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Abstract—In this paper, we study the prediction of a circularly
symmetric zero-mean stationary Gaussian process from a window
of observations consisting of finitely many samples. This is
a prevalent problem in a wide range of applications in
communication theory and signal processing. Due to stationarity,
when the autocorrelation function or equivalently the power
spectral density (PSD) of the process is available, the Minimum
Mean Squared Error (MMSE) predictor is readily obtained.
In particular, it is given by a linear operator that depends
on autocorrelation of the process as well as the noise power
in the observed samples. The prediction becomes, however,
quite challenging when the PSD of the process is unknown.
In this paper, we propose a blind predictor that does not
require the a priori knowledge of the PSD of the process and
compare its performance with that of an MMSE predictor
that has a full knowledge of the PSD. To design such a
blind predictor, we use the random spectral representation
of a stationary Gaussian process. We apply the well-known
atomic-norm minimization technique to the observed samples
to obtain a discrete quantization of the underlying random
spectrum, which we use to predict the process. Our simulation
results show that this estimator has a good performance
comparable with that of the MMSE estimator.

Index Terms—Prediction, Power Spectral Density, Random
Spectral Representation, Atomic-norm Minimization, MMSE
Estimator.

I. INTRODUCTION

Let h := {hn : n ∈ Z+} be a zero-mean circularly
symmetric stationary Gaussian process. Due to stationarity,
the probability law of the process is fully characterized by its
autocorrelation function rh(m) = E[hnh

∗
n−m]. Let N ∈ Z+

and let

yn = hn + zn, n ∈ [N ] (1)

be a window of observations of the process consisting of
N samples, where [N ] = {0, 1, . . . , N − 1} and where
{zn : n ∈ [N ]} denotes the observation noise consisting of N
i.i.d. zero-mean circularly symmetric Gaussian variables with
a variance σ2. In this paper, we are interested in predicting
the process h over the window Ω = {N,N + 1, . . . , 2N − 1}
consisting of N future samples of h using the observed
samples yn, n ∈ [N ]. Denoting y = (y0, . . . , yN−1)T,
h = (h0, . . . , hN−1)T, z = (z0, . . . , zN−1)T, and g =
(hN , . . . , h2N−1), the optimal Minimum Mean Squared Error
(MMSE) predictor of g from the observations y is given by
the linear operator

ĝ = ΣgyΣ−1yyy = ΣghΣ−1yyy, (2)

where Σgy := E[gyH] = Σgh and Σyy = E[yyH] =
Σhh + σ2IN denote the cross-correlation matrix of g and y

and the autocorrelation matrix of y respectively, and where
we used the independence of h and the observation noise
z. Notice that the linear MMSE predictor only depends on
Σgh and Σhh whose components can be obtained from the
autocorrelation function rh(m) of the process h. Thus, when
the autocorrelation function or equivalently the Power Spectral
Density (PSD) of the process is known a priori, the predictor
in (2) can be directly computed.

The prediction becomes quite challenging, however, if
the autocorrelation function is unknown, which is the case
in many applications in communication theory and signal
processing. For instance, this problem arises in a wireless
communication scenario where one needs to obtain the channel
state information, modeled by a Gaussian process, to schedule
a set of users, which in turn requires predicting a fading
channel in time. The multipath fading is commonly modeled
as a superposition of sinusoids with random frequencies,
amplitudes and phases [1]. In [2], the authors exploit
such a discrete model for the fading channel to estimate
the corresponding parameters via ESPRIT, as exploited for
Direction of Arrival (DOA) estimation algorithm in [3]. The
resulting estimate is then used to extrapolate the process
across time. Such a prediction with unknown autocorrelation
also arises in the problem of estimating the downlink (DL)
channel in a Frequency Division Duplex (FDD) system from
the uplink (UL) observations. In such a system, the UL and
DL transmissions are performed in different frequency bands,
and the Base Station (BS) needs to send pilot signals to the
users in the DL and receive their feedback via UL to acquire
the channel state information. To reduce the resulting feedback
overhead, in [4] the authors proposed an estimator for the delay
profile of the channel using the observations over UL, which
they exploited to extrapolate the channel state for DL. As in
[2], they assume a discrete model (for delay profile), thus,
overlooking the possibility of continuous components, which
occur in practical scenarios.

In this paper, we generalize the idea proposed by [2, 4] and
design a blind predictor that does not require the knowledge
of autocorrelation or PSD of the process. To do so, we use
the random spectral representation of a stationary Gaussian
process whose underlying structure depends on the PSD. Using
this representation, we obtain a decomposition of the process
h into a discrete and a continuous part denoted by hd and hc,
which resembles the well-known Wold’s decomposition for
stationary processes [5]. We also show that in contrast to hd,
which can be well predicted from its past samples, prediction
of hc typically results in a large error. Motivated by the theory
developed in [6–9], we use an atomic-norm minimization
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approach to quantize the random spectrum of process h,
and use the resulting quantization to perform a parametric
extrapolation of the process. Compared to the previous works,
where atomic-norm minimization is exploited for denoising a
sparse signal, in our case the underlying spectrum is not sparse
per se and the atomic-norm minimization is used merely for
quantization rather than denoising.

The rest of the paper is organized as follows. In sections
II and III, we introduce the necessary tools from probability
and stochastic processes and state the extrapolation problem
to be solved. Section IV describes our spectrum quantization
algorithm based on the current results on atomic-norm
minimization. Finally, we provide simulation results to
evaluate the performance of our proposed algorithm in section
V.

II. PRELIMINARIES

Earlier we introduced h as a stationary discrete-time circularly
symmetric Gaussian process with a zero mean and an
autocorrelation function rh(m) = E[hnh

∗
n−m]. Without any

loss of generality, we assume that h has a normalized
power, i.e., rh(0) = E[|hn|2] = 1. From the spectral
theory of stationary processes [10] and, in particular, the
Wiener-Khinchin theorem, we have that

rh(m) =

∫ 1/2

−1/2
ej2πmξF (dξ) (3)

for some right-continuous and non-decreasing function F :
I → [0, 1], with I := [− 1

2 ,
1
2 ], F (− 1

2 ) = 0 and F ( 1
2 ) = 1,

which is known as the power spectral distribution of h and
assigns the positive measure µF (a, b] = F (b) − F (a) to any
half-open interval (a, b] for a < b. When F is dominated by
the Lebesque measure (length) over I , i.e, µF (A) = 0 for any
measurable subset A of I of Lebesgue measure zero, then the
derivative dF (ξ)

dξ exists almost everywhere [11], and it is easier
to work with the power spectral density (PSD) (also known as
the spectral density function) defined as Sh(ξ) = dF (ξ)

dξ , for
which the Wiener-Khinchin theorem takes the more familiar
form given by

rh(m) =

∫ 1/2

−1/2
ej2πmξSh(ξ)dξ. (4)

The spectral representations in (3) and (4) relate two
deterministic functions, i.e., the autocorrelation function and
the power spectral density function associated to the Gaussian
process h. In this paper, we are additionally interested in a
random spectral representation of h. Such a representation is
itself a circularly symmetric Gaussian process H := {H(ξ) :
ξ ∈ I} parametrized with I . It has independent increments,
i.e., for any v, u, v′, u′ ∈ I with v < u < v′ < u′,

E[(H(u)−H(v))(H(u′)−H(v′))∗] = 0. (5)

Moreover, for such a v, u, it satisfies

E[|H(u)−H(v)|2] = µF (v, u] = F (u)− F (v), (6)

which implies that the variance of the increment H(u)−H(v)
in H is given by the power of the process h in the spectral

interval (v, u]. Also, h and H are related via the stochastic
integral

hn =

∫ 1/2

−1/2
ej2πξnH(dξ) (7)

which resembles the Fourier transform relation between the
deterministic functions rh and F as in (3) (please refer to
[10] for a more rigorous definition of (7)).

The random spectral representation in (7) has an important
implication, that is, the process h can be represented as the
superposition of discrete-time complex exponentials of the
type ψn(ξ) = ej2πξn for frequencies ξ ∈ I with circularly
symmetric Gaussian coefficients given by the increments
H(dξ) of the spectral process around every frequency ξ. In
particular, according to (6), if F (ξ) is continuous at ξ then
the coefficient H(dξ) is a random variable with infinitesimal
variance. In contrast, if F (ξ) has a jump at ξ (F (ξ+) 6=
F (ξ−)), then the corresponding complex exponential ψn(ξ) =
ej2πξn has a coefficient of non-infinitesimal variance given
by the height of the jump of the spectral distribution at
ξ, i.e. F (ξ+) − F (ξ−). A convenient way to represent the
jumps in F (ξ) is via using Dirac deltas in the PSD Sh(ξ),
where the variance of H(dξ) at these jump points is given
by the coefficient of the delta. Notice that, from Lebesgue
decomposition, any Cumulative Distribution Function (CDF)
over the real-line and in particular the interval I can be written
as a convex combination of a discrete part, a continuous part,
and a singular (fractal) part as F (ξ) = αdFd(ξ) + αcFc(ξ) +
αsFs(ξ) where αd, αc, αs ≥ 0 with αd + αc + αs = 1. For
simplicity, we will focus on the case where αs = 0 and
F (ξ) = αFd(ξ) + (1 − α)Fc(ξ) for some α ∈ [0, 1]. Note
that Fc(ξ) is a continuous CDF without any jumps, and Fd(ξ)
is a discrete CDF, i.e., it is right-continuous and piecewise
constant with jumps in I .

Using the conventions above, we can decompose the
stationary process h into a discrete part and a continuous
part. The discrete part is equal to the sum of the complex
exponentials ψn(ξ) at points {ξi}ki=1 corresponding to the
jump points of Fd(ξ) given by

hdn =

∫ 1/2

−1/2
ej2πξnHd(dξ) =

k∑
i=1

Xie
j2πξin, (8)

where the variables {Xi}ki=1 are independent zero-mean
circularly symmetric Gaussian variables of variance
α(Fd(ξ

+
i ) − Fd(ξ

−
i )), and where Hd(ξ) =

∑
i:ξi≤ξXi,

for ξ ∈ I , is a spectral Gaussian process with jumps of size
Xi at location ξi generated by αFd(ξ) according to (6).
Similarly, the continuous part is given by

hcn =

∫ 1/2

−1/2
ej2πξnHc(dξ), (9)

where Hc(ξ) corresponds to a random spectral process
obtained from H after removing the discrete part associated
with {Xi, ξi}ki=1 and is generated by the continuous part (1−
α)Fc(ξ) according to (6). We will use these decompositions
in the next section to formulate the prediction problem of the
process h more clearly.



3

III. STATEMENT OF THE PROBLEM

We begin this section with an example. Let h be a stationary
process with a purely discrete spectral distribution function
F (ξ), that is, F (ξ) = Fd(ξ). From the observations we made
in section II, we can write hn =

∑k
i=1Xie

j2πnξi , where
{Xi}ki=1 are independent zero-mean circularly symmetric
Gaussian random variables with variances {σ2

i }ki=1, where
{ξi}ki=1 denote the jump locations in Fd(ξ), and where
σ2
i = Fd(ξ

+
i ) − Fd(ξ

−
i ). Let N ∈ Z+ be the length of

the observation window and let us define the vector-valued
function a : I → CN by a(ξ) = (1, ej2πξ, . . . , ej2π(N−1)ξ)T.
Also, let h = (h0, . . . , hN−1)T be the N -dim vector consisting
of the first N components of h as before. We can write
h =

∑k
i=1Xia(ξi), where it is seen that, for the discrete

spectrum Fd(ξ), the observation vector h resembles the signal
received in a uniform linear array with N elements from
k Gaussian sources with amplitudes and DoAs {Xi, ξi}ki=1.
Thus, provided that k � N and the sources are sufficiently
separable in ξ, the random spectral process can be well
estimated from h even in presence of noise. The resulting
estimate Ĥ(ξ) can be used to obtain an estimate of any
other sample of the process h as ĥn =

∫
ej2πξnĤ(dξ),

especially those samples g = (hN , . . . , h2N−1)T belonging to
our desired prediction window Ω = {N,N + 1, . . . , 2N − 1}.
Thus, it seems that under some regularity conditions on Fd(ξ),
the prediction over Ω is feasible to do.

Now assume that F (ξ) = Fc(ξ) consists of only a
continuous part. For simplicity of illustration, let us take
Fc(ξ) = ξ + 1

2 . We can check that Fc induces a uniform
measure over I . In particular, for such a uniform measure

rh(m) =

{
1 m = 0,
0 otherwise, (10)

which implies that h is a white noise consisting of i.i.d.
Gaussian samples. As a result, the samples g inside the
window Ω can not be estimated from the observed samples.
This turns out to be true for continuous distributions Fc(ξ)
other than the uniform one.

In practice, F (ξ) consists of both continuous and discrete
parts. However, in terms of prediction over Ω, we can only
hope to predict the discrete part gd of g = gd + gc over
the window Ω from the discrete part hd of the observation
h = hd+hc. In fact, we can apply the estimation technique we
mentioned for the discrete part hd to estimate Ĥd(ξ), which
we can exploit to predict gd. This results in a prediction error
comparable to that of the MMSE predictor, especially, for a
long-term prediction. However, an obstacle to do this is that
we have access only to a mixture of the discrete part hd and
the continuous part hc through h = hd + hc rather than hd

itself. In particular we have the following result.
Theorem 1: Let h = (h0, . . . , hN−1)T be a vector

consisting of N samples of a zero-mean circularly symmetric
stationary Gaussian process h with the power spectral
distribution F (ξ) = PcFc(ξ)+(1−Pc)Fd(ξ) with 0 ≤ Pc ≤ 1.
Let MMSE(T ) denote the minimum mean squared error for
estimating sample hN+T of process h given the observation
vector h. Then lim infT→∞MMSE(T ) ≥ Pc. �

Proof: The proof is provided in Appendix I.
In the next section, we propose an algorithm that applies the

atomic-norm minimization to the full observation h to obtain
a quantized estimate Ĥ(ξ) of the random spectral process
H(ξ) = Hd(ξ) +Hc(ξ). The main idea is that under suitable
regularity conditions on the discrete part Fd(ξ), we can
decompose the resulting estimate as Ĥ(ξ) = Ĥd(ξ) + Ĥc(ξ),
where Ĥd(ξ) provides a quite precise estimate of the true
process Hd(ξ), which we can exploit to predict the discrete
part gd. In contrast, Ĥc(ξ) is only a discrete approximation
of Hc(ξ). In particular, although Ĥc(ξ) provides a good
approximation of hc over the observation window, i.e.,

hcn =

∫
ej2πξnHc(dξ) ≈

∫
ej2πξnĤc(dξ), n ∈ [N ], (11)

from our earlier explanation, we expect that the long-term
prediction of gc obtained via Ĥc(ξ) be uncorrelated with
gc. Overall, using the proposed algorithm we hope to predict
g from observations h with an error that grows by twice
the variance of the continuous part gc, thus, twice the best
prediction error achieved by the MMSE predictor.

IV. PROPOSED ALGORITHM

As motivated in section III, our goal is to quantize the
spectrum of the process h. To do so, we find among all the
complex measures that fit our observation vector h, the one
with lowest total-variation norm. More precisely, we consider

µ∗ = arg min
µ

‖µ‖TV subject to ‖FNµ− y‖2 ≤ ε,
(12)

where FN is a linear map returning the first N frequency
coefficients of the measure µ(dξ), i.e., [FNµ]n =∫ 1/2

−1/2 ej2πnξµ(dξ), n ∈ [N ], and ε is an estimate
of the `2-norm of the additive Gaussian noise vector.
Optimization (12) returns a discrete measure of the form

µ∗ =

l∑
i=1

c∗i δξ∗i , (13)

where δ∗ξi denotes a delta measure at ξ∗i ∈ I . Intuitively
speaking, in the noiseless case, minimizing the total-variation
norm returns a consistent measure, i.e., we expect that ξ∗i s
in (13) belong to the support of the PSD. Considering
the complex measure µ∗ in (13), we have that FNµ∗ =∑
i c
∗
i a(ξ∗i ) and total-variation norm of this measure is simply

given by
∑
i |c∗i |. This implies that (12) can be equivalently

written as

x∗ = arg min
x

‖x‖D s.t. ‖x− y‖2 ≤ ε, (14)

where ‖x‖D denotes the atomic norm of x over the dictionary
D =

{
a(ξ) ∈ CN , ξ ∈ I

}
defined by

‖x‖D = inf
{∑

i

|ci| : ∃ ξi s.t. x =
∑
i

cia(ξi)
}

(15)

and where the optimal solution x∗ of (14) is given by x∗ =
FNµ∗ in terms of the optimal solution µ∗ of (12). From the
solution of (14) one can determine the frequencies ξ∗i and their
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Fig. 1: Dual polynomial Q(ξ) as a function of ξ. The blue
curve shows the dual polynomial Q(ξ) and the red spikes show
the quantization points {ξi}li=1.

corresponding coefficients c∗i , which immediately specifies the
measure µ∗, showing that (14) and (12) are equivalent.

In particular, solving (14) serves two purposes: first, it
reduces the effect of white additive noise and second, it forces
the estimated vector to have a sparse representation in D,
which implies a sparse quantization of the PSD. Fortunately,
compared to (12) which requires an infinite-dimensional
optimization over the space of complex measures, (14) has
an equivalent SDP form as

{x∗,u∗, λ∗} = arg min
x,u,λ

1

2N
trace(Toep(u)) +

1

2
λ

s.t.
[

Toep(u) x
xH λ

]
� 0, ‖x− y‖2 ≤ ε,

(16)
where Toep(u) denotes a Toeplitz hermitian matrix with u as
its first column. Once this optimization problem is solved, one
can specify the active atoms in D, or equivalently the discrete
measure µ∗, by solving the dual problem to (14), which can
also be represented as the following SDP [8]:

{q∗,H∗} = arg max
q,H

Re(qHx∗)

s.t.
[

H −q
−qH 1

]
� 0, H = HH

N−j∑
k=1

Hk,k+j =

{
1, j = 0,
0, j = 1, 2, . . . , N − 1,

(17)

Using the optimal solution q∗ of the dual problem, we
can construct the dual polynomial Q(ξ) = 〈q∗,a(ξ)〉 =∑N−1
n=0 q

∗
ne−j2πnξ which satisfies the following [8]

Q(ξ∗i ) = sign(c∗i ), i = 1, 2, . . . , l

|Q(ξ)| < 1, ξ 6= ξ∗i ∀i
(18)

where {c∗i }li=1 are the coefficients of the optimal complex
measure µ∗ in (13) and where sign(c∗i ) =

c∗i
|c∗i |

. Therefore,
the support {ξ∗i }li=1 of µ∗ can be obtained from solving the
equation |Q(ξ)| = 1. If there is no noise and hc = 0, solving
|Q(ξ)| = 1 results in accurate spectrum localization provided

Sh(⇠)

�0.4 �0.2 0.05 0.15

10Pc

1 � Pc

2

1 � Pc

2

⇠

Fig. 2: The PSD function used for simulation.

that k ≤ N
2 and ξ∗i s are separated enough such that

∆ξ = min
i 6=j
|ξ∗i − ξ∗j | ≥

1

b(N − 1)/4c . (19)

However, this optimization applied to a mixture of discrete
and continuous components, generates additional spectral
elements to compensate for the the continuous component as
well as noise. Fig. 1 illustrates this fact more clearly. In this
figure, we have plotted the corresponding dual polynomial in
an experiment, where we observed a process consisting of a
mixture of discrete and continuous components with N = 64
and a PSD function which consists of a discrete part located
at ξ = −0.4 and ξ = −0.2 and a continuous part uniformly
distributed over [0.2, 0.3]. Fig. 1 illustrates how {ξ∗i }li=1 are
identified via the dual polynomial, hence resulting in spectrum
quantization. To obtain the coefficients corresponding to the
set {ξ∗i }li=1, we form the matrix of active atoms as

A =
[
a(ξ∗1),a(ξ∗2), . . . ,a(ξ∗l )

]
. (20)

Knowing the active elements, the atomic-norm minimization
in (14) can be written as an `1-norm minimization

c∗ = arg min
c∈Cl

‖c‖1 s.t. ‖Ac− y‖2 ≤ ε, (21)

where ‖c‖1 :=
∑l
i=1 |ci|. This optimization yields the

corresponding coefficients c∗ = (c∗1, . . . , c
∗
l )

T. Finally, we use
the estimated parameters {c∗i }li=1 and {ξ∗i }li=1 to estimate g
as

[ĝ]n =

l∑
i=1

c∗i e
j2π(N+n)ξ∗i . (22)

In the next section, we will show that the proposed method
has a good performance in different scenarios.

V. SIMULATION RESULTS

In this section, we provide simulation results to compare the
performance of our proposed extrapolation method to that
of the MMSE extrapolator. We focus on cases in which the
process consists of a discrete and a continuous part. For
simulations, we consider a noisy observation vector y of size
N = 64 with SNR = 20 dB. Using this observation, we predict
vector g consisting of the next N = 64 samples of the process.
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Fig. 3: Normalized prediction error for MMSE predictor and
our proposed estimator v.s. power of the continuous PSD Pc.

Our performance metric in these simulations is the normalized
mean squared error defined as E = 1

N E{‖ĝ − g‖2}.
A. Effect of the continuous component

As before, we assume that
∫
F (dξ) = 1 and denote the

fraction of power in the continuous part by Pc ∈ [0, 1]. The
PSD function is chosen to have a discrete part located at
ξ = −0.4 and ξ = −0.2 and a continuous part uniformly
distributed over [0.05, 0.15], as plotted in Fig. 2. We increase
Pc from 0 to 0.5 and for each Pc we generate y, estimate g
via both the MMSE estimator and our proposed estimator,
and calculate the normalized estimation error E. We find
an estimate of E by averaging it over 1000 independent
realizations of the process. Fig. 3 illustrates E as a function
of Pc. It is seen that, the MMSE estimator has an error which
is converging to Pc. The error of our proposed estimator is
approximately twice the MMSE and, in fact, is quite low when
Pc is small.

B. Effect of increasing the number of jumps in Fd(ξ)

To see how the number of jumps in the spectral distribution
affects the performance of our estimator, we consider a PSD
with a continuous part as before, i.e., uniformly distributed
over [0.05, 0.15] and with a fixed power Pc = 0.3. We add to
this PSD k Dirac deltas with equal amplitudes 1−Pc

k = 0.7
k and

random frequencies {ξi}ki=1 ⊂ [0, 1] with minimum separation
larger than 1

N . We perform the experiment for k = 1, . . . , 5,
and for each k we repeat it for 1000 trials. Fig. 4 illustrates the
result of this experiment. As the number of discrete elements
grows, the error of the proposed method increases with a
slight slope. This is because the power is distributed over a
greater number of spikes and the noise effect appears relatively
stronger. However, the error is still less than twice the MMSE.

VI. CONCLUSION

Using the framework of total-variation norm and atomic-norm
minimization, we proposed a method to quantize the random
spectrum of a stationary stochastic process. This quantization
is then exploited to predict the process. We investigated
the empirical performance of our proposed algorithm via
numerical simulations. We illustrated that the prediction error

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

k

E

MMSE
Proposed Method

Fig. 4: Normalized prediction error for MMSE predictor
and our proposed estimator v.s. number of discrete PSD
components k.

is relatively low, and is roughly proportional to the MMSE up
to a factor of 2 when there exists a continuous component in
the PSD with non-negligible power.

VII. APPENDICES

A. Proof of Theorem 1

The process h can be decomposed into independent
discrete and continuous components, hd and hc with
corresponding power spectral densities (1 − Pc)Fd(ξ) and
PcFc(ξ), respectively. Suppose there exists a genie-aided
estimator which has access to the observation vectors hc
and hd separately, as opposed to the conventional MMSE
considered so far, which has access only to their sum, that
is h = hc + hd. We denote by MMSE(T ) the minimum
mean squared estimation error for sample hN+T . We mention
the mean squared error of the genie-aided estimator by
MMSEgenie(T ). According to data processing inequality

MMSEgenie(T ) ≤ MMSE(T ) (23)

for all T ≥ 0. Furthermore, the genie-aided estimator can be
written as

ĥN+T = ĥcN+T + ĥdN+T (24)

and since the continuous and discrete parts are independent,
MMSE of the continuous part is only dependent on the
continuous part and similarly MMSE of the discrete part
is only dependent on the discrete part. As a result, the
genie-aided estimator has the error

MMSEgenie(T ) = E[|hN+T − ĥN+T |2]

= E[|hcN+T − ĥcN+T |2] + E[|hdN+T − ĥdN+T |2]
(25)

In addition, it can be easily shown that

E[|hcN+T − ĥcN+T |2] = E[|hcN+T |2]− E[|ĥcN+T |2]

= Pc − E[|ĥcN+T |2]
(26)

where

E[|ĥcN+T |2] = Σhc
N+ThcΣ−1hchcΣ

H
hc
N+Thc (27)
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Note that Σhc
N+Thc is an N × 1 vector whose lth component

l = 0, . . . , N − 1 is given by

Σhc
N+Thc(l) = Pc

∫
ej2πξ(N+T−l)Fc(dξ)

= Pc

∫
ej2πξ(N+T−l)Sc(ξ)dξ l = 0, . . . , N − 1

(28)
where Sc = dF

dξ denotes the Radon-Nikodym derivative of the
absolutely continuous measure Fc with respect to the Lebesgue
measure [11]. Since

∫
|Sc(ξ)|dξ =

∫
Sc(ξ)dξ = Pc < ∞,

from Rimann-Lebesgue lemma [12], it results that

lim
T→∞

Pc

∫
ej2πξ(N+T−l)Sc(ξ)dξ = 0. (29)

This implies that limT→∞Σhc
N+Thc = 0 and as a

result limT→∞ E[|ĥcN+T |2] = 0. From (26) it results that
limT→∞ E[|hcN+T − ĥcN+T |2] = Pc− limT→∞ E[|ĥcN+T |2] =
Pc, which implies

lim inf
T→∞

MMSEgenie(T ) ≥ Pc (30)

Plugging this inequality in (23) we obtain

lim inf
T→∞

MMSE(T ) ≥ Pc. (31)

This completes the proof. �
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