
ar
X

iv
:1

51
2.

09
33

3v
2 

 [c
s.

IT
]  

25
 J

an
 2

01
6

On the calculation of the minimax-converse of the
channel coding problem

Nir Elkayam Meir Feder
Department of Electrical Engineering - Systems

Tel-Aviv University, Israel
Email: nirelkayam@post.tau.ac.il, meir@eng.tau.ac.il

Abstract

A minimax-converse has been suggested for the general channel coding problem [1]. This converse comes in two flavors.
The first flavor is generally used for the analysis of the coding problem with non-vanishing error probability and provides an
upper bound on the rate given the error probability. The second flavor fixes the rate and provides a lower bound on the error
probability. Both converses are given as a min-max optimization problem of an appropriate binary hypothesis testing problem.
The properties of the first converse were studies in [2] and a saddle point was proved. In this paper we study the properties
of the second form and prove that it also admits a saddle point. Moreover, an algorithm for the computation of the saddle
point, and hence the bound, is developed. In the DMC case, thealgorithm runs in a polynomial time.

I. I NTRODUCTION

Achievable and Converse bounds were derived in [3] for the problem of point to point (P2P) channel coding by using the
standardrandom coding argument. The setting considered a general channel and a general (possibly mismatched) decoding
metric. Both achievable and converse results were given in terms of a functionF (R), which is the cumulative distribution
function (CDF) of the pairwise error probability. When the decoding metric is matched to the channel (which is the focus of
this paper), the converse bound reduces to theminimax converse, proposed in [1].

Consider an abstract channel coding problem; that is a random transformation defined by a pair of measurable spaces of
inputsX and outputsY and a conditional probability measureWY |X : X 7→ Y. Let M be a positive integer. A flavor of the
minimax converse is a lower bound on the error probability ofany code withM = 2R codewords. The proof of the minimax
converse relies on a reduction from the channel coding problem to the binary hypothesis testing problem. The bound is given
in terms ofβα (P,Q), which is the power of the test (i.e. type II error probability) at a significance level1 − α (i.e., type I
error probability), to discriminate between probability measuresP andQ.

Specifically, the minimax converse comes in the following two flavors:

ǫ ≥ inf
QX

sup
QY

β1− 1
M

(

QX ×QY , QXWY |X

)

(1)

1

M
≥ inf

QX

sup
QY

β1−ǫ

(

QXWY |X , QX ×QY

)

. (2)

whereQXWY |X andQX ×QY are the joint distributions onX × Y defined by1:
(

QXWY |X

)

(x, y) = QX(x)WY |X(y|x)

(QX ×QY ) (x, y) = QX(x)QY (y)

The first form (1) gives a lower bound on the error probabilityof any code given that the number of codewords isM . The
second form (2) gives an upper bound on the number of codewords M given that the error probability isǫ. Both bounds are
given as ainf − sup optimization problem on the set ofinput distributionsQX andoutput distributionsQY .

The functional properties ofβ1−ǫ

(

QXWY |X , QX ×QY

)

, as a function ofQX andQY (i.e., the objective function in (2))
were investigated in [2]. In particular, the function is convex-concave and the existence of asaddle point was proved under
general conditions. The focus of this paper is on the form (1), as this form has been used in [3] for the converse and achievable
results there.

Specifically, our goal in this paper is to develop tools to evaluate the optimization problem (1), and the distributionsQX

andQY that attain it. In particular, by calculating the optimal distributionQX in (1) for a givenR = logM , we obtain both
a converse bound and a “good” distribution for random codingat rateR, whose performance are close up to a factor to the
converse result, see [3, Theorem 4] for the exact statement.

1throughout the paper, we assume that the alphabetsX andY are finite or countably infinite.
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The paper is structured as follows:

• In section II we derive a general variational formula for thefunctionalβα. The formula is interesting by its own right
(see further [4]), but in this paper we are interested only inits usage for analyzing the minimax converse.

• In section III we apply the variational formula on the functional:

β1−e−R

(

QX ×QY , QXWY |X

)

.

This gives us a hint for defining a new functionalγ with a larger domain thanβ. This new functional is convex-concave,
thus has a saddle point, which in turn implies a saddle point of (1). Moreover, necessary and sufficient conditions for the
saddle point are proved.

• In section IV we provide a high level description of an algorithm for computing the saddle point ofγ. Following that we
provide in section V a more detailed description of the algorithm, showing how it builds a sequence of input distributions
Q

(k)
X using linear programs designed to reduce the scoresupQY

β1−e−R

(

Q
(k)
X ×QY , Q

(k)
X WY |X

)

.

In the appendix C we describe the modification needed for the calculation of the minimax-converse for Discrete Memoryless
Channels (DMC) where symmetries can be used to significantlyreduce the computational burden into a polynomial time
algorithm (as a function of the block length) for a fixed (small) |X |, |Y| input and output alphabet.

II. GENERAL BINARY HYPOTHESIS TESTING

Recall some general (and standard) definitions about the optimal performance of a binary hypothesis testing between two
probability measuresP andQ over a setW :

βα (P,Q) = min
PZ|W :

∑

w∈W
P (w)PZ|W (1|w)≥α

∑

w∈W

Q(w)PZ|W (1|w), (3)

wherePZ|W : W → {0, 1} is any randomized test. The minimum is guaranteed to be achieved by the Neyman–Pearson lemma.
Thus,βα (P,Q) gives the minimum probability of error under hypothesisQ if the probability of error under hypothesisP is
not larger than1− α. β is thepower of the test atsignificance level1− α.

Lemma 1. The following variational formula holds:

βα (P,Q) = max
λ

(

∑

w∈W

min (Q(w), λP (w)) − λ (1− α)

)

. (4)

Moreover,
βα (P,Q) =

∑

w∈W

min (Q(w), λP (w)) − λ (1− α) (5)

If and only if:

P

{

w :
Q(w)

P (w)
< λ

}

≤ α ≤ P

{

w :
Q(w)

P (w)
≤ λ

}

(6)

The proof appears in Appendix A.

III. A NALYSIS OF THE MINIMAX -CONVERSE

A. General definitions

Consider an abstract channel coding problem; that is, a random transformation defined by a pair of measurable spaces of
inputsX and outputsY and a conditional probability measureWY |X : X 7→ Y. The notationP (A) stands for the set of all
probability distributions onA. Throughout this paper we assume that|X | < ∞, |Y| < ∞. We usemax andmin instead ofsup
and inf as we generally deal with convex/concave optimization problems over compact spaces and thesup / inf is generally
attained by some element. For a distributionQX ∈ P (X ) andQY ∈ P (Y), denote byQXWY |X the joint distribution on
X × Y where

(

QXWY |X

)

(x, y) = QX(x)WY |X(y|x) and (QX ×QY ) (x, y) = QX(x)QY (y).



B. The minimax-converse

As noted above, Polyanskiyet al. [1] proved the following general converse result for the average error probability that
come in two flavors: For any code withM equiprobable codewords:

ǫ ≥ inf
QX

sup
QY

β1− 1
M

(

QX ×QY , QXWY |X

)

(7)

1

M
≥ inf

QX

sup
QY

β1−ǫ

(

QXWY |X , QX ×QY

)

. (8)

whereǫ is the average error probability. Eq. (7) gives a lower boundon the error probability in terms of the rate while the
second flavor, (8), gives an upper bound on the rate in terms ofthe error probability. Furthermore, using equation (8) and
instantiatingQY , it was shown in [1] that most other known converses of the channel coding problem can be derived from
this converse. In [2], the functional properties of the minimax-converse (8) have been further investigated. In particular, its
convexity w.r.tQX and concavity w.r.tQY were shown.

In this paper our focus is on the form (7) as this form has been used in [3] for the achievable and converse parts. The
convexity of (7) inQX follows from [2, Theorem 6]; however, the functional is not concave with respect toQY in general.
Applying Lemma 1 to this case gives the following formula:

β1−e−R

(

QXQY , QXWY |X

)

= max
λ

(

∑

x,y

QX(x)min
(

WY |X(y|x), λQY (y)
)

− e−Rλ

)

The convexity ofβ1−e−R

(

QXQY , QXWY |X

)

with respect toQX then follows easily since it is themax of the convex
(affine) function ofQX . Unfortunately,β is not concave inQY . Yet, in order to analyze the minimax converse, we define a
new functionγ over a larger domain, which (as shown below) is convex-concave:

Definition 1. For any distributionQX ∈ P (X ) andz = (zy) ∈ [0, 1]|Y| =
{

(zy) ∈ R
|Y| : 0 ≤ zy ≤ 1

}

2:

γ1−e−R(QX , z,WY |X (y|x)) =
∑

x,y

QX(x)min
(

WY |X(y|x), zy
)

− e−R
∑

y

zy (9)

Since throughout this paperWY |X (y|x) andR are held fixed, we will abbreviate and writeγ(QX , z) instead ofγ1−e−R(QX , z,WY |X (y|x)).

Some properties ofγ(QX , z) are summarized in the following theorem. In particular, thefunctional admits a saddle point.

Theorem 1.
γ(QX , z) is convex inQX , concave inz and admits a saddle point(Q∗

X , z∗), i.e.

γ(Q∗
X , z) ≤ γ(Q∗

X , z∗) ≤ γ(QX , z∗) (10)

for all QX , z. In particular:
ǫ = min

QX

max
z

γ(QX , z) = max
z

min
QX

γ(QX , z) (11)

Moreover, forx such thatQ∗
X(x) > 0 we have:

ǫ =
∑

y

min
(

WY |X(y|x), z∗y
)

− e−R
∑

y

z∗y (12)

and for x such thatQ∗
X(x) = 0:

ǫ ≤
∑

y

min
(

WY |X(y|x), z∗y
)

− e−R
∑

y

z∗y (13)

Proof: Note that bothQX andz range over convex compact sets and thatγ(QX , z) is a convex–concave functional (affine
in Q(x) and concave inz by the concavity of themin function) andγ(QX , z) is continuous in both arguments. The existence
of the saddle point and (11) follow from the Fan’s minimax theorem [5].

By the saddle point property:

ǫ = γ(Q∗
X , z∗) = min

QX

γ(QX , z∗)

2Throughout this paperz will stand for a vector, indexed by the elementsY , i.e., the component ofz arezy.



Note that:

γ(QX , z) =
∑

x

QX(x)

(

∑

y

min
(

WY |X (y|x) , zy
)

− e−R
∑

y

zy

)

and:

min
QX

γ(QX , z∗) = min
QX

{

∑

x

Q(x)

(

∑

y

min
(

WY |X (y|x) , z∗y
)

− e−R
∑

y

z∗y

)}

= min
x∈X

{

∑

y

min
(

WY |X (y|x) , z∗y
)

− e−R
∑

y

z∗y

}

(14)

hence (12) and (13) follow from the linearity ofγ(QX , z) in QX .
The next theorem presents the connection betweenγ(QX , z) andβ1−e−R

(

Q(x)Q(y), Q(x)WY |X (y|x)
)

.

Theorem 2.
For any distributionQX the following holds:

max
QY

β1−e−R

(

QX ×QY , QXWY |X

)

= max
z

γ(QX , z) (15)

Moreover,z∗ attains the maximum in(15) if and only if for eachy:

QX

{

x : WY |X (y|x) > z∗y
}

≤ e−R ≤ QX

{

x : WY |X (y|x) ≥ z∗y
}

(16)

Proof: (15) follows from:

max
QY

β1−e−R

(

QX ×QY , QXWY |X

)

= max
QY

max
λ

(

∑

x,y

QX(x)min
(

WY |X(y|x), λQY (y)
)

− e−Rλ

)

= max
z

(

∑

x,y

QX(x)min
(

WY |X(y|x), zy
)

− e−R
∑

y

zy

)

where we writezy = λQ(y) and useλ =
∑

y zy. Note that to attain the maximum, we can restrictzy ≤ 1 sinceγ(QX , z) ≤
γ(QX ,min(z, 1)). To prove (16):

γ(QX , z) =
∑

x,y

QX(x)min
(

WY |X(y|x), zy
)

− e−R
∑

y

zy

=
∑

y

(

∑

x

min
(

WY |X(y|x)QX(x), zyQX(x)
)

− e−Rzy

)

=
∑

y

(

∑

x

min
(

WX|Y (x|y)QY (y), zyQX(x)
)

− e−Rzy

)

=
∑

y

(

∑

x

QY (y)min

(

WX|Y (x|y),
zy

QY (y)
QX(x)

)

− e−Rzy

)

=
∑

y

QY (y)

(

∑

x

min

(

WX|Y (x|y),
zy

QY (y)
QX(x)

)

− e−R zy

QY (y)

)

where we assumedQY (y) > 0 for all y to avoid cumbersome notation.

sup
z

γ(QX , z) = sup
z

∑

y

QY (y)

(

∑

x

min

(

WX|Y (x|y),
zy

QY (y)
QX(x)

)

− e−R zy

QY (y)

)

=
∑

y

QY (y) sup
zy

(

∑

x

min

(

WX|Y (x|y),
zy

QY (y)
QX(x)

)

− e−R zy

QY (y)

)

=
∑

y

QY (y)β1−e−R

(

QX ,WX|Y

)



Moreover, the optimalzy must satisfy condition (6):

QX

{

x :
W (x|y)
Q(x)

<
zy

Q(y)

}

≤ 1− e−R ≤ QX

{

x :
W (x|y)
Q(x)

≤
zy

Q(y)

}

which gives (16) after rearranging the terms.

Remark1. Combining the last theorem with (14) we recover the formula that appears in [6, Proposition 14] where it was
proven by indirect arguments relying on the duality in linear programming.

Theorems 1 and 2 provide necessary conditions, (12),(13) and (16) for the saddle pointQ∗
X andz∗. The following theorem

shows that these conditions are also sufficient.

Theorem 3. Any distributionQ∗
X and z∗ satisfy conditions(12) and (13) and (16) is a saddle point ofγ(QX , z).

Proof: We need to show that:
γ(Q∗

X , z) ≤ γ(Q∗
X , z∗) ≤ γ(QX , z∗)

The left hand side follows from (16) and the right hand side from (12),(13) and the linearity inQX .

IV. A N ALGORITHM FOR THE COMPUTATION OF THE SADDLE POINT- HIGH LEVEL DESCRIPTION

In the following sections we present our algorithm for the computation of the saddle point. We first give a high level review
of the ingredients of the algorithm.

The general idea is to generate a sequence
(

Q
(k)
X , z(k)

)

such that:

γ(Q
(k)
X , z(k)) = max

z
γ(Q

(k)
X , z) > max

z
γ(Q

(k+1)
X , z) = γ(Q

(k+1)
X , z(k+1))

The initial step takes any distributionQ(0)
X and calculatez(0) using (16). Then, each iteration contains two steps as we now

describe:

A. OptimizingQ(k+1)
X for a givenz(k)

Givenz(k) we can find a distributionQ(k+1)
X that minimizesγ(QX , z(k)) subject to condition (16). This is a linear program

with |X | variables,2 · |Y| + |X | linear inequalities, (2 · |Y| for (16) and|X | for the nonnegativity ofQX(x)), and additional
equality forQX(x) to sum to 1. If:

min
QX

γ(QX , z(k)) < γ(Q
(k)
X , z(k))

Then we define:

1) z(k+1) = z(k)

2) Q
(k+1)
X = argminQX

γ(QX , z(k))

We will refer to this stage as alocal linear optimization and say thatQ(k+1)
X is locally optimal given z(k).

B. Improving a locally optimal solution

When we hold a locally optimal solutionQ(k)
X , we have to changez(k) in order to improve (reduce) the current score (i.e.,

γ(Q
(k)
X , z(k))). Consider any perturbationµ on QX , i.e.,

∑

x µ(x) = 0, and letQµ
X = Q

(k)
X + δµ whereδ is small enough.3

For Qµ
X , let zµ satisfy the condition (16) with respect toQµ

X . Let:

η(µ) =
γ(Qµ

X , zµ)− γ(Q
(k)
X , z(k))

δ
(17)

If minµ η(µ) = 0 then we cannot improveQ(k)
X and we have aglobally optimal solution. If η(µ) < 0 for someµ, then we

found an improvement of the score function and we define:

1) z(k+1) = zµ

2) Q
(k+1)
X = Qµ

X

In practice we will show that the problem of minimizing (17) can be translated to a linear program as well (up to some
regularities that we will have to handle separately), whichwill allow us to solve it.

3Note that whenQX(x) = 0 we must takeµ(x) ≥ 0 and if QX(x) = 1 we must takeµ(x) < 0



V. I MPROVING A LOCALLY OPTIMAL SOLUTION - DETAILS

In this section we describe in detail how to implement step B of the iteration, described above in high level.
Fix QX andz and assume theQX is locally optimal with respect toz. Let µ be a perturbation ofQX , i.e., µ ∈ R

|X | with
∑

x µ(x) = 0. Recall that by (16) for eachy we have:

QX

{

x : WY |X (y|x) > zy
}

≤ e−R ≤ QX

{

x : WY |X (y|x) ≥ zy
}

Assume initially thatQX(x) > 0 for all x. We point out in the sequel where we need this assumption. When we do have
zeros in the distributionQX(x) we will restrict ourselves to the subset:{x ∈ X : QX(x) > 0}. In subsection V-H we explain
how to recover from this assumption.

A. Notation

We will make use of the following notation through this section.

1) 1{WY |X (y|x)≥zy} denotes a vector, indexed byx with 1{WY |X(y|x)≥zy}(x) = 1 if WY |X (y|x) ≥ zy and 0 otherwise. Define
1{WY |X (y|x)>zy} likewise.

2) µT · L is the scalar product between the vectorsµ andL, i.e.: µT · L =
∑

x µ(x)L(x).

B. Phase I: Changingz to achieve strict inequality on the left hand side of(16)

Throughout, we assume that:

QX

{

x : WY |X (y|x) > zy
}

< e−R

≤ QX

{

x : WY |X (y|x) ≥ zy
}

i.e., we have strict inequality on the left hand side of (16). If this is not the case, we can changezy until this is valid for ally.
If QX

{

x : WY |X (y|x) > zy
}

= e−R, Let:

xy = argmin
x

{

WY |X (y|x) : WY |X (y|x) > yz, QX(x) > 0
}

Then:

• QX

{

x : WY |X (y|x) > zy
}

= QX

{

x : WY |X (y|x) ≥ WY |X(y|xy)
}

• QX(xy) > 0
• QX

{

x : WY |X (y|x) > WY |X(y|xy)
}

< e−R sinceQX(xy) > 0.

Replacingzy with WY |X(y|xy) we have strict inequality on the left hand side in (16) and we haven’t changed the local
optimality since the optimality condition (16) still holdsby construction.

C. Phase II: Compute Alternativez with strict inequality on the right hand side of(16)

Following the same reasoning, we can findzly ≤ zy that also satisfy (16) with the following additional properties:

• If QX

{

x : WY |X (y|x) > zy
}

< e−R < QX

{

x : WY |X (y|x) ≥ zy
}

thenzly = zy.
• QX

{

x : WY |X (y|x) > zly
}

≤ e−R < QX

{

x : WY |X (y|x) ≥ zly
}

• If QX

{

x : WY |X (y|x) > zly
}

= e−R = QX

{

x : WY |X (y|x) ≥ zy
}

then:1{WY |X (y|x)>zly}
= 1{WY |X(y|x)≥zy}.

In order for the last equality to hold we must assume that:QX(x) > 0 for all x.

D. Phase III: Computezµ

Let Qµ
X = QX + δ ·µ whereδ is sufficiently small. Recall that we must findzµ that satisfies the condition (16) with respect

to Qµ
X . From:

Qµ
X

{

x : WY |X (y|x) > zy
}

= QX

{

x : WY |X (y|x) > zy
}

+ δµT · 1{x:WY |X (y|x)>zy}

we always have
Qµ

X

{

x : WY |X (y|x) > zy
}

< e−R

for sufficiently smallδ and:

Qµ
X

{

x : WY |X (y|x) ≥ zy
}

≥ e−R ⇔ µT · 1{x:WY |X (y|x)≥zy} ≥ 0

Hence whenµT · 1{x:WY |X(y|x)≥zy} < 0 we must changezy since it does not satisfy condition (16) anymore. Since:

Qµ
X

{

x : WY |X (y|x) ≥ zly
}

> e−R



for sufficiently smallδ and:

Qµ
X

{

x : WY |X (y|x) > zly
}

≤ e−R ⇔ µT · 1{x:WY |X (y|x)>zly}
≤ 0

Now, from 1{x:WY |X (y|x)>zly}
= 1{x:WY |X (y|x)≥zy} we have:

µT · 1{x:WY |X (y|x)>zly}
= µT · 1{x:WY |X(y|x)≥zy}

and whenµT · 1{x:WY |X (y|x)≥zy} < 0 we can takezly.
To summarize, let:

zµy =

{

zy if µT · 1{x:WY |X (y|x)≥zy} ≥ 0

zly if µT · 1{x:WY |X (y|x)≥zy} < 0
(18)

Thenzµ satisfies (16) with respect toQµ
X for δ sufficiently small.

E. Computation ofγ(Qµ
X , zµ)

Let:
η(µ, z) ,

∑

x,y

µ(x)min
(

WY |X (y|x) , zy
)

(19)

We have:

γ(Qµ
X , zµ) =

∑

x,y

(QX(x) + δµ(x))min
(

WY |X (y|x) , zµy
)

− e−R
∑

y

zµy

= γ(QX , zµ) + δ
∑

x,y

µ(x)min
(

WY |X (y|x) , zµy
)

= γ(QX , zµ) + δη(µ, zµ)

Sincezµ also satisfies (16) with respect toQX , γ(QX , zµ) = γ(QX , z) and:

γ(Qµ
X , zµ)− γ(QX , z)

δ
=

γ(Qµ
X , zµ)− γ(QX , zµ)

δ
= η(µ, zµ)

and:

η(µ, zµ)− η(µ, z) =
∑

x,y

µ(x)
(

min
(

WY |X (y|x) , zµy
)

−min
(

WY |X (y|x) , zy
))

=
∑

y:µT ·1
{WY |X (y|x)≥zy}<0

∑

x

(

min
(

WY |X (y|x) , zly
)

−min
(

WY |X (y|x) , zy
))

(a)
=

∑

y:µT ·1
{WY |X (y|x)≥zy}

<0

(

zly − zy
)

µT · 1{x:WY |X(y|x)≥zy}

=
∑

y

(

zly − zy
)

µT · 1{WY |X(y|x)≥zy}1
{

µT ·1
{WY |X (y|x)≥zy}

<0

}

where (a) follows from:
∑

x

(

min
(

WY |X (y|x) , zly
)

−min
(

WY |X (y|x) , zy
))

(20)

=
∑

x:WY |X(y|x)>zly

zly +
∑

x:WY |X(y|x)≤zly

WY |X (y|x)−
∑

x:WY |X (y|x)≥zy

WY |X (y|x)−
∑

x:WY |X (y|x)<zy

zy

=
(

zly − zy
)

µT · 1{x:WY |X(y|x)≥zy}



since1{x:WY |X (y|x)>zly}
= 1{x:WY |X (y|x)≥zy} and also1{x:WY |X (y|x)≤zly}

= 1{x:WY |X(y|x)<zy}. To sum until here:

η(µ, zµ) = η(µ, z)−
∑

y

(

zy − zly
)

µT · 1{WY |X(y|x)≥zy}1
{

µT ·1
{WY |X (y|x)≥zy}<0

} (21)

And we want to optimizeη(µ, zµ) with respect toµ.

F. Optimize forµ

Let define:
• b(x) =

∑

y min
(

WY |X(y|x), zy
)

so that:η(µ, z) = µT · b
• ay = 1{x:WY |X(y|x)≥zy}
• αy = zy − zly ≥ 0

Then:

η(µ, zµ) = η(µ) = µT ·

(

b−
∑

y

αyay1{µT ·ay<0}

)

(22)

In appendix B we prove the following two lemmas. The first shows how to translate the problem of minimizingη(µ) into
a linear program. We provide these lemmas here using the notation used in this section. (i.e., index the vectors withy)

Lemma 2. Let:

η(µ) = µT ·

(

b−
∑

y

αyay1{µT ·ay<0}

)

(23)

Then minimization ofη(µ) subject toµT · 1 = 0 is equivalent to the following linear program:

min

(

µ
z

)T

·

(

b
α

)

s.t.

(

µ
z

)T

·

(

A 0
I I

)

≥ 0, µT · 1 = 0 (24)

whereA is the matrix with columnsay, α is a vector with entriesαy, and 1 is the all-one vector.

The next lemma provides necessary and sufficient conditionsfor µ = 0 to be the optimal minimizer ofη(µ).

Lemma 3 (Generalized Farkas). Let ay ∈ R
n, y ∈ Y, b ∈ R

|X | andαy ≥ 0. Then

µT ·

(

b−
∑

y

αyay1{µT ·ay<0}

)

≥ 0 (25)

for all µ ∈ R
|X | such thatµT · 1 = 0 if and only if:

b =
∑

j

λyay + τ1, 0 ≤ λy ≤ αy, τ ∈ R (26)

If η(µ) < 0 then we have found an improvement of the score and we can keep on going to find a new locally optimal
solution.

G. The case whereminµ η(µ) = 0

If η(µ) = 0 is the minimal value, then we cannot improve on the current solution using perturbation that consider non-zeros
elements ofQX(x). (The case where there are zeros inQX(x) is discussed in subsection V-H).

Let us show that indeed in this case we reached the optimal solution, i.e., we can recover the conditions (12) and (13).
Definezo by: zoy = zy − λy . Then:
1) zly ≤ zoy ≤ zy

2) bo(x) =
∑

y min
(

WY |X(y|x), zoy
)

= τ , i.e. bo = τ1
The last equality follows from:

µT · (bo − b) =
∑

y

∑

x

µ(x)
(

min
(

WY |X(y|x), zoy
)

−min
(

WY |X(y|x), zy
))

(a)
=
∑

y

(

zoy − zy
)

µT · 1{x:WY |X(y|x)≥zy}

= −
∑

y

λyµ
T · ay



where (a) follows from the same reasoning as (20). Hence:

bo = b−
∑

y

λyay = τe

H. Zeros inQX(x)

Let QX , z be such that:

QX

{

x : WY |X (y|x) > zy
}

≤ e−R ≤ QX

{

x : WY |X (y|x) ≥ zy
}

ǫ =
∑

y

min
(

WY |X(y|x), zy
)

− e−R
∑

y

zy

for all x with QX(x) > 0, and:
ǫ >

∑

y

min
(

WY |X(y|x1), zy
)

− e−R
∑

y

zy

for somex1 with QX(x1) = 0. We also assume thatQX is locally optimal, which means that we cannot improve the score
by running a local linear program. Obviously, we cannot argue that the optimality condition (13) holds.

For any perturbation withµ(x1) > 0, we must have that at least one of the linear inequality constraints is violated.
Equivalently, we can say: For any perturbation that does notviolate the linear inequality constraint, we must haveµ(x1) ≤ 0.

• FromQµ
X

{

x : WY |X (y|x) > zy
}

= QX

{

x : WY |X (y|x) > zy
}

+µT ·1{WY |X (y|x)>zy}, If QX

{

x : WY |X (y|x) > zy
}

=

e−R then in order not to violate the linear inequality we must have: µT · 1{WY |X(y|x)>zy} ≤ 0

• FromQµ
X

{

x : WY |X (y|x) ≥ zy
}

= QX

{

x : WY |X (y|x) ≥ zy
}

+µT ·1{WY |X (y|x)≥zy}, If QX

{

x : WY |X (y|x) ≥ zy
}

=

e−R then in order not to violate the linear inequality we must have: µT · 1{WY |X(y|x)≥zy} ≥ 0

• µ must satisfy:µT · 1 = 0.

By Farkas lemma (4) we must have:

δx1 =
∑

y:QX{x:WY |X (y|x)>zy}=e−R

λl
y1{WY |X(y|x)>zy} +

∑

y:y:QX{x:WY |X(y|x)≥zy}=e−R

λh
y1{WY |X (y|x)≥zy} + α1

with λl
y ≥ 0 andλh

y ≤ 0 andδx1 is the vector with 1 atx1 and 0 otherwise.
At this point we can use theseλs by adding them tozy in order to increase score atx1 up to the other scores and meet the

conditions (13) along the same lines as V-G. Note that we might not be able to do this in a single step. Moreover, we have
to do this process for each variable withQX(x) = 0 and lower score than the global score we have.

VI. SUMMARY

In this paper we have studied the functional properties of the minimax-converse for a fixed rate. The existence of a saddle
point was proved, necessary and sufficient conditions were derived and an algorithm for the computation of the saddle point
was presented. For the DMC case, the algorithm can be modifiedto incorporate additional linear constraints (i.e., input and
output distribution that are uniform on types) and this results in a polynomial time algorithm for the computation of thesaddle
point. The saddle point distribution can be used to optimizethe random coding argument (e.g., [3]).

APPENDIX A
PROOF OF LEMMA 1

A. Proof of (5)

Let λ, δ be the thresholds for the optimal test, and let:

A =

{

w :
Q(w)

P (w)
< λ

}

B =

{

w :
Q(w)

P (w)
= λ

}

Then:
α = P (A) + δP (B) (27)

And:
β = Q(A) + δQ(B) (28)



Multiply (27) by λ, subtract (28) and useQ(B) = λP (B):

β − λα = Q(A)− λP (A)

On the other hand:
∑

w∈W

min (Q(w), λP (w)) =
∑

w∈A

Q(w) +
∑

w∈Ac

λP (w)

= Q(A) + λ(1 − P (A))

= Q(A)− λP (A) + λ

= β − λα + λ

Thus:
β =

∑

w∈W

min (Q(w), λP (w)) − λ(1 − α)

B. proof of the sup formula (smallerλ)

Note that the optimalλ satisfies the following:

P

{

w :
Q(w)

P (w)
≥ λ

}

≥ 1− α ≥ P

{

w :
Q(w)

P (w)
> λ

}

(29)

Let λ1 < λ:
∑

w∈W

min (Q(w), λ1P (w)) −
∑

w∈W

min (Q(w), λP (w))

=
∑

w∈W :λ1P (w)<Q(w)<λP (w)

(λ1P (w)−Q(w)) + (λ1 − λ)
∑

w∈W :λP (w)≤Q(w)

P (w)

(a)

≤ (λ1 − λ)
∑

w∈W :λP (w)≤Q(w)

P (w)

= (λ1 − λ)P

{

w :
Q(w)

P (w)
≥ λ

}

(b)

≤ (λ1 − λ) (1− α)

where (a) follow from:λ1P (w) −Q(w) < 0, (b) follow from λ1 − λ < 0 andP
{

w : Q(w)
P (w) ≥ λ

}

≥ 1− α. Rearranging the
terms:

∑

w∈W

min (Q(w), λ1P (w)) − λ1(1− α) ≤
∑

w∈W

min (Q(w), λP (w)) − λ(1− α)

If λ1 does not satisfy the condition (6), then:

• If P
{

w : Q(w)
P (w) ≤ λ1

}

< P
{

w : Q(w)
P (w) < λ

}

, then we are finished because there existw0 with P (w0) > 0, Q(w0)
P (w0)

< λ,

and Q(w0)
P (w0)

> λ1, which gives strict inequality in (a) above.

• If P
{

w : Q(w)
P (w) ≤ λ1

}

= P
{

w : Q(w)
P (w) < λ

}

thenP
{

w : Q(w)
P (w) ≤ λ1

}

< α and we have strict inequalityP
{

w : Q(w)
P (w) < λ

}

<

α, which leads to a strict inequality in (b) above.

C. Proof of the sup formula (greaterλ)

For λ1 > λ we have:

∑

w∈W

min (Q(w), λ1P (w)) = Q {w : Q(w) < λP (w)} +Q {w : λP (w) ≤ Q(w) ≤ λ1P (w)} + λ1P {w : Q(w) > λ1P (w)}

(a)

≤ Q {w : Q(w) < λP (w)} + λ1P {w : λP (w) ≤ Q(w) ≤ λ1P (w)} + λ1P {w : Q(w) > λ1P (w)}

= Q {w : Q(w) < λP (w)} + λ1P {w : Q(w) ≥ λP (w)}



where (a) follow upper boundingQ(w) with λ1P (w).
∑

w∈W

min (Q(w), λ1P (w))−
∑

w∈W

min (Q(w), λP (w))

≤ Q {w : Q(w) < λP (w)} + λ1P {w : Q(w) ≥ λP (w)} −Q {w : Q(w) < λP (w)} − λP {w : Q(w) ≥ λP (w)}

= (λ1 − λ)P {w : Q(w) ≥ λP (w)}

≤ (λ1 − λ) (1− α)

Sinceλ1 − λ > 0 andP {w : Q(w) ≥ λP (w)} ≤ 1− α, we have:
∑

w∈W

min (Q(w), λ1P (w)) − λ1(1− α) ≤
∑

w∈W

min (Q(w), λP (w)) − λ(1− α)

If λ1 does not satisfy the condition (6), thenP
{

w : Q(w)
P (w) < λ

}

< P
{

w : Q(w)
P (w) < λ1

}

and we are finished because there

existw0 with P (w0) > 0, Q(w0)
P (w0)

≥ λ, and Q(w0)
P (w0)

< λ1, which gives strict inequality in (a) above.

APPENDIX B
GENERALIZED FARKAS LEMMA

Lemma 4 (Farkas). Let ai ∈ R
n, i = 1, ...,m and b ∈ R

n. If for all µ ∈ R
n such thatµT · ai ≥ 0 impliesµT · b ≥ 0, then

b =
∑

j λjaj with λj ≥ 0.

We need to prove the following generalization of this result:

Lemma 5 (Generalized Farkas). Let ai ∈ R
n, i = 1, ...,m, b ∈ R

n and αj ≥ 0. Assume that for allµ ∈ R
n such that

µT · C ≥ 0,

µT ·



b−
∑

j

αjaj1{µT ·aj<0}



 ≥ 0 (30)

Then:b =
∑

j λjaj + C · τ with 0 ≤ λj ≤ αj .

We defer the proof of the lemma after proving the following:

Lemma 6. Let:

η(µ) = µT ·



b −
∑

j

αjaj1{µT ·aj<0}



 (31)

Then minimization ofη(µ) such thatµT · C ≥ 0, is equivalent to the following linear program:

min

(

µ
z

)T

·

(

b
α

)

s.t.

(

µ
z

)T

·

(

A 0 C
I I 0

)

≥ 0 (32)

whereA is the matrix with columnsai, λ is a vector with entriesλi, andα is a vector with entriesαi.

Remark2. Obviously, 0 is an admissible solution. when there existsµ with η(µ) < 0 thenη is not bounded from below since
we can multiply the solution by any positive factor. When thesolution is bounded from below then it must be 0.

Proof: For eachµ such thatµT · C ≥ 0, let zopt(µ) = max
(

0,−µT · A
)

. Then:
(

µ
zopt(µ)

)T

·

(

A 0 C
I I 0

)

≥ 0

and:
(

µ
zopt

)T

·

(

b
α

)

= µT · b−
∑

j:µT ·aj<0

αj

(

µT · aj
)

= µT ·



b−
∑

j

αjaj1{µT ·aj<0}





On the other hand, if:
(

µ
z

)T

·

(

A 0 C
I I 0

)

≥ 0



then:
z ≥ zopt(µ)

and:
(

µ
z

)T

·

(

b
α

)

≥

(

µ
zopt(µ)

)T

·

(

b
α

)

= µT ·



b−
∑

j

αjaj1{µT ·aj<0}





sinceα ≥ 0.
Proof of Lemma 5:By Lemma 6, the problem is equivalent to the linear program (32). If 0 is the minimal solution, then

this is equivalent to:
(

µ
z

)T

·

(

A 0 C
I I 0

)

≥ 0 ⇒

(

µ
z

)T

·

(

b
α

)

≥ 0 (33)

Now, the standard Farkas lemma (4), this implies that there existsλ =





λ1

λ2

τ



 ≥ 0 such that:

(

A 0 C
I I 0

)

· λ =

(

b
α

)

which is equivalent to:A · λ1 + C · τ = b andλ1 + λ2 = α, which together give0 ≤ λ1 ≤ α as needed.

Remark3. Note that we can add equality constraints onµ by adding two inequality constraints. For an equality constraint
this results in an additional vector added tob without any restriction on their coefficient. Specifically,in our case we have the
additional constraint that

∑

x µ(x) = 0, which is equivalent toµT · 1 = 0, where1 is the vector of all ones. In Lemma 3 we
obtain:

b =
∑

y

λyay + τ1, λj ≥ 0

where we don’t have restrictions onτ (using the notation there).

APPENDIX C
MODIFICATION FOR DMC

In this section we assume the reader is familiar with themethod of types[7], [8]. We use standard type notation,e.g.[8].
Specifically, for a fixedn:

• x ∈ Xn andy ∈ Yn

• Px denotes the empirical distribution of the sequencex ∈ Xn. Px,y denotes the empirical distribution of the sequence
(x, y) ∈ (X × Y)

n

• Tx denotes the type class of the sequencex, i.e.:

Tx = {x′ ∈ Xn : Px′ = Px}

• Tx|y is the conditional type class ofx given y, i.e.:

Tx|y = {x′ ∈ Xn : Px′,y = Px,y}

• | · | denote the size of a set,e.g., |Tx|,|Tx|y|

For DMC, we know from [2, Theorem 20] that we can restrict boththe input and output distributions, asQX(x) andQY (y)
to be uniform on types. Using the same argument forγ(QX , z), i.e., the convexity and concavity with respect toQX and z
shows that we can also prove thatQX(x) andz are uniform over type. In this appendix we provide the necessary modification
for the algorithm needed. Specifically, for each input type classTx let λTx = QX (Tx), i.e. λTx is the weight of the type class
Tx. We have:

∑

Tx

λTx = 1

and:
QX(x) =

λTx

|Tx|
(34)

where (34) is by the uniform type assumption. We also assume that zy is fixed for eachy′ ∈ Ty, i.e. zy = zTy . The algorithm
is modified to calculate the score usingλTx andzy instead ofQX(x) andzy. The linear inequality and the score function has



to be modified to incorporateλTx andzTy instead ofQX(x) andzy. For the linear inequality:

QX

{

WY |X (y|x) > zy
}

=
∑

x:WY |X(y|x)>zy

QX(x)

=
∑

x:WY |X(y|x)>zy

λTx

|Tx|

(a)
=

∑

Tx|y:WY |X (y|x)>zy

λTx

|Tx|y|

|Tx|

where in (a) we sum over the conditional type ofx given y, which satisfies the condition. The condition with≥ instead of>
is similar. The score function:

γ(QX , z) =
∑

x,y

QX(x)min
(

WY |X(y|x), zy
)

− e−R
∑

y

zy

(b)
=
∑

Tx,y

|Tx,y|QX(x)min
(

WY |X(y|x), zy
)

− e−R
∑

Ty

|Ty|zy

=
∑

Tx,y

|Tx,y|
λTx

|Tx|
min

(

WY |X(y|x), zy
)

− e−R
∑

Ty

|Ty|zy

(c)
=
∑

Tx,y

|Ty|x|λTx min
(

WY |X(y|x), zy
)

− e−R
∑

Ty

|Ty|zy

where (b) follows by summing over all(x, y) in the type classTx,y, since
∑

x QX(x)min
(

WY |X(y|x), zy
)

is constant over

the type class, and the same argument for the second sum (c) follows since |Tx,y|
|Tx|

= |Ty|x|.
A few comments are in order:

Remark4.

• Since we expecte−R to be small, this suggests that calculations should be done in the log domain. This is left for further
research.

• It is well known that the linear programs are harder when degeneracy occurs. This follows in our case too; had we
assumed that no degeneracy occurs, some simplifications arepossible. However, since we are interested in small examples,
simulation results show that degeneracy does occur and we have to handle these cases as well.

• Incremental algorithm starting from largeR for which the uniform distribution is optimal and reducingR while keeping
optimality of the distributionQX through small correction to the distribution.
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