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The Augustin Center and The Sphere Packing
Bound For Memoryless Channels
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nakib@alum.mit.edu

Abstract—For any channel with a convex constraint set and fi-
nite Augustin capacity, existence of a unique Augustin center and
associated Erven-Harremoes bound are established. Augustin-
Legendre capacity, center, and radius are introduced and proved
to be equal to the corresponding Renyi-Gallager entities. Sphere
packing bounds with polynomial prefactors are derived for codes
on two families of channels: (possibly non-stationary) memoryless
channels with multiple additive cost constraints and stationary
memoryless channels with convex constraints on the empirical
distribution of the input codewords.

I. INTRODUCTION

Augustin [2], [3] derived the sphere packing bound for the

product channels without assuming the stationarity. Assuming

that order ½ Renyi capacity of the component channels are

O(lnn), we have derived the sphere packing bound for product

channels with a prefactor that is polynomial in the block length

n , [12, Theorem 2]. In this manuscript, we derive analogous

results for two families of memoryless channels. As we have

done for the product channels in [12], we first derive a non-

asymptotic outer bound for codes on a given memoryless

channel, then we derive our asymptotic result using this bound.

In [3, Chapter VII], Augustin pursued an analysis similar

to ours and derived the sphere packing bound for memoryless

channels with cost constraints [3, §36]. In addition, Augustin

established the connection between the exponent of Gallager’s

inner bound for the cost constrained channels [8, Thm 8]

and the sphere packing exponent [3, §35]. Our results surpass

Augustin’s results in two ways:

• Augustin assumes the cost function to be bounded.1 This

hypothesis excludes certain important and interesting

cases such as the Gaussian channels. Hence, Augustin’s

analysis in [3] does not imply the sphere packing bounds

derived by Shannon [15] and Ebert [6]. We don’t assume

the cost function to be bounded. Thus, Theorem 1 es-

tablishes the sphere packing bound for a wider class of

channels including the Gaussian channels with multiple

antennas.2 It is even possible to handle certain fading

scenarios and additional per antenna power constraints.

• The best asymptotic bound implied by Augustin’s non-

asymptotic bound [3, Thm 36.6] is of the form Pav
e

(n) ≥
O( 1

e
√

n
)e−Esp(ln Mn

Ln
−O(

√
n),W[1,n],̺n). In Theorem 1 we

replace O( 1
e
√

n
) by O( 1

nτ ) by O(
√
n) to 0.

For stationary memoryless channels with finite input sets,

the sphere packing bound is well-known [4, Ch. 10], [5]. For

1The issue here is not a matter of rescaling: certain conclusions of
Augustin’s analysis are not correct when cost functions are not bounded.

2Shannon’s approximation error terms in [15] are considerably better than
ours. But his derivation relies heavily on the geometry of the output space.
Our derivation, on the other hand, is oblivious towards it.

such a channel, one first chooses the most populous constant

composition sub-code and then derives the sphere packing

bound for the code using the sphere packing bound for the

constant composition sub-code.3 This technique, however, fails

when the input set of the channel is infinite. We show that a

sphere packing bound similar to Theorem 1 holds for codes

on stationary memoryless channels with convex constraints on

the empirical distribution of the input codewords.

In the rest of this section, we describe our model and

notation and state our main asymptotic result. In Section II, we

introduce and analyze Augustin information, mean, capacity,

and center as purely measure theoretic concepts. The role

of these concepts in our analysis is analogous to the role

of corresponding Renyi concepts in [11], [12]. In Section

III, we investigate the cost constrained Augustin capacity

more closely and introduce the concepts of Augustin-Legendre

information and Renyi-Gallager information, together with the

associated means, capacities, centers, and radii. Our main aim

in Section III is to express the cost constrained Augustin

capacity and center in terms of Augustin-Legendre capacity

and center. In Section IV, we derive non-asymptotic outer

bounds for codes on two families memoryless channels.

A. Model and Notation

For any set X, P(X) is the set of all probability mass

functions that are non-zero only on finitely many members of

X; M
+

(X) is the set of all non-zero mass functions with the

same property. For any measurable space (Y,Y), P(Y) is the

set of all probability measures and M+

(Y) is set of all finite

measures. For any µ, q ∈ M+

(Y), µ ≤ q iff µ(E) ≤ q(E)
∀E ∈ Y . Similarly, for any µ, q ∈ ℜℓ, µ ≤ q iff µı ≤ qı

∀ı ∈ {1, . . . , ℓ}. For any µ, q ∈ ℜℓ, µ · q,∑ℓ
=1 µ

q. For

any ℓ ∈ Z+ , 1 ∈ ℜℓ is the vector whose all entries are one.

For any S ⊂ ℜℓ we denote the interior of S by intS. For any

set S in a vector space we denote the convex hull of S by chS.

A channel W is a function from the input set X to the set of

all probability measures on the output space (Y,Y). A channel

W : X → P(Y) is a product channel for a finite index set

T iff there exist channels Wt : Xt → P(Yt ) for all t ∈ T

satisfying W (x ) =
∏⊗

t∈T
Wt(xt ) for all x ∈ X where

X =
∏⊗

t∈T
Xt Y =

∏×

t∈T
Yt Y =

∏⊗

t∈T
Yt .

A product channel is stationary iff all Wt ’s are identical. If

X ⊂ ∏⊗
t∈T

Xt then W is a memoryless channel.

3Haroutunian [9] was the first one to give a complete proof of the sphere
packing bound for constant composition codes. Recently, Altug and Wagner
[1] sharpened the prefactor of the bound for channels with finite output sets.
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An (M,L) channel code on W : X → P(Y) is an ordered

pair (Ψ,Θ) composed of an encoding function Ψ : M → X and

a decoding function4 Θ : Y → M̂ where M,{1, 2, . . . ,M},

M̂,{L : L ⊂ M and |L| = L}, and Θ is a measurable as a

function from the measurable space (Y,Y).
Given an (M,L) channel code (Ψ,Θ) on W : X → P(Y)

the average error probability Pav
e

and the conditional error

probability Pm
e

for m ∈ M are given by

Pav
e

, 1
M

∑
m∈M

Pm
e

Pm
e
,W (Ψ(m))({m /∈ m̂}).

A cost function ρ is a function from the input set to ℜℓ
≥0

for some ℓ ∈ Z+ . We assume without loss of generality that5

infx∈X ρı(x ) = 0 ∀ı ∈ {1, . . . , ℓ}.
Let Γρ be the set of feasible cost constraints for P(X):

Γρ,{̺ ∈ ℜℓ
≥0 : ∃p ∈ P(X) s.t.

∑
x
p(x )ρ(x ) ≤ ̺}.

Then Γρ is a convex set with non-empty interior. A cost

function ρ for a product channel W is said to be additive

iff there exists a ρt : Xt → ℜℓ
≥0 for each t ∈ T such that

ρ(x ) =
∑

t∈T
ρt(xt ) ∀x ∈ X.

An encoding function Ψ , hence the corresponding code, is

said to satisfy the cost constraint ̺ iff ∨m∈Mρ(Ψ(m)) ≤ ̺.

A code on a product channel W :
∏⊗

t∈T
Xt → P(Y) is said

to satisfy an empirical distribution constraint A ⊂ P(X1) iff

the empirical distribution, i.e. type or composition, of Ψ(m)
is in A for all m ∈ M.

B. Main Result

Assumption 1. {(Wt , ρt , ̺t )}t∈Z+ is an ordered sequence of

channels with associated cost functions and cost constraints

satisfying the following condition: ∃n0 ∈ Z+ ,K ∈ ℜ+ s.t.

maxt:t≤n C 1
2 ,Wt ,̺n

≤ K ln(n) and ̺n ∈intΓρ[1,n]

for all ∀n ≥ n0 where ρ[1,n](x[1,n]) =
∑n

t=1 ρt (xt).

Theorem 1. Let {(Wt ,ρt ,̺t )}t∈Z+ be a sequence satisfying

Assumption 1, α0, α1 be orders satisfying 0<α0<α1<1 and

ε∈ℜ≥0 . Then for any sequence of codes {(Ψt , Θt )}t∈Z+ on

the product channels {W[1,n]}n∈Z+ satisfying

∨m∈Mn
ρ[1,n](Ψt (m)) ≤ ̺n ∀n ∈ Z+

Cα0,W[1,n],̺n
+εln2n ≤ lnMn

Ln
≤Cα1,W[1,n],̺n

∀n ≥ n0

there exists a τ ∈ ℜ+ and an n1 ≥ n0 such that

Pav
e

(n) ≥ n−τe−Esp(ln Mn
Ln

,W[1,n],̺n) ∀n ≥ n1

where Esp(R,W , ̺) = supα∈(0,1)
1−α
α (Cα,W,̺ − R).

Theorem 1 follows from Lemma 12 and Lemma 13, through

an analysis similar to the one in [12, §III-E]. An asymptotic

result similar to Theorem 1 for codes on stationary memoryless

channels with convex empirical distribution constraints can be

proved using Lemma 12 and the bound given in equation (10).

4Recall that for any encoder Ψ a deterministic MAP decoder obtains
minimum Pav

e
among all, possibly non-deterministic, decoders.

5Augustin [3, §33] has the following additional hypothesis: ∨x∈Xρ(x)≤1.

II. THE AUGUSTIN INFORMATION AND CAPACITY

∀α ∈ ℜ+ ,w , q ∈ M+

(Y), the order α Renyi divergence is

Dα(w‖ q),
{

1
α−1 ln

∫
(dwdν )

α(dqdν )
1−αν(dy) α 6= 1

∫
dw
dν

[
ln dw

dν − ln dq
dν

]
ν(dy) α = 1

where ν is any measure s.t. w≺ν,q≺ν. If Dα(w‖q)<∞ then

the order α tilted probability measure vw,q
α is

dvw,q
α

dν ,e(1−α)Dα(w‖q)(dwdν )
α(dqdν )

1−α.

A. The Augustin Information and Mean

Definition 1. For any α ∈ ℜ+ ,W : X → P(Y), and p ∈ P(X)
the order α Augustin information for the prior p is

Iα(p;W), infq∈P(Y)Dα(W ‖ q| p)
where Dα(W ‖ q| p),

∑
x∈X

p(x )Dα(W (x )‖ q).
Whenever it exists, the uniqueness of qα,p ∈ P(Y) sat-

isfying Iα(p;W) = Dα(W ‖ qα,p | p) follows from the strict

convexity of Dα(w‖ q) in q , i.e. [7, Thm 12]. Such a qα,p is

called the order α Augustin mean for the prior p. If |Y| < ∞
then P(Y) is compact and the existence of qα,p follows from

the lower semicontinuity of Dα(w‖ q) in q , i.e [11, Lem 7],

and the extreme value theorem [10, Ch3§12.2].

Lemma 1 asserts the existence of a unique qα,p for arbitrary

channels and describes qα,p via the identities it has to satisfy.

Part (a) is well known; part (b) is due to6 Augustin [3, 34.2].

A generalization of Lemma 1 for all α∈ℜ+ is proved in [13].

Definition 2. For any α ∈ ℜ+ , W :X→P(Y), and p∈P(X),

• Tα,p(·) : {q ∈ M+

(Y) : Dα(W ‖ q| p) < ∞} → P(Y) is

Tα,p(q),
∑

x
p(x )vW (x),q

α .

Furthermore, Tı+1
α,p (q),Tα,p(T

ı
α,p(q)) for ı ∈ Z+ .

• µα,p ∈ M+

(Y) and qg
α,p ∈ P(Y) are given by

dµα,p

dν ,

[∑
x
p(x )

(
dW (x)

dν

)α] 1
α

qg

α,p,
µα,p

‖µα,p‖

where ν is any measure for which (
∑

x p(x )W (x ))≺ν.

Lemma 1. For any W : X → P(Y) and p ∈ P(X),

(a) I1(p;W) = D1(W ‖ q1,p | p) for q1,p,
∑

x p(x )W (x ).

D1(W ‖ q| p) − I1(p;W)=D1(q1,p‖ q) ∀q ∈ P(Y). (1)

(b) ∀α∈(0,1)∃!qα,p s.t. Iα(p;W)=Dα(W‖qα,p| p). qα,p∼q1,p ,

Dα(W ‖ q| p)−Iα(p;W)≥Dα(qα,p‖ q) ∀q∈P(Y) (2)

Tα,p(qα,p)= qα,p (3)

lim
→∞

∥∥qα,p−T

α,p(q

g

α,p)
∥∥=0. (4)

Furthermore, if a q ∈ P(Y) satisfying q1,p≺q is a fixed

point of Tα,p(·) then q = qα,p .

(c) If α ∈ (0, 1], W is a product channel for a finite index

set T, and p is of the form
∏⊗

t∈T
pt for pt ∈ P(Xt) then

qα,p=
∏⊗

t∈T
qα,pt

Iα(p;W)=
∑

t∈T
Iα(pt ;Wt) . (5)

6[3, 34.2] claims eq. (4) for q
g

1,p instead of q
g
α,p . We could not confirm

the correctness of Augustin’s proof of [3, 34.2], see [13].
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B. The Constrained Augustin Capacity and Center

Definition 3. For any α∈ℜ+ , W : X→P(Y), and A⊂P(X),
the order α Augustin capacity of W for constraint set A is

Cα,W,A, supp∈A Iα(p;W) .

Using the definition of Iα(p;W) we get

Cα,W,A = supp∈A infq∈P(Y) Dα(W ‖ q| p) .

Proofs of the propositions presented in this subsection can

be found in [13]. They are very similar to the proofs of the

corresponding claims in [11, §III, §IV, §F] for Renyi capacity;

we invoke Lemma 1 instead of [11, Lem 10].

Lemma 2. . For any W : X → P(Y) and A ⊂ P(X)

(a) Cα,W,A : (0, 1]→ [0,∞] is increasing and continuous

(b) 1−α
α Cα,W,A : (0, 1)→ [0,∞] is decreasing and continuous

(c) ∃α∈(0, 1) s.t. Cα,W,A<∞ iff Cφ,W ,A<∞ ∀φ∈(0, 1).

Theorem 2. ∀α∈(0, 1],W :X→P(Y), and convex A⊂P(X),

sup
p∈A

inf
q∈P(Y)

Dα(W ‖ q| p) = inf
q∈P(Y)

sup
p∈A

Dα(W ‖ q| p) .

If Cα,W,A < ∞ then ∃!qα,W ,A ∈ P(Y), called the order α
Augustin center of W for the constraint set A, such that

Cα,W,A = supp∈A Dα(W ‖ qα,W ,A| p) .

If limı→∞Iα
(
p(ı);W

)
= Cα,W,A < ∞ for a {p(ı)}ı∈Z+ ⊂ A

then {qα,p(ı)}ı∈Z+ is a Cauchy sequence for the total variation

metric on P(Y) and qα,W,A is its unique limit point.

Lemma 1 and Theorem 2 imply for all α∈(0, 1], p∈A that

Cα,W,A − Iα(p;W) ≥ Dα(qα,p‖ qα,W ,A) .

Using Lemma 1 and Theorem 2 we can prove the following

Erven-Harremoes bound for Augustin capacity.

Lemma 3. For any α ∈ (0, 1],W : X → P(Y), and convex

A⊂P(X) s.t. Cα,W,A < ∞, and q ∈ P(Y)

supp∈A Dα(W ‖ q| p) ≥ Cα,W,A +Dα(qα,W ,A‖ q) .

Erven-Harremoes bound, the continuity of Cα,W,A in α,

and Pinsker’s inequality imply the continuity of qα,W ,A in α
for the total variation topology on P(Y).
Lemma 4. For any η∈(0, 1],W :X→P(Y), convex A⊂P(X)
s.t. Cη,W ,A < ∞, and α, φ satisfying 0 < α < φ ≤ η,

Cφ,W ,A − Cα,W,A ≥ Dα(qα,W ,A‖ qφ,W ,A) .

Furthermore, qα,W ,A : (0, η] → P(Y) is continuous in α for

the total variation topology on P(Y).
Lemma 5. For any α ∈ (0, 1], product channel W for a

finite index set T, convex sets At ⊂ P(Xt) for each t ∈ T,

and A = ch{∏⊗
t∈T

pt : pt ∈ P(Xt) ∀t ∈ T}

Cα,W,A =
∑

t∈T
Cα,Wt ,At

.

Furthermore, if Cα,W,A < ∞ then qα,W ,A =
∏⊗

t∈T
qα,Wt ,At

.

III. THE COST CONSTRAINED AUGUSTIN CAPACITY

With a slight abuse of notation we define the cost con-

strained Augustin capacity as

Cα,W,̺, supp∈A(̺) Iα(p;W) ∀̺ ∈ Γρ

where A(̺),{p ∈ P(X) :
∑

x p(x )ρ(x ) ≤ ̺}. Note that

Theorem 2 and Lemmas 3 and 4 hold for Cα,W,̺ because

A(̺) is a convex set. We denote Augustin center by qα,W,̺.

Lemma 6. For any α ∈ (0, 1], W : X → P(Y), ρ : X → ℜℓ
≥0 ,

(a) Cα,W,̺ :Γρ→ [0,∞] is increasing and concave in ̺. It is

either infinite ∀̺ ∈intΓρ or finite and continuousonintΓρ.

(b) If Cα,W,̺ < ∞ for a ̺ ∈ intΓρ then ∃λα,W,̺ ∈ ℜℓ
≥0 s.t.

Cα,W,̺ + λα,W,̺ · (˜̺− ̺) ≥ Cα,W , ˜̺ ∀ ˜̺ ∈ Γρ.

The set of all such λα,W, ’̺s for an α is convex and compact.

Lemma 7. For any α ∈ (0, 1], product channel W for a finite

index set T, additive cost function ρ : X → ℜℓ
≥0 satisfying

ρ(x ) =
∑

t∈T
ρt (xt) for some ρt : Xt → ℜℓ

≥0 and ̺ ∈ Γρ

Cα,W,̺ = sup
{∑

t∈T
Cα,Wt ,̺t

:
∑

t∈T
̺t ≤ ̺, ̺t ∈ Γρt

}

If ∃{̺t}t∈T s.t. Cα,W,̺ =
∑

t∈T
Cα,Wt ,̺t

and Cα,W,̺ < ∞
then qα,W,̺ =

∏⊗
t∈T

qα,Wt ,̺t
.

Since Augustin capacity is concave in the cost constraint

by Lemma 6-(a), Cα,W,̺ =
∑

t∈T
Cα,Wt ,

̺
|T|

whenever W is

stationary and ρt = ρ1 for all t ∈ T. Alternatively, if Γρt
’s

are closed and Cα,Wt ,̺’s are upper semicontinuous functions

of ̺ on Γρt
’s then we can use the extreme value theorem for

the upper semicontinuous functions to establish the existence

of a {̺t}t∈T s.t. Cα,W,̺ =
∑

t∈T
Cα,Wt ,̺t

. However, such

an existence assertion does not hold in general.

A. The A-L Information, Capacity, Center, and Radius

This subsection is a generalization of parts of [4, Ch. 8],

which is confined to |X|∨|Y|<∞, α=1, and ℓ=1 case.

For any α∈ℜ+ , W :X→P(Y), cost function ρ :X→ℜℓ
≥0 ,

λ∈ℜℓ
≥0 , and p ∈P(X) the order α Augustin-Legendre (A-L)

information for prior p and Lagrange multiplier λ is

I λα (p;W),Iα(p;W) − λ ·
(∑

x
p(x )ρ(x )

)
.

We call I λα (p;W) A-L information because of the convex

conjugate pair fα,p : ℜℓ
≥0 → (−∞,∞] and f ∗α,p : ℜℓ

≤0 → ℜ :

fα,p(̺),

{
−Iα(p;W) ̺ ≥ Ep [ρ]

∞ else
= sup

ξ≤0
ξ · ̺− f ∗α,p(ξ)

f ∗α,p(ξ), sup̺≥0 ξ · ̺− fα,p(̺) = ξ · Ep [ρ] + Iα(p;W)

Thus one can write Cα,W,̺ in terms of I λα (p;W) as

Cα,W,̺ = supp∈P(X) infλ≥0 I
λ
α (p;W) + λ · ̺.

I λα (p;W) is convex, decreasing and continuous in λ. Fur-

thermore, by Lemma 1 for α ∈ (0, 1] we have:

I λα (p;W) = Dα(W ‖ qα,p | p) − λ · Ep [ρ]

Dα(W ‖ q| p)− λ ·Ep [ρ] ≥ I λα (p;W) +Dα(qα,p‖ q) .

3



For any α∈ (0, 1], W :X→P(Y), ρ :X→ℜℓ
≥0 , and λ∈ℜℓ

≥0 ,

the A-L capacity Cλ
α,W and the A-L radius Sλ

α,W are given by

Cλ
α,W, supp∈P(X) I

λ
α (p;W)

Sλ
α,W, infq∈P(Y) supx∈XDα(W (x )‖ q) − λ · ρ(x ).

Using the definition of I λα (p;W), Iα(p;W) and Sλ
α,W we get

Cλ
α,W =supp∈P(X) infq∈P(Y) Dα(W ‖ q| p)−λ ·Ep [ρ]

Sλ
α,W =infq∈P(Y) supp∈P(X) Dα(W ‖ q| p)−λ ·Ep [ρ] .

Lemma 8. For any α∈(0, 1], W :X→P(Y), ρ :X→ℜℓ
≥0 ,

(a) Cλ
α,W is convex, decreasing and lower semicontinuous in λ

on ℜℓ
≥0 and continuous in λ on {λ :∃ǫ>0s.t.Cλ−ǫ1

α,W <∞}.

(b) Cα,W,̺ ≤ infλ≥0 C
λ
α,W + λ · ̺ for all ̺ ∈ Γρ.

(c) Cα,W,̺=infλ≥0C
λ
α,W+λ·̺ if either |X|<∞ or ̺ ∈ intΓρ.

(d) If ∃̺∈intΓρ s.t. Cα,W,̺<∞ then ∀̺∈intΓρ ∃λ ∈ℜℓ
≥0

s.t. Cα,W,̺ = Cλ
α,W + λ · ̺.

(e) If Cα,W,̺=Cλ
α,W+λ·̺ < ∞ for a (̺, λ) ∈ Γρ×ℜℓ

≥0 , and

limı→∞ Iα
(
p(ı);W

)
= Cα,W,̺ for a {p(ı)}ı∈Z+ ⊂ A(̺)

then limı→∞ I λα
(
p(ı);W

)
=Cλ

α,W .

If ∃λ ∈ ℜ≥0 s.t. Cλ
α,W < ∞ then Cα,W,̺ < ∞ ∀̺ ∈ Γρ by

Lemma 8-(a). However, the converse claim is not true. There

are cases for which Cα,W,̺ is finite for all ̺ ∈ Γρ, yet Cλ
α,W

is infinite for λ small enough.7 The equality given in (c) might

not hold if ̺ ∈ Γρ \ intΓρ and |X| = ∞.

Theorem 3. ∀α∈(0, 1], W :X→P(Y), ρ :X→ℜℓ
≥0 , λ∈ℜℓ

≥0 ,

Cλ
α,W = Sλ

α,W .

If Cλ
α,W < ∞ then ∃!qλα,W ∈ P(Y), called the order α A-L

center of W for the Lagrange multiplier λ, such that

Cλ
α,W = supx∈XDα

(
W (x )‖ qλα,W

)
− λ · ρ(x ).

If limı→∞I λα
(
p(ı);W

)
=Cλ

α,W < ∞ for a {p(ı)}ı∈Z+ ⊂P(X) then

corresponding {qα,p(ı)}ı∈Z+ is a Cauchy sequence for the total

variation metric on P(Y) and qλα,W is its unique limit point.

Lemma 9. If α∈ (0, 1], W :X→P(Y), ρ :X→ℜℓ
≥0 , ̺∈Γρ

s.t. Cα,W,̺ < ∞ and λ ∈ ℜℓ
≥0 s.t. Cα,W,̺ = Cλ

α,W + λ · ̺
then qα,W,̺ = qλα,W .

Lemma 10. ∀α∈(0,1], product channel W for finite index set

T, and ρ satisfying ρ(x )=
∑

t∈T
ρt(xt ) for some ρt :Xt →ℜℓ

≥0 ,

Cλ
α,W =

∑
t∈T

Cλ
α,Wt

∀λ ∈ ℜℓ
≥0 .

If Cλ
α,W < ∞ then qλα,W =

∏⊗
t∈T

qλα,Wt
.

Recall that the product structure assertion for qα,W,̺ in

Lemma 7, was qualified by the existence of a {̺t}t∈T

satisfying
∑

t∈T
Cα,Wt ,̺t

= Cα,W,̺ < ∞. In Lemma 10,

on the other hand, the product structure assertion for qλα,W is

qualified only by Cλ
α,W < ∞.

7In [3,§33-§35], Augustin considers bounded ρ’s of the form ρ :X→ [0,1]ℓ.
In that case, it is easy to see that if ∃̺ ∈ intΓρ s.t. Cα,W,̺ < ∞ then

sup̺∈Γρ
Cα,W,̺ = Cα,W ,1 < ∞ and Cλ

α,W
< ∞ for all λ ∈ ℜℓ

≥0 .

B. The R-G Information, Mean, Capacity, and Center

For any α∈ℜ+\{1}, W :X→P(Y), cost function ρ :X→
ℜℓ

≥0 , λ∈ℜℓ
≥0 , and p∈P(X) the order α Renyi-Gallager (R-G)

information for prior p and Lagrange multiplier λ is

I gλ
α (p;W), infq∈P(Y)Dα

(
p ◦W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)
.

The order α R-G capacity for Lagrange multiplier λ is

C gλ
α,W, supp∈P(X) I

gλ
α (p;W) .

Using the definition of I gλ
α (p;W) and C gλ

α,W we get

C gλ
α,W = supp∈P(X) infq∈P(Y)Dα

(
p ◦W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)
.

Using the concavity of log function and Jensen’s inequality

one can show that I λα (p;W) ≥ I gλ
α (p;W) for α ∈ (0, 1) and

I λα (p;W) ≤ I gλ
α (p;W) for α ∈ (1,∞). On the other hand, one

can show by substitution that ∀q ∈ P(Y) and α∈ℜ+\ {1},

I gλ
α (p;W) = Dα

(
p ◦W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,W

)

Dα

(
p ◦W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)
= I gλ

α (p;W) +Dα

(
qgλ
α,p

∥∥ q
)

where qgλ
α,p is the R-G mean given in terms of µλ

α,p as follows,

qgλ
α,p,

µλ
α,p

‖µλ
α,p‖

dµλ
α,p

dν ,

[∑
x
p(x )e(1−α)λ·ρ(x)

(
dW (x)

dν

)α]1
α

.

For λ = 01, R-G information and mean are equal to the

corresponding Renyi information and mean analyzed in [11].

Following a similar analysis one can show that a minimax

theorem similar to [11, Thm 1] holds for R-G quantities:

C gλ
α,W = infq∈P(Y) supp∈P(X) Dα

(
p ◦W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)

= infq∈P(Y)supx∈XDα(W (x )‖ q)−λ · ρ(x ).
Then C gλ

α,W = Cλ
α,W ∀λ ∈ ℜℓ

≥0 , α ∈ (0, 1) by Theorem 3.

IV. SPHERE PACKING BOUNDS

Lemma 11. For any w=w1⊗· · ·⊗wn , q=q1⊗· · ·⊗qn , κ≥3,

α ∈ (0, 1), if q(E) ≤ (1/
√
16n)e−D1(v

w,q
α ‖q)−α3gκ for E ∈ Y

and gκ,
(∑n

t=1 Ev
w,q
α

[∣∣∣ln dwt∼
dqt

−Ev
w,q
α

[
ln dwt∼

dqt

]∣∣∣
κ]) 1

κ

then

w(Y \ E) ≥ (1/
√
16n)e−D1(v

w,q
α ‖w)−(1−α)3gκ .

Lemma 11 is in the spirit of [16, Thm 5], but instead of

Chebyshev ineq, it relies on Berry-Essen Thm via [12, Lem9].

Our sphere packing bounds are expressed in terms of the

averaged Augustin capacity and8 averaged sphere packing

exponent: for all ǫ ∈ (0, 1) and R ∈ ℜ+ :

C̃ ǫ
α,W ,A,

1
ǫ

∫ α+ǫ(1−α)

α−ǫα

[
1 ∨

(
α

1−α
1−φ
φ

)]
Cφ,W ,Adφ

Ẽ ǫ
sp(R,W ,A), supα∈(0,1)

1−α
α

(
C̃ ǫ

α,W ,A − R
)
.

Lemma 12. For any α∈(0, 1], W :X→P(Y), A ⊂ P(X) s.t.

C1/2,W ,A ∈ ℜ+ , φ ∈ (0, 1), R ∈ [Cφ,W ,A,C1,W ,A) and ǫ ∈
(0, φ). Then 0 ≤ Ẽ ǫ

sp(R,W ,A)− Esp(R,W ,A) ≤ ǫ
φ−ǫ

R
φ .

Proof of Lemma 12 is identical to that of [12, Lem 11].

8Note C̃ ǫ
α,W ,̺

= C̃ ǫ
α,W ,A(̺)

and Ẽǫ
sp(R,W , ̺) = Ẽǫ

sp(R,W ,A(̺)).

4



Lemma 13. For any product channel W for the index set

{1, . . . , n}, cost function ρ satisfying ρ(x ) =
∑

t∈T
ρt (xt)

for ρt : Xt → ℜℓ
≥0 , ̺ ∈ intΓρ, and integers M , L satisfying

M
L > 8e2(1−α0)(1−ǫ1)ǫ2n

2.5

ǫ1(1−ǫ2)
e
C̃

ǫ1
α0,W ,̺+

γ
1−α0

γ,3
κ
√
3
(∑n

t=1

(
(C1/2,Wt ,̺ + ln 1

ǫ2
) ∨ κ

)κ) 1
κ

for a κ ≥ 3, an α0 ∈ (0, 1), an ǫ1 ∈ (0, 1) and an ǫ2 ∈ (0, 1)

satisfying
(n−1)(1−α0)(1−ǫ1)

ǫ1
≥ 1, any (M,L) channel code

(Ψ,Θ) on W satisfying ∨m∈Mρ(Ψ(m)) ≤ ̺ satisfies

Pav
e

≥
(

ǫ1e
−2γ

8e2(1−α0)(1−ǫ1)n1.5

) 1
α0

e−Ẽǫ1
sp (ln M

L ,W ,̺).

Proof Sketch. Since ̺ ∈ intΓρ, ∀α ∈ (0, 1)∃λα,W,̺∈ℜℓ
≥0 s.t.

Cα,W,̺=C
λα,W,̺

α,W +λα,W, ·̺̺ by Lem.8-(d). Then qα,W,̺=q
λα,W,̺

α,W

by Lemma 9. Furthermore, q
λα,W,̺

α,W =
∏⊗

t q
λα,W,̺

α,Wt
by Lemma 10.

Then q
λα,W,̺

α,Wt
: (0, 1)→P(Yt) is continuous in α for the total

variation topology on P(Yt) because qα,W ,̺ is by Lemma 4.

Then q
λ·,̺
·,Wt

is a transition probability from ((0, 1),B((0, 1))) to

(Yt ,Yt ). We define qǫα,Wt
as the Yt marginal of the probability

measure uα,ǫ ◦ q
λ·,̺
·,Wt

where uα,ǫ is the uniform probability

distribution on (α− ǫα, α+ ǫ(1− α)):

qǫα,Wt
= 1

ǫ

∫ α+(1−α)ǫ

α−αǫ

q
λφ,W,̺

φ,Wt
dφ. (6)

Let Ψt (m) be the Yt marginal of Ψ(m) and qα,t , qα, vm
α be

qα,t,(1−ǫ2)qǫ1α,Wt
+ǫ2q 1

2 ,Wt ,̺ qα,
∏⊗

t
qα,t vm

α,vΨ(m),qα
α .

By [11, Lem 9-(b,d)], Lemma 10 and ln τ ≤ τ − 1 we have

Dα(Ψ(m)‖ qα)≤ nǫ2
1−ǫ2

+

∫ α+(1−α)ǫ1

α(1−ǫ1)

Dα

(
Ψ(m)‖qλφ,W ,̺

φ,W

)

ǫ1
dφ.

Using Lemma 9, [11, Lem 9-(a)], [7, Prop 2], Theorem 2,

ρ(Ψ(m))≤̺ and the definition of C̃ ǫ
α,W ,A we get

Dα(Ψ(m)‖ qα) ≤ nǫ2
1−ǫ2

+ C̃ ǫ1
α,W ,̺. (7)

Let (Ψt (m))∼ be the component of Ψt(m) that is absolutely

continuous in qα,t . Furthermore, let ξmα,t and ξmα be

ξmα,t,lnd(Ψt(m))∼
dqα,t

−Evm
α

[
ln d(Ψt(m))∼

dqα,t

]
ξmα,

∑n

t=1
ξmα,t .

Then using [12, Lem 6], [11, Lem 9-(b,a)], [7, Prop 2], and

Theorem 2 we get

Evm
α

[∣∣ξmα,t
∣∣κ] 1

κ ≤ 3
1
κ
(C1/2,Wt ,̺

−ln ǫ2)∨κ

α(1−α) ∀κ ∈ ℜ+ , α ∈ (0, 1).

Then using the definition of γ we get

[∑n

t=1
Evm

α

[∣∣ξmα,t
∣∣κ]

] 1
κ ≤ γ

3α(1−α) . (8)

On the other hand, ∀m∈M, α∈(0, 1) by the definition of vm
α

D1(v
m
α ‖ qα) = Dα(Ψ(m)‖ qα)− α

1−αD1(v
m
α ‖Ψ(m)) . (9)

Thus we can bound D1(v
m
α ‖ qα) using the non-negativity of

the Renyi divergence, i.e. [7, Thm 8], and equation (7) as

D1(v
m
α ‖ qα) ≤ nǫ2

1−ǫ2
+ C̃ ǫ1

α,W ,̺. Hence,

lim
α→α0

D1(v
m
α ‖ qα) + γ

3(1−α) < ln M
L + ln ǫ1

8e2(1−α0)(1−ǫ1)n1.5

lim
α→1

D1(v
m
α ‖ qα) + γ

3(1−α) = ∞.

D1(v
m
α ‖ qα) is continuous in α by [12, Lem 7], then by the

intermediate value theorem [14, 4.23]∀m∈M∃αm ∈(α0, 1) s.t.

D1(v
m
α ‖ qα) + γ

3(1−α) |α=αm
= ln M

L + ln ǫ1
8e2(1−α0)(1−ǫ1)n1.5 .

Lemma 13 follows from Lemma 11 through a pigeon hole

argument similar to the one invoked in [12, eq (68)-(69)].

If W is stationary and memoryless Lemma13 can be proved

∀̺ ∈Γρ by setting qǫα,Wt
=

∫
uα,ǫ ◦ qφ,Wt ,

̺
n
dφ. Furthermore,

bound given in (10) can be obtained for codes satisfying a

convex empirical distribution constraint A ⊂ P(X1) by setting

qǫα,Wt
=
∫
uα,ǫ◦qφ,Wt ,Adφ and qα,t =(1−ǫ2)q

ǫ1
α,Wt

+ǫ2q 1
2 ,Wt ,BA

where BA,P({x ∈ X1 : ∃p ∈ A s.t. p(x ) > 0}).

γ̃ = 3
κ
√
3n

(
(C1/2,W1,B(A) + ln 1

ǫ2
) ∨ κ

)

Pav
e

≥
(

ǫ1e
−2γ̃

8e2(1−α0)(1−ǫ1)n1.5

) 1
α0

e−nẼǫ1
sp ( 1

n
ln M

L ,W1,A). (10)

ACKNOWLEDGMENT

Author would like to thank Fatma Nakiboğlu and Mehmet
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