability and prov&dan
upper bound on the rate given the error probability. The sectiavor fixes the rate and provides a lower bound on the error
probability. Both converses are given as a min-max optitiaaaproblem of an appropriate binary hypothesis testinglgpem.
The properties of the first converse were studies In [2] andddie point was proved. In this paper we study the properties
of the second form and prove that it also admits a saddle pdlareover, an algorithm for the computation of the saddle
point, and hence the bound, is developed. In the DMC caselfwgithm runs in a polynomial time.

|. INTRODUCTION

Achievable and Converse bounds were derived_in [3] for theblem of point to point (P2P) channel coding by using the
standardrandom coding argument. The setting considered a general channel andeaaj€possibly mismatched) decoding
metric. Both achievable and converse results were givererimg of a functionF'(R), which is the cumulative distribution
function (CDF) of the pairwise error probability. When thecdding metric is matched to the channel (which is the fodus o
this paper), the converse bound reduces tonti@max converse proposed in[[f].

Consider an abstract channel coding problem; that is a rartdansformation defined by a pair of measurable spaces of
inputs & and outputsy and a conditional probability measurgy | x : X — ). Let M be a positive integer. A flavor of the
minimax converse is a lower bound on the error probabilitay code with)M/ = 27 codewords. The proof of the minimax
converse relies on a reduction from the channel coding prolib the binary hypothesis testing problem. The bound isrgiv
in terms of 8, (P, @), which is the power of the test (i.e. type Il error probabp)liat a significance level — « (i.e., type |
error probability), to discriminate between probabiliteasures? and Q.

Specifically, the minimax converse comes in the following tihavors:

e>infsup B (Qx X Qv, QxWy|x) (1)
Qx Qy
2 infsup By (QxWorx. Qx x Q). @

where@QxWy | x andQx x Qy are the joint distributions o’ x ) defined bﬂ:

(@x Wy x) (%,Y) = Qx (X) Wy x (Y[X)
(Rx x Qy) (X,¥) = Qx(X)Qy(Y)

The first form [1) gives a lower bound on the error probabitifyany code given that the number of codewords\ds The
second form[{R) gives an upper bound on the number of codendrdjiven that the error probability is. Both bounds are
given as ainf — sup optimization problem on the set @afput distributions@ x and output distributionsQy-.

The functional properties of; . (QXWy|X, Qx X Qy), as a function ofp x andQy (i.e., the objective function in[{2))
were investigated in[2]. In particular, the function is ger-concave and the existence ofaddle pointwas proved under
general conditions. The focus of this paper is on the fédmd4)this form has been used lin [3] for the converse and adileva
results there.

Specifically, our goal in this paper is to develop tools tolezte the optimization probleni](1), and the distributidps
and Qy that attain it. In particular, by calculating the optimastibution Q x in (@) for a givenR = log M, we obtain both
a converse bound and a “good” distribution for random codihgate R, whose performance are close up to a factor to the
converse result, seel[3, Theorem 4] for the exact statement.

throughout the paper, we assume that the alphabetsid ) are finite or countably infinite.
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The paper is structured as follows:

« In section]] we derive a general variational formula for f@ctional 3,. The formula is interesting by its own right
(see further[]4]), but in this paper we are interested onlitsrusage for analyzing the minimax converse.
« In sectiorIl we apply the variational formula on the fumctal:

Bie-r (@x X Qy,Qx Wy |x).

This gives us a hint for defining a new functionalvith a larger domain thag. This new functional is convex-concave,
thus has a saddle point, which in turn implies a saddle pdif)o Moreover, necessary and sufficient conditions for the
saddle point are proved.

« In sectiol 1V we provide a high level description of an algfum for computing the saddle point of Following that we
provide in sectio’V/ a more detailed description of the dthar, showing how it builds a sequence of input distribusion

g’;) using linear programs designed to reduce the seapg),, 5_.-r (Qg’;) X Qy, ng)Wy‘X).

In the appendik C we describe the modification needed for dhmutation of the minimax-converse for Discrete Memorgles
Channels (DMC) where symmetries can be used to significaetiyice the computational burden into a polynomial time
algorithm (as a function of the block length) for a fixed (sthak’|, || input and output alphabet.

Il. GENERAL BINARY HYPOTHESIS TESTING

Recall some general (and standard) definitions about thenapperformance of a binary hypothesis testing between two
probability measure# and @ over a setiV:
Ba (P,Q) = i > Qw) Pz (1|w), ®)
Swew P)Pzjw (1w)>a W
wherePzy, : W — {0, 1} is any randomized test. The minimum is guaranteed to be \zathigy the Neyman—Pearson lemma.
Thus, 5, (P, Q) gives the minimum probability of error under hypothe§lsf the probability of error under hypothesB is
not larger thanl — «. 3 is the power of the test asignificance levell — a.

Lemma 1. The following variational formula holds:

Ba (P Q) = max ( 3" min (Q(w), AP(w)) — A(1 - a>> . (@)
weW
Moreover,
Ba (P,Q) = Y min (Q(w), AP(w)) = A(1 - a) )
weW
If and only if:
P{w:%<)\}§a§P{w:%§)\} (6)

The proof appears in Appendix A.

IIl. ANALYSIS OF THE MINIMAX -CONVERSE
A. General definitions

Consider an abstract channel coding problem; that is, aorandansformation defined by a pair of measurable spaces of
inputs & and outputs) and a conditional probability measulgy | x : X — Y. The notationP (A) stands for the set of all
probability distributions ond. Throughout this paper we assume tht < oo, |V| < co. We usemax andmin instead ofsup
andinf as we generally deal with convex/concave optimization femls over compact spaces and the / inf is generally
attained by some element. For a distributiQr; € P (X) andQy € P ()), denote byQx Wy |x the joint distribution on

X x Y where (Qx Wy |x) (X,¥) = Qx(X)Wy x(y[x) and (Qx x Qy) (X,¥) = Qx (X)Qy (y).



B. The minimax-converse

As noted above, Polyanskigt al. [1] proved the following general converse result for therage error probability that
come in two flavors: For any code with/ equiprobable codewords:

€> lnf SUP B (Qx x Qy, QxWy|x) (7)
2 infsup By (QxWorx. Qx x Q). ®)

wheree is the average error probability. Eq (7) gives a lower boandhe error probability in terms of the rate while the
second flavor,[{8), gives an upper bound on the rate in terntheofrror probability. Furthermore, using equatigh (8) and
instantiatingQy, it was shown in[[L] that most other known converses of thenobhcoding problem can be derived from
this converse. In[]2], the functional properties of the mak-converse[{8) have been further investigated. In pdaticits
convexity w.r.t@Q) x and concavity w.r.{)y were shown.

In this paper our focus is on the forml (7) as this form has besedun [3] for the achievable and converse parts. The
convexity of [T) inQx follows from [2, Theorem 6]; however, the functional is naincave with respect t@y in general.
Applying Lemma[1 to this case gives the following formula:

Bie-r (QxQy,QxWy|x) = max <Z Qx (X) min (Wy | x (Y[x), AQy (Y)) — eR/\>
Xy

The convexity of3,_.-r (QXQy,QXWY‘X) with respect toQ x then follows easily since it is thexax of the convex
(affine) function of@ x. Unfortunately,3 is not concave iQy. Yet, in order to analyze the minimax converse, we define a
new functiony over a larger domain, which (as shown below) is convex-cegica

Definition 1. For any distributionQx € P (X) andz = (z,) € [0,1]” = {(zy) e R¥ :0 <z, < 1)
Y—e-r(Qx,Z, Wy x (VX)) ZQX min (Wy | x (y[x), zy) — Rzzy )

Since throughout this pap@ry| x (y[x) andR are held flxed, we will abbreviate and WrﬂzéQX, z) instead ofy; _.-» (Qx,Z, Wy | x (Y|X)

Some properties of (Q x,z) are summarized in the following theorem. In particular, thectional admits a saddle point.

Theorem 1.
v(Qx,2) is convex inQ x, concave inz and admits a saddle poir{)%, z*), i.e.
Q%2 <v(Q%.7) <¥(Qx.7) (10)
for all Qx, z In particular:
€ = min maxy(Qx,2) = maxminy(Qx, Z) (11)
Qx Z z Qx

Moreover, forx such thatQ% (x) > 0 we have:
¢ = me Wy x (%), 2 -RZz; (12)

and forx such thatQ% (x) = 0:
6<Zmln WY‘X(y|X )—e RZZ} (13)

Proof: Note that both)) x andz range over convex compact sets and t’y‘(@? x,Z) is a convex—concave functional (affine
in Q(x) and concave iz by the concavity of thenin function) andy(Qx, z) is continuous in both arguments. The existence
of the saddle point and(IL1) follow from the Fan’s minimaxdtem [5].

By the saddle point property:

=7(Q%,Z") = rginv(Qx,Z*)

2Throughout this papez will stand for a vector, indexed by the elemeffsi.e., the component of are Zy.



Note that:

71(@x,2) ZQX (me Wy x (y[x),2y) — Zzy>

and:

miny(Qx,2") = min {ZQ(X) <Z min (Wyx (Y[X),Z)) — e—RZz;>}
X y
_irél)r(l{Zmln (Wyx (y[x) .2y RZZy*}
y

hence [(IR) and{13) follow from the linearity e{Q x,z) in Qx.

The next theorem presents the connection betweéhy, z) and 8, _.-» (Q(X)Q(Y), Q(X)Wy | x (Y[X)).

Theorem 2.
For any distribution@ x the following holds:

%%Xﬁpe% (Qx X Qy,QxWy|x) = m?XV(Qsz)
Moreover,z* attains the maximum iL3) if and only if for eachy:

Qx {x: Wyx (y]x) >z} < e F<Qx {x: Wy x (yx) > z}
Proof: (I5) follows from:

né%x Br—e-r (QX X Qy, QXWY\X) = Hclf,x max (Z Q@ x (X) min (Wy‘x(y|x), /\Qy(y)) — e_R)\>
X,y

= max <Z Qx (x) min (Wy | x (y[x), zy) RZZV>

(14)

(15)

(16)

where we writezy = \Q(y) and use\ = 3~ z,. Note that to attain the maximum, we can restagt< 1 sincey(Qx,z) <

v(Qx,min(z,1)). To prove [I16):
1(@x,2) ZQX min (Wyx (y[x), zy) — RZZY

= <Z min (Wy | x (Y[X)Qx (X),zyQx (X)) — e_Rzy>
y X
= <Z min (W y (Xy)Qy (), z/@x (X)) — e_Rzy>
y X
= min Xy Zy < _ e R
- zy: <Z Qv (Y) (W v Oy, 555 @ (x)) zy>

_ . Zy _ R
—2 W) (Z min (WX'Y(X'” o) QX(X)) Qy(y)>

where we assume@y (y) > 0 for all y to avoid cumbersome notation.

su =su min =] —e R 2
zpy(QX,Z) zp;QY(Y) <; (WXY(X|Y)7 Oy (y) QX(X)> Qy(Y)>

_ su min Zy —e Zy
- zy: Qy (y) Zyp <; (WXY(XW)a v () QX(X)> RQy(y)>
= Qv(y)Bien (Qx. Wxpy)

y




Moreover, the optimak, must satisfy condition{6):
Wixly) _z } -R { WXy _ z }
X: <—=7,<1l—-e "< X: < 2
ox {x: e < g < S0 T aw
which gives [I6) after rearranging the terms. [ |

Remarkl. Combining the last theorem with {L4) we recover the formblat tappears in_[6, Proposition 14] where it was
proven by indirect arguments relying on the duality in linpaogramming.

Theorem$§1l anfl 2 provide necessary conditidng, [12),(18){E) for the saddle poir®*% andz*. The following theorem
shows that these conditions are also sufficient.

Theorem 3. Any distribution@Q% and z* satisfy conditiong12) and (I3) and (I8) is a saddle point ofy(Qx, 2).

Proof: We need to show that:
1(@x,2) <7(Q%,7") <(@x,7)
The left hand side follows froni{16) and the right hand sidefr{12),(13) and the linearity i) x. [ |

IV. AN ALGORITHM FOR THE COMPUTATION OF THE SADDLE POINF HIGH LEVEL DESCRIPTION
In the following sections we present our algorithm for thenpoitation of the saddle point. We first give a high level revie
of the ingredients of the algorithm.
The general idea is to generate a seque(r@éf), z(’“)) such that:

Y(QF),2M) = maxy(QF,2) > maxy(Q% ™, 2) = v(QEH, 244D

The initial step takes any distributi@g?) and calculate®) using [I6). Then, each iteration contains two steps as we now
describe:

A. OptimizingQ'F " for a givenz®)

Givenz(® we can find a distributio®\ ™" that minimizesy(Qx,z*) subject to conditior({16). This is a linear program
with |X| variables,2 - | V| + | X] linear inequalities, % - || for (8) and|.X| for the nonnegativity of) x (x)), and additional
equality for@Q x (x) to sum to 1. If:

miny(Qx,2") < QY 2M)
Then we define:
1) z(k+1) — Z(k)
2) QEI;H) = argming  (Qx, z())
We will refer to this stage as lacal linear optimization and say than?J’l) is locally optimal given z(¥).

B. Improving a locally optimal solution

When we hold a locally optimal solutio@g’;), we have to change®) in order to improve (reduce) the current scoice.
Q¥ ,2#)). Consider any perturbation on Qx, i.e., 3, u(x) = 0, and letQ". = Q¥ + 5 wheres is small enougf.
For QY let z* satisfy the condition[{16) with respect @y . Let:

i) = 2] =1 i.2) an

If min, n(x) = 0 then we cannot improv@g’;) and we have globally optimal solution. If n(u) < 0 for someu, then we
found an improvement of the score function and we define:

1) z(+1) = z»

2) QY™ = Q%

In practice we will show that the problem of minimizing_{17arcbe translated to a linear program as well (up to some
regularities that we will have to handle separately), whigh allow us to solve it.

3Note that whenQ x (x) = 0 we must takeu(x) > 0 and if Qx (x) = 1 we must takeu(x) < 0



V. IMPROVING A LOCALLY OPTIMAL SOLUTION - DETAILS

In this section we describe in detail how to implement stepf Bhe iteration, described above in high level.
Fix Qx andz and assume th@ x is locally optimal with respect ta. Let ;1 be a perturbation of) x, i.e., i € RI*I with
> k(x) = 0. Recall that by[(16) for each we have:

Qx {X: Wy x (YIX) >z} <e < Qx {Xx: Wy x (Yx) >z}

Assume initially that@ x (x) > 0 for all x. We point out in the sequel where we need this assumptionn\Wedo have
zeros in the distributior)) x (x) we will restrict ourselves to the subsék € X' : Qx(x) > 0}. In subsectiol ' V-H we explain
how to recover from this assumption.

A. Notation
We will make use of the following notation through this seanti
1) ]l{WY\X(YP()ZZy} d_enoFes a vector, indexed kywith ]l{Wy‘x(y\x)Zzy}(X) = 1if Wy x (y[x) > z, and 0 otherwise. Define
Wy 1x (410 >2 } likewise.
2) u" - L is the scalar product between the vectprand L, i.e: p” - L =3, pu(X)L(x).
B. Phase I: Changing to achieve strict inequality on the left hand side @B)
Throughout, we assume that:

Qx {X: Wy x (y|x) >z} <e F

< Qx {X: Wy x (Y|X) > z,}
i.e., we have strict inequality on the left hand side[of](16). [Etls not the case, we can chargeuntil this is valid for ally.
If Qx {x: Wy |x (YX) >z} =e ¥, Let:
xy = argmin { Wy |x (y[x) : Wy|x (Y[X) > Y., Qx(x) > 0}
X

Then:
. QX {X : Wy|X (y|X) > Zy} = QX {X : WY\X (y|X) > WY\X(y|X’U)}
° Qx(xy) >0 -
o Qx X Wy x (YIX) > Wy x(¥x,)} < e sinceQx(x,) > 0.
Replacingz, with Wy x (y|x,) we have strict inequality on the left hand side [n](16) and weein’'t changed the local
optimality since the optimality conditiof (1L6) still holds/ construction.
C. Phase II: Compute Alternativewith strict inequality on the right hand side ¢fL6)
Following the same reasoning, we can fizi}jg z, that also satisfy[(16) with the following additional profies:
o If Qx {X: Wy x (YX) >2z,} <e < Qx {x: Wyx(yx) >z} thenz, = z,.
o Qx {X: Wy x (Y|X) > Zf/}lS e < Qx {x: Wy x (Yx) > 2}
o If Qx {X: Wy x (IX) > 27} = e = Qx {x: Wy x (Yx) > 2/} then:ley, sz} = Lwy xyhozz )
In order for the last equality to hold we must assume that:(x) > 0 for all x.

D. Phase lll: Compute*

Let Q% = Qx +d - p whered is sufficiently small. Recall that we must fir that satisfies the conditiof {1L6) with respect
to Q. From:
Qi {X: Wy x (YIX) > 2y} = Qx {X: Wy x (Y[X) > 2} +6p” - Loewy x v1x>2}

we always have

Q {x: Wy x (Y|X) >z} <e F

for sufficiently smallé and:
Ql)t( {X : WY\X (y[x) = ZY} z e e 'LLT ’ ]l{x:Wy‘X(y\x)Zzy} >0

Hence whemu” - ]l{x:Wy‘x(y\x)Zzy} < 0 we must change, since it does not satisfy condition (16) anymore. Since:

Qk {x: Wy x (y|x) > Z)l/} >e f



for sufficiently smallo and:

Qi X Wyix (V) >z} < e T gsa) <0

Now, from ]l{x:Wy‘X(y\x)>z§} {X Wy x (yh) >z} We have:

T _ T
B ]l{XSWY\x(Y|X)>Z§} =p ]l{XCWY\x(Y\X)ZZy}

l
and wheny” 11{X Wy x (yX)>2,} < 0 we can takez,.
To summarize, let:

—
ZZ _ { le/ I: luT i{XSWY\xMX)ZZy} 28 (18)
zy WWp {X:WY\X(yIX)ZZY} <
Thenz* satisfies[(16) with respect Q% for ¢ sufficiently small.
E. Computation ofy(Q%;, z*)
Let:
Z pu(x) min (Wy x (y[%),2) (19)
We have:
Y(@Q%.2") = D (Qx(x) + dp(x)) min (Wy x (Y[x) ,Z))
X7y
—e " Zzz
(QXJ” + 52# )min (Wy | x (y[x), y)
X,y
=7(Qx,7") + on(p, 2")
Sincez* also satisfied (16) with respect @y, 7(Qx,z") = v(Qx, z) and:
1@, 2") —7(@x,2) _ 1(Q%,2") —¥(Qx,2")
5 5
=n(u,z")
and:
n(p, ") ZH (min (Wy | x (Y[x), ) min (Wy|x (YX),2y))
= > > (min (Wy x (¥1X),2)) — min (Wyx (Y[X),2))
y:MT'IL{WY‘X(y\X)zZy}<O X
(@) i
= Z (Zy —z)u"- ]l{x:Wy‘X(y\x)ZZy}
y:HT']l{WY‘X(y\X)ZZy}<O
:Z(Zly_zy)ﬂT']l{W 1
Ix (V%) >z, }
7 Y| X y {#T'I{WY‘X(V\X)ZZy}<O}
where (a) follows from:
Z (min (Wyx (Y[x), ) — min (Wyx (Y[X),2y)) (20)
X
= Z z,+ Z Wy x (Yx) — Z Wy x (YIx) — Z Zy
xX:Wy | x (Y|X)>2), x:Wy | x (Y|X) <2} x:Wy | x (Y[X)>2y x:Wy | x (y|x)<zy

— (S T
= (Zy - ZY) e Il{x:WY\X(”X)ZZY}



Sincen{x:Wy‘X(y|x)>z§} = ]l{x:wy‘x(y\x)zzy} and alsoﬂ{x:wy‘x(y‘x)g%} = ﬂ{x:wy‘x(y|x)<zy}' To sum until here:

n(p:2) = n(p, 2) — Z (zy - Zi/) H {Wy‘x(y‘x)>zy} (21)
y { {WY‘X(y\x)>Zy} }
And we want to optimize)(u, z*) with respect tou.
F. Optimize foru
Let define:
e b(x) = 3, min (Wy|x(y[x),zy) so thatn(u,z) = p" - b
* Gy = ]l{X:WY\X(y‘X)ZZY}
o vy = Zy — Zé 2 0
Then:
n(p,2") = n(p) = p" - <b -> %ay]lw.ayw}) (22)
y

In appendi{B we prove the following two lemmas. The first sedvew to translate the problem of minimizimgu) into
a linear program. We provide these lemmas here using theiomtased in this sectioni.€., index the vectors withy)

Lemma 2. Let:
n(p) =p" - <b -> %ay]lw»ay<o}> (23)
Yy
Then minimization ofy() subject tou” - 1 = 0 is equivalent to the following linear program:

T T
w0 wY (A0 T 4 _
min () (s (1) (4 9) 20 20
where A is the matrix with columns,, « is a vector with entriesy,, and1 is the all-one vector.

The next lemma provides necessary and sufficient condifeamg = 0 to be the optimal minimizer ofy().

Lemma 3 (Generalized Farkas) eta, € R",y € J, b € RI*l and o, > 0. Then

T, (b — Zayayﬂ{#T_ay<0}> >0 (25)

Yy
for all 2 € RI*I such thatu” - 1 = 0 if and only if:
b= May,+710< )\, <oy, TER (26)
J
If n(n) < 0 then we have found an improvement of the score and we can keemiog to find a new locally optimal
solution.
G. The case whermin, n(u) =0

If n(p) = 0 is the minimal value, then we cannot improve on the currehitem using perturbation that consider non-zeros
elements ofQ x (x). (The case where there are zeroJr (x) is discussed in subsection V-H).

Let us show that indeed in this case we reached the optimaliso] i.e., we can recover the conditiofs](12) aind (13).

Definez’ by: z; = z, — A,. Then:

1) zy<z) <z

2) b°(x) = > ymin (Wyx(ylx),z9) =7, i.e.b° = 71

The last equality follows from:

Z mln (Wy‘x(yl)(), y) min (Wy‘X(y|X),Zy))

“ Z ) —2) ]l{x Wy x (y1)>2}
y

R



where (a) follows from the same reasoning[ag (20). Hence:
W=b-> \a,=rte
y

H. Zeros inQx (x)
Let Qx,z be such that:

Qx {X: Wy x (YIX) >z} <e < Qx {x: Wy x (Yx) >z}
E—Zmln (Wy x(YIX),2y) — e~ Zzy

y
for all x with @ x(x) > 0, and:

€> me Wy x(y[x1),2y) — Zzy
y

for somex; with Qx(x;) = 0. We also assume th&} x is locally optimal, which means that we cannot improve thersc
by running a local linear program. Obviously, we cannot arthat the optimality conditiod (13) holds.
For any perturbation withu(x;) > 0, we must have that at least one of the linear inequality caimis is violated.
Equivalently, we can say: For any perturbation that doesvimate the linear inequality constraint, we must hae;) < 0.
o FromQ {x: Wy x (Y1%) > 2y} = Qx {x: Wyx (V%) > 2y} + 0" Ly sy I Qx {X: Wyix (V%) > 2} =
e~ then in order not to violate the linear inequality we musténav’ - ]l{WY\X(y‘X)>Zy} <0
o From Q% {x: Wy x (Y1) > 2y} = Qx {X: Wyix (V) > 2+ 17 Ty oz ) IF Qx {X: Wy ix (YX) > 2} =
_R . . . . :
e~ then in order not to violate the linear inequality we mustéay’” - ]l{wy‘x(y\x)zzy} >0
o 1 must satisfy;u’ - 1= 0.
By Farkas lemma{4) we must have:

_ l h
Ox, = Z /\y]l{WY\X(Y\X)>Zy} + Z /\y]l{WY\x(Y\X)ZZy} tal
y:Qx {X:Wy‘x(y|x)>zy}:e*R y:y:Qx{X:WY‘X(y|x)2zy}:e*R

with /\l >0 and /\Z < 0 anddy, is the vector with 1 ak; and O otherwise.

At thls point we can use theses by adding them tay in order to increase score &t up to the other scores and meet the
conditions [[IB) along the same lines[as V-G. Note that we tmgh be able to do this in a single step. Moreover, we have
to do this process for each variable withy (x) = 0 and lower score than the global score we have.

V1. SUMMARY

In this paper we have studied the functional properties efrtinimax-converse for a fixed rate. The existence of a saddle
point was proved, necessary and sufficient conditions wereet and an algorithm for the computation of the saddl@tpoi
was presented. For the DMC case, the algorithm can be moddi@tcorporate additional linear constrainte( input and
output distribution that are uniform on types) and this fessim a polynomial time algorithm for the computation of theddle
point. The saddle point distribution can be used to optintli|erandom coding argumenrd.g, [3]).

APPENDIXA
PrROOF OF LEMMA[
A. Proof of (§)

Let A\, 9 be the thresholds for the optimal test, and let:

A_{w:M</\}

P(w)
_f,, Q) _
p={w: B =
Then:
a=P(A)+0P(B) (27)
And:

B =Q(A)+6Q(B) (28)



Multiply (B7) by ), subtract[(ZB) and us@(B) = AP(B):

B~ Aa = Q(A) — AP(A)
On the other hand:

S min (Q(w), AP(w) = 3 Qw) + 3 AP(w)

weW weEA weA¢
= Q(A)+ A1 - P(4))
=Q(A) — AP(A) + A
=B—-Ada+ A

Thus:

8= min(Qw),A\P(w)) = A(1 - a)
weWw
B. proof of the sup formula (smalleY)

Note that the optimal satisfies the following:

Plo 2>tz 1-azplu: 2050

Pw) (29)
Let Ay < A

> min (Q(w), M P(w)) = Y min (Q(w), \P(w))

weW weW

= >, (M P(w) = Q(w)) + (A — A) > P(w)

wWEW: A P(w)<Q(w)<AP(w) WEW AP (w)<Q(w)
(a)
< (-2 > P(w)
wWEW:AP(w)<Q(w)

_ . Q)

=(\ —)\)P{w. Pw) > /\}

()

<M -AN1-a)
where (a) follow from:\; P(w) — Q(w) < 0, (b) follow from A; — A < 0 and P {w : % > )\} > 1 — «.. Rearranging the
terms:

> min (Q(w), M P(w)) = M (1—a) < Y min( AP(w)) — M1 — a)

weW

weW
If \; does not satisfy the conditiofl(6), then:

o If P {w : % < /\1} < P{w Ewg < )\} then we are finished because there exigtwith P(wg) > 0, ggg‘)g <\
and Q(w‘)g > A1, which gives strict inequality in (a) above.

o If P {w ngg <A =Plw: g( < /\} thenP {w : QEZ; < )\1} < «and we have strict inequality {w : % < /\} <
«, which leads to a strict |nequal|ty in (b) above.

C. Proof of the sup formula (greatex)
For A1 > X\ we have:

Z min (Q(w), M1 P(w)) = Q{w: Q(w) < AP(w)} + Q {w : AP(w)

<Q(w) < MP(w)}+ M P{w: Qw) >\ P(w)}
weW
< Q{w: QUw) < \P(w)} + MP {w: \P(w

) < Q(w) <K M P(w)}+ M P{w: Qw) >\ P(w)}
= Q{w: Qw) < AP(w)} + M\ P{w:Q(w) > A

Plw)}



where (a) follow upper boundin@(w) with A\; P(w).

> min (Q(w), M P(w)) — Y min (Q(w), AP(w))

weW weW
<Q{w:Qw) < AP(w)} + MP{w: Q(w) > A\P(w)} — Q{w: Q(w) < AP(w)} — AP {w : Q(w) > AP(w)}
=M = )P {w: Q(w) = AP(w)}
Si-AN1-a)
SinceA; — A >0andP{w: Q(w) > AP(w)} < 1— «a, we have:
> min (Q(w), M P(w)) = M (1 —a) < Y min( AP(w)) — M1 — a)

weW weW

If A1 does not satisfy the conditioh] (6), théﬁ{w g“’g < )\} <P {w : % < )\1} and we are finished because there

existwy with P(wg) > 0, ggwo) > A, and Q(w“) < A1, which gives strict inequality in (a) above.

APPENDIXB
GENERALIZED FARKAS LEMMA

Lemma 4 (Farkas) Leta; € R",i = 1,...,m andb € R". If for all x € R™ such thatu” - a; > 0 impliesu” - b > 0, then
b= Zj /\jaj with )\j > 0.

We need to prove the following generalization of this result

Lemma 5 (Generalized Farkas)et a; € R",i = 1,...,m, b € R® and «; > 0. Assume that for aljx € R"™ such that
T
po - C =0,

. (b—Zajaj]l{MT,aj<o}> Z 0 (30)
J
Then:b =3, Nja; +C -7 with0 < \; < ay.
We defer the proof of the lemma after proving the following:
Lemma 6. Let:
n(p) = pu” - (b - Z Oéjajﬂw.aj<o}) (31)
J

Then minimization ofy(u) such thatu” - C' > 0, is equivalent to the following linear program:
T T
. I (b 1 (A0 C
m|n<z) <a>s.t.<z> <I I 0 >0 (32)
where A is the matrix with columnsg;, )\ is a vector with entries\;, and « is a vector with entriesy;.

Remark2. Obviously, 0 is an admissible solution. when there existsith (1) < 0 then is not bounded from below since
we can multiply the solution by any positive factor. When #iodution is bounded from below then it must be 0.

Proof: For eachy such thatu” - C' > 0, let zop (1) = max (0, —p” - A). Then:
T
(et ) (77520
Zopt (14) rr o ,)-=

( s )T(g)—uT'b— > (")

Zopt
JipuTa; <0

= MT . (b — Zajaj]].{HT.aj<0})

and:

J
On the other hand, if:



then:
z > zopt(1t)

() ()=l V() St

sincea > 0. [ ]
Proof of Lemm&]5:By Lemma[®, the problem is equivalent to the linear progfa®).(8 0 is the minimal solution, then

this is equivalent to: . .
I (A0 C I (b
<z> <110>20;‘(z> (a)20 (33)

A1

and:

Now, the standard Farkas lemnia (4), this implies that theistse\ = [ Ay | > 0 such that:( 1;1 ? g ) A= ( 2 )
T
which is equivalent toA - \; + C' -7 = b and \; + A2 = «, which together givé) < \; < « as needed. [ |

Remark3. Note that we can add equality constraints jorby adding two inequality constraints. For an equality coaist
this results in an additional vector addedbtavithout any restriction on their coefficient. Specifically,our case we have the
additional constraint tha}", 1.(x) = 0, which is equivalent tq:” - 1 = 0, wherel is the vector of all ones. In Lemnid 3 we
obtain:
b= May+7LX >0
Yy
where we don’t have restrictions an(using the notation there).

APPENDIXC
MODIFICATION FORDMC
In this section we assume the reader is familiar with tethod of type§7], [8]. We use standard type notatioe.g[8].
Specifically, for a fixedn:
e XE X™andy € Y"
o Py denotes the empirical distribution of the sequerce X". Py denotes the empirical distribution of the sequence
(X,y) € (X x ¥)"
« Ty denotes the type class of the sequexngcee.:

Ty={X € X": Pv = P}
« Ty is the conditional type class of giveny, i.e.
Ty = {X' € X" : Pyy = Py}

o |- | denote the size of a set,g, |T|,|Tyy|

For DMC, we know from[[2, Theorem 20] that we can restrict bibil input and output distributions, b (x) andQy (y)
to be uniform on types. Using the same argumentyf@@ x, z), i.e., the convexity and concavity with respect @y andz
shows that we can also prove th@k (x) andz are uniform over type. In this appendix we provide the nemgssiodification
for the algorithm needed. Specifically, for each input tyfessTy let A\, = Qx (Tx), i.e. Ar, is the weight of the type class

Ty. We have:
S =1
Tx

— )\TX
T

where [3#) is by the uniform type assumption. We also assinaiz is fixed for eachy’ € Ty, i.e. z, = zg,. The algorithm
is modified to calculate the score using, andz, instead ofQ) x (x) andz,. The linear inequality and the score function has

and:

Qx (X)

(34)



to be modified to incorporater, andzyz, instead ofQx (x) andz,. For the linear inequality:

Qx {Wyx (yIx) > z,} = Z Qx(X)

x:Wy | x (Y[X)>2y

-

T.
x:Wy | x (Y[X)>2y | wl

@ Z ATy

Txy: Wy | x (Y[X)>2y

|Tx|y|

T |

where in (a) we sum over the conditional typexofiveny, which satisfies the condition. The condition withinstead of>
is similar. The score function:

v(@Qx,2) ZQX min (Wy | x (Y[x), zy) — Rzzy

®
Z Ty |Qx (%) min (Wyx (y[x), 2y) — Z Ty|zy
Tx,y

= Z |, y| |T | min (Wy | x (y[x), zy) — Z Ty|zy
Tx,y

() . _

= Z |Ty|x|)\Tx min (WY\X(Y|X)a Zy) —e B Z |Ty|zy
Tx,y TV

where (b) follows by summing over afk,y) in the type classly, since>", Qx(x) min (Wy x(y|X),2zy) is constant over

the type class, and the same argument for the second sumll(lyﬁfsf(smce'| ol = |Tyx|-
A few comments are in order:

Remarka4.

« Since we expeat—* to be small, this suggests that calculations should be dotieeilog domain. This is left for further
research.

o It is well known that the linear programs are harder when degacy occurs. This follows in our case too; had we
assumed that no degeneracy occurs, some simplificatioqmasile. However, since we are interested in small exanple
simulation results show that degeneracy does occur and wetbhahandle these cases as well.

« Incremental algorithm starting from large for which the uniform distribution is optimal and reducifigwhile keeping
optimality of the distribution® x through small correction to the distribution.
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