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Abstract—For any channel with a convex constraint set and fi-
nite Augustin capacity, existence of a unique Augustin center and
associated Erven-Harremoes bound are established. Augustin-
Legendre capacity, center, and radius are introduced and proved
to be equal to the corresponding Renyi-Gallager entities. Sphere
packing bounds with polynomial prefactors are derived for codes
on two families of channels: (possibly non-stationary) memoryless
channels with multiple additive cost constraints and stationary
memoryless channels with convex constraints on the empirical
distribution of the input codewords.

I. INTRODUCTION

Augustin [2]], [3]] derived the sphere packing bound for the
product channels without assuming the stationarity. Assuming
that order Y2 Renyi capacity of the component channels are
O(nn), we have derived the sphere packing bound for product
channels with a prefactor that is polynomial in the block length
n, [12, Theorem 2]. In this manuscript, we derive analogous
results for two families of memoryless channels. As we have
done for the product channels in [12]], we first derive a non-
asymptotic outer bound for codes on a given memoryless
channel, then we derive our asymptotic result using this bound.

In [3, Chapter VII], Augustin pursued an analysis similar
to ours and derived the sphere packing bound for memoryless
channels with cost constraints [3, §36]. In addition, Augustin
established the connection between the exponent of Gallager’s
inner bound for the cost constrained channels [[§, Thm 8]
and the sphere packing exponent [3] §35]. Our results surpass
Augustin’s results in two ways:

o Augustin assumes the cost function to be bounded ][] This
hypothesis excludes certain important and interesting
cases such as the Gaussian channels. Hence, Augustin’s
analysis in [3] does not imply the sphere packing bounds
derived by Shannon [15]] and Ebert [6]. We don’t assume
the cost function to be bounded. Thus, Theorem [ es-
tablishes the sphere packing bound for a wider class of
channels including the Gaussian channels with multiple
antennasf Tt is even possible to handle certain fading
scenarios and additional per antenna power constraints.

o The best asymptotic bound implied by Augustin’s non-
asymptotic bound [3, Thm 36.6] is of the form P2v(™) >
O(e\lﬁ)e*EW(ln %’O(ﬁ)"w[lv”]’g"). In Theorem [I] we
replace O(ﬁ) by O(=%) by O(y/n) to 0.

For stationary memoryless channels with finite input sets,

the sphere packing bound is well-known [4] Ch. 10], [3]. For

The issue here is not a matter of rescaling: certain conclusions of
Augustin’s analysis are not correct when cost functions are not bounded.

2Shannon’s approximation error terms in are considerably better than
ours. But his derivation relies heavily on the geometry of the output space.
Our derivation, on the other hand, is oblivious towards it.

such a channel, one first chooses the most populous constant
composition sub-code and then derives the sphere packing
bound for the code using the sphere packing bound for the
constant composition sub-code i This technique, however, fails
when the input set of the channel is infinite. We show that a
sphere packing bound similar to Theorem [ holds for codes
on stationary memoryless channels with convex constraints on
the empirical distribution of the input codewords.

In the rest of this section, we describe our model and
notation and state our main asymptotic result. In Section[IT} we
introduce and analyze Augustin information, mean, capacity,
and center as purely measure theoretic concepts. The role
of these concepts in our analysis is analogous to the role
of corresponding Renyi concepts in [11]], [12]]. In Section
I we investigate the cost constrained Augustin capacity
more closely and introduce the concepts of Augustin-Legendre
information and Renyi-Gallager information, together with the
associated means, capacities, centers, and radii. Our main aim
in Section [ is to express the cost constrained Augustin
capacity and center in terms of Augustin-Legendre capacity
and center. In Section [Vl we derive non-asymptotic outer
bounds for codes on two families memoryless channels.

A. Model and Notation

For any set X, P(X) is the set of all probability mass
functions that are non-zero only on finitely many members of
X; M(X) is the set of all non-zero mass functions with the
same property. For any measurable space (Y,)), P(Y) is the
set of all probability measures and /\/l+(y) is set of all finite
measures. For any 11, g € M (V), p < ¢ iff u(€) < q(&)
V& € Y. Similarly, for any u,q € R, u < ¢ iff p* < ¢
Vo € {1,...,¢}. For any pu,q € R, - ¢= Zle ' q’. For
any £ € Z+, 1 € R’ is the vector whose all entries are one.
For any § C R’ we denote the interior of § by int8. For any
set 8 in a vector space we denote the convex hull of § by ch8.

A channel W is a function from the input set X to the set of
all probability measures on the output space (Y,)). A channel
W : X — P(Y) is a product channel for a finite index set
T iff there exist channels W; : Xy — P();) for all t € T
satisfying W (z) = H?E(I Wi () for all z € X where

® x ®
X=1[,,% v=II% Y=II_>

A product channel is stationary iff all W,’s are identical. If
X C H;@E,xt then W is a memoryless channel.

3Haroutunian was the first one to give a complete proof of the sphere
packing bound for constant composition codes. Recently, Altug and Wagner
[T sharpened the prefactor of the bound for channels with finite output sets.
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An (M, L) channel code on W : X — P()) is an ordered
pair (¥, ©) composed of an encoding function W : M — X and
a decoding ﬁmctiorﬂ 6 :Y — M where M2{1,2,..., M},
ME{L:L CMand |[£| = L}, and O is a measurable as a
function from the measurable space (Y,)).

Given an (M, L) channel code (¥,0) on W : X — P(})
the average error probability PJ" and the conditional error
probability PI* for m € M are given by

PEELN PRI PPAW@(m)({m ¢ i),

A cost function p is a function from the input set to Wgo
for some ¢ € Z+. We assume without loss of generality thafl

infyex p'(z) =0 Vee {1,...,0}.
Let I', be the set of feasible cost constraints for P(X):

I2{e e R :3p e P(X) st Y p(a)p(x) < o}

Then I', is a convex set with non-empty interior. A cost
function p for a product channel W is said to be additive
iff there exists a p; : Xy — §Rg0 for each ¢ € T such that

p(z) = Zteﬂ' pie(z)

An encoding function ¥, hence the corresponding code, is
said to satisfy the cost constraint ¢ iff V,enp(¥(m)) < o.
A code on a product channel W : H(?GTDQ — P(Y) is said
to satisfy an empirical distribution constraint A C P(X;) iff
the empirical distribution, i.e. type or composition, of ¥(m)
is in A for all m € M.

B. Main Result

Assumption 1. {(W;, p;, 0¢)}1ez. is an ordered sequence of
channels with associated cost functions and cost constraints
satisfying the following condition: dng € Z+, K € R+ s.t.

Vr e X.

MaX¢.t<n Oé,W,,gn < Kln(n) and o, €intl),, ,

]
for all Vn > ng where ppy o) (211,n) = 2oy pe(@).

Theorem 1. Let {(W;,ps,0t)} ez, be a sequence satisfying
Assumption[l) o, oy be orders satisfying 0 < og< a1 <1 and
e € R=o. Then for any sequence of codes {(¥;,O0¢)} ez, on
the product channels { W ) }nez, satisfying

Ve, p1,n)(Pe(m)) < on Vn € Z+
Coo, Wiy 00 HeI* R glnf‘f—: < Coy,Wnpren ¥ > 1m0
there exists a T € R+ and an nqy > ng such that
ng(n) > n—TefESP(lny—:,W[lwn],gn) Vn >

where Eg,(R, W, 0) = sup,e(o1) I?TO‘ (Ca,w,o — R).

Theorem[T] follows from Lemma[12land Lemma[I3] through
an analysis similar to the one in [12 §III-E]. An asymptotic
result similar to Theorem [Tl for codes on stationary memoryless
channels with convex empirical distribution constraints can be
proved using Lemma[12 and the bound given in equation (10).

4Recall that for any encoder ¥ a deterministic MAP decoder obtains
minimum PgY among all, possibly non-deterministic, decoders.
3 Augustin [3] §33] has the following additional hypothesis: V,cxp(z) <T.

II. THE AUGUSTIEI INFORMATION AND CAPACITY
Va € R+, w,q € M (Y), the order « Renyi divergence is

I [ (ED T v(dy) a#1
f‘é—f{ln‘é—f—ln%}y(dy) a=1

Do (w] Q)é{

where v is any measure s.t. w<v,q=<v. If D,(w| ¢)<oo then
the order « tilted probability measure vY? is

do?? _ d _
Z—ayée(l O‘)Da(w”‘J)(E(il_i;))Ot( Z)l a

A. The Augustin Information and Mean
Definition 1. For any o € R+, W : X — P(})), and p € P(X)
the order o Augustin information for the prior p is

Lo (p; W)Einf e p(y) Da(W|| 4| p)
where Do (W| gl p) £, cx p(2) Da(W (2)]| q).

Whenever it exists, the uniqueness of ¢,, € P()) sat-
isfying I,(p; W) = Do(W]|| ga,p|p) follows from the strict
convexity of Dy (w|| ¢) in ¢, i.e. [7, Thm 12]. Such a ¢, is
called the order v Augustin mean for the prior p. If |Y| < oo
then P()) is compact and the existence of ¢, , follows from
the lower semicontinuity of D, (w|| ¢) in ¢, i.e [, Lem 7],
and the extreme value theorem [[10, Ch3§12.2].

LemmalIl asserts the existence of a unique g5, for arbitrary
channels and describes ¢, , via the identities it has to satisfy.
Part @) is well known; part (B) is due tdd Augustin [3] 34.2].
A generalization of Lemma[I] for all a.€ R+ is proved in [13]].

Definition 2. For any a € R+, W:X—P()), and p € P(X),
o Top(): {g € M(Y): Da(W| g p) < 00} = P(Y) is

Ta,p(Q)é Zz p(x)UaW(w)ﬂ'

Furthermorf, Tgfpl(q)éTa7p(T;7p(q)) for v € Z+.
* fla,p € M (V) and ¢, € P(Y) are given by

1
dpie, dw N -
—tifé[ZmM (_dy(@) } R

where v is any measure for which (3~ p(z) W(z))=<v.
Lemma 1. For any W : X — P(Y) and p € P(X),
(a) Li(p;W) = Di(W | a,p] p) for a1 p= 32, p(z) W (2).
DiWlglp) = hpsW)=Di(qpl ¢) Vg P). (1)
(b) ¥ae(0,1)H o p .8 Lo ;W)= Da(Wll o gl P)- dorp~ @195
Da(Wll gl p)=1a(p; W) 2 Da(dapll ) VgePY) (2)
Ta,p(qup): Go,p (3)

Jim [l ga.p = Ta (a5, [|=0- “)

Furthermore, if a q € P(Y) satisfying q1,,<q is a fixed
point of T,, ,(+) then q¢ = qap-

(c) If a € (0,1], W is a product channel for a finite index
set T, and p is of the form H(?e'ypt for pi € P(X;) then

(Ia,p:]:[iigfbc,pt Ia(p;W):Z

O[3l 34.2] claims eq. @) for ¢{  instead of ¢S ,. We could not confirm
the correctness of Augustin’s prootp of [3l 34.2], see [13].

tE‘J'Ia (Pt; Wt) 6



B. The Constrained Augustin Capacity and Center
Definition 3. For any a€ R+, W : X —P(Y), and ACP(X),
the order o Augustin capacity of W for constraint set A is
Ca, W,Aé SuppeA Ioz(p; VV) .
Using the definition of I, (p; W) we get

Co,w,a = SUPpeA infqep(y) DQ(W” Q| p) :

Proofs of the propositions presented in this subsection can
be found in [13]]. They are very similar to the proofs of the
corresponding claims in [T1} §III, §1V, §F] for Renyi capacity;
we invoke Lemma [I] instead of [11l Lem 10].

Lemma 2. . For any W : X — P()) and A C P(X)

(a) Co w.a:(0,1]—[0,00] is increasing and continuous
(b) :=2Cy, w,a : (0,1)— [0, 00] is decreasing and continuous
(c) Jae(0,1) st Cowa<ooiff Cpw a<oco Vpe(0,1).

Theorem 2. Yo € (0, 1], W:X—P(Y), and convex A C P(X),

sup inf Do(W] q|p)= inf sup Do(W] ¢q|p).
a€P (V) peA

peEA q€P(Y)

If Co,woa < oo then 3qo,w a € P(Y), called the order o
Augustin center of W for the constraint set A, such that

Ca,W,A = SUPpea Da(W” QOz,W,A| p) .
If iy soo Lo (p; W) = Cown < o0 for a {pW},en, C A

then {q,, , hez, is a Cauchy sequence for the total variation
metric on P(Y) and qo, w4 is its unique limit point.

Lemma Il and Theorem 2l imply for all € (0, 1], p €A that

Co,woa — La(; W) > Do(ga,pll o, w.a) -

Using Lemma [I] and Theorem 2] we can prove the following
Erven-Harremoes bound for Augustin capacity.

Lemma 3. For any o € (0,1], W : X — P(Y), and convex
ACP(X) s.t. Co,woa < 00, and q € P(Y)

SUPpen Do(W{lq|p) = Ca,w,a + Da(Ga,w.all ) -

Erven-Harremoes bound, the continuity of C, w4 in «,
and Pinsker’s inequality imply the continuity of g, w 4 in o
for the total variation topology on P()).

Lemma 4. For anyn€ (0,1], W:X—=P(Y), convex ACP(X)
s.t. Cyw.a <00, and o, ¢ satisfying 0 < o < ¢ <,

Co,w.A — Co,w.a = Dalgo,w all g5, w,4) -

Furthermore, qo woa : (0,n] — P(Y) is continuous in o for
the total variation topology on P()).

Lemma 5. For any o € (0,1], product channel W for a
finite index set T, convex sets Ay C P(Xy) for each t € T,
and A = ch{H?eTpt ipe € P(Xy) VE €T}

Ca,W,A = E teT Oa,WnAt'

Furthermore, if Co w4 < 00 then qo,w A = H‘?e?qa,wt,ﬂt.

III. THE COST CONSTRAINED AUGUSTIN CAPACITY

With a slight abuse of notation we define the cost con-
strained Augustin capacity as

COM W,Qé SUPpeA (o) I (p; VV) Vo € Fp

where A(0)={p € P(X) : >, p(z)p(z) < o}. Note that
Theorem 2] and Lemmas [3] and E] hold for C, w,, because
A(o) is a convex set. We denote Augustin center by ¢u,w,p-

Lemma 6. Forany a € (0,1, W : X — P(Y), p: X — RE,,
(a) Caw,o:I,—[0,00] is increasing and concave in o. It is

either infinite Yo € intl}, or finite and continuousonintl},.
(b) If Caw,p < 00 for a o € intl, then I, w,, € R, s.1.

Co,W,o+Aa,wyo (0—0) > Co,w,s Vo E T,

The set of all such \ow,p's for an o is convex and compact.
Lemma 7. For any « € (0, 1], product channel W for a finite

index set T, additive cost function p : X — R, satisfying
p(x) = icq pi(a:) for some p; - Xy — ?Réo and o € T,

Ca,W,g = sup {Zteﬂ' Ca,Wt,gt : Zteﬂ' 0t <0, 0t € Fpt}

If Hottier st. Cawe =2 teq Cawio and Co,w,p < 00
®
then qo,w,o = Hte:rQa,Wt,gr

Since Augustin capacity is concave in the cost constraint

by Lemma BH@, Co,w.p = > se7 Ca,wi, g Whenever W is
stationary and p; = p; for all ¢ € J. Alternatively, if I'),’s
are closed and C,,w,, ,’s are upper semicontinuous functions
of g on I',,’s then we can use the extreme value theorem for
the upper semicontinuous functions to establish the existence
of a {0t}ter st. Ca,w,o = Dyeq Ca,w,,o,- However, such

an existence assertion does not hold in general.

A. The A-L Information, Capacity, Center, and Radius

This subsection is a generalization of parts of Ch. 8],
which is confined to |X|V|Y| <oo, a=1, and {=1 case.

For any a€R+, W:X—P(Y), cost function p:DC%?RéO,
NERL,, and p € P(X) the order o Augustin-Legendre (A-L)
information for prior p and Lagrange multiplier X\ is

RoMELe:W) - A (3 pla)()) .
We call I)(p;W) A-L information because of the convex

conjugate pair f, , : R, — (—o0,00] and £, : RE, — R:

fap(0)2 {oola(p; ") fli Bolel - _ 22}35 0= [,
fap(©)Fsupys0€-0—fap(e) =& Bylp] + Lp;W)
Thus one can write Cy, 1w, in terms of 12 (p; W) as

Co,W.0 = SUP,cp(x) infazo 12 (; W) + A - 0.

I (p; W) is convex, decreasing and continuous in \. Fur-
thermore, by Lemma [I] for « € (0, 1] we have:

I2(0;W) = Da(W | gap| p) = A Epp]
Do (W gl p) — A Eyp] > IS(P;W) + Da(Ga,pll q) -



For any av€ (0,1], W:X—P(Y), p: DC%§R>0, and )\€§R>0,
the A-L capacity C&\, w and the A-L radius Sé‘, w are given by

C&\,Wé SUPpep(x) I&\(P; W)
Sa.wE infepy) supyex Da(W ()] @) = A+ p(z).
Using the definition of I)(p; W), I, (p; W) and S(i"W we get

Cat w =SUp,cp(x) Inf gep () Da (W]l g p)— A - Ep[p]
S2 w=1nf gep ) Sup,cpixy Da(W gl p) =X - Eplp] .

Lemma 8. For any a€(0,1], W:X—P(Y), p: X —RE,,

(a) C w s convex, decreasing and lower semlcontmuous in A\
on R, and continuous in X on {\:3e>0s.t. CA L <od.

(b) Co,w,o <infr>o C W +X-oforall o€,

(¢c) Cow,o=infr>qC2 W—i—)\g if either | X| < oo or g € intI,.

(d) If Jo€intl, s.t. Caﬁwyg<oo then Yo€intl, 3\ 6%20
s.t. Cow,p = Ca)\,W + Ao

(e) If Co,w,o= C£7W+>\'Q < oofora(o,\) €T, xRL,, and
lim, o0 I (p(z);W) = Ca,w,o for a {pW}iez, C Ao)
then lim,_, I’\ (p(l); W) = Coj\ W

If 3\ € Rxo s.t. O < oo then Gy, w,, < 00 Vo € I, by
Lemma Bl @). However the converse claim is not true. There
are cases for which C,, w,, is finite for all o € I',, yet Ca w
is infinite for A small enoughﬂ The equahty given in (@) might
not hold if p € I', \ intI, and |X| =

Theorem 3. Ya€(0,1], W:X—P(Y), p:X—=RE,, AeRE,,
C)\ _ S)\,W

If G2y < oo then 3lq)) , € P(Y), called the order a A-L
center of W for the Lagmnge multiplier \, such that

Caw = supyex Da(W(2)l 43 w) — A+ p(2).
Iflim, oo I (p W) = oy < oo fora P ez, CPWX) then

corresponding {qayp(l) hez, is a Cauchy sequence for the total
variation metric on P(Y) and qQW is its unique limit point.

Lemma 9. [f a€(0,1], W:X—P), p: X —>R%,, 0€ 1,
s.t. Co,w,e < oo and A € RE, s.t. Cow,o = OQ\7W +A-0

then go, w,o = qa W

Lemma 10. Vo € (0,1], product channel W for finite index set
T, and p satisfying p(z) =7, cqpdx:) for some py: Xy —RE,,

Oy = Zte? Ca w, VA e RS,

If C W < 00 then qa w = Htei)‘qoz Wy

Recall that the product structure assertion for g, w,, in
Lemma [7l was qualified by the existence of a {o:}ier
satisfying 3, 5 Co, w0, = Ca,w,p < 00. In Lemma
on the other hand, the product structure assertion for qg}, wis
qualified only by C) < 0.

7In 31 §33835], Augustin considers bounded p’s of the form p: X — [0, I]Z
In that case, it is easy to see that if Jp € intl), sit. Cy w,, < oo then
SUP,er, Ca,w,0 = Ca,w,1 < oo and C W<ooforall)\e§]%>U

B. The R-G Information, Mean, Capacity, and Center

For any o € R+ \ {1}, W :X — P(Y), cost function p: X —
Ry, AERL,, and p € P(X) the order a Renyi-Gallager (R-G)
information for prior p and Lagrange multiplier X\ is

I (p; W)Einf jep(y) Da (p o WekTaA‘p“ P& q) .

The order o« R-G capacity for Lagrange multiplier \ is
Cwa SUp, ey 127 (0; W) -

Using the definition of 1¢*(p; W) and C;?W we get

Cagf‘W = SUPpcp(x) infqep(y) D, (p o We%)“pH PR q) .
Using the concavity of log function and Jensen’s inequality
one can show that I (p; W) > I¢*(p; W) for a € (0,1) and
I)p; W) < I p; W) for o € (1,00). On the other hand, one
can show by substitution that V¢ € P()) and av€ R+ \ {1},
I2p; W) = Dq (p ° We%“H pe® qogfw)
) = 220 W) + Da(a2 | )

is the R-G mean given in terms of ,uam as follows,

1
d/""i,pé 1—a)X-p(z dW(I)a o
@yt e @) T

For A\ = 01, R-G information and mean are equal to the

corresponding Renyi information and mean analyzed in [11].

Following a similar analysis one can show that a minimax

theorem similar to [I1, Thm 1] holds for R-G quantities:
C;’?‘W = inf,ep(y) Suppep(x) Da (p o We%a)"pH PR q)

= infgepy)sup,ex Da(W(2)[ ) =A - p().
Then Cg)‘W = Clw YAeRL,, o€ (0,1) by Theorem (3l
IV. SPHERE PACKING BOUNDS
= @& - OGn, K23,

D, (p o We =

where g3,

A
g\ A Hap

Lemma 11. For any w=w1®- - -Qwy,
€ (0,1), if (&) < (/vien)e Drlvatll)=adex for € € Y
A n dw;~ dw;~ K "
and g.= (thl E,».q [ In St — v [ln d—(]t:| D then
w(Y\ &) > (1fvImm)eDivE W) -(-a)d.
Lemmal[ITl is in the spirit of [16, Thm35], but instead of
Chebyshev ineq, it relies on Berry-Essen Thm via [12, Lem9].
Our sphere packing bounds are expressed in terms of the

averaged Augustin capacity andd averaged sphere packing
exponent: for all e € (0,1) and R € R+:

_ ate(l—a)
S,W,Aé%/ {W (ﬁ%)} Co,w .add

—EX

E;p(Ra Wa‘A)ésupozE(O,l) 1?Ta (~G€¢,W,A - R) :
Lemma 12. For any a€(0,1], W:X—=P(Y), A C P(X) s.z.
Cipp,w.a € Re, ¢ €(0,1), R € [Cpwn, Clow,a) and € €

(0,¢). Then 0 < ES, (R, W, A) — Eyp (R, W, A) < d;é%.
Proof of Lemma [12] is identical to that of [12] Lem 11].

$Note Ciw.e= Cs woa(p) and ES, (R, W,0) = ES, (R, W, A(0)).



Lemma 13. For any product channel W for the index set
{1,...,n}, cost function p satisfying p(z) = > ,cq pi(z)
for py : Xy — R, 0 € intl),, and integers M, L satisfying

8¢’ (1—ap)(l—e1)ezn?”® 65;10, w.o T T=ag
e1(l—e2)

12393 (3 ((Cawop+im ) vs))

forark >3, an g€ (0,1), an e € (0,1) and an e € (0,1)
satisfying M > 1, any (M, L) channel code
(@,0) on W satzsfymg Vimemp(¥(m)) < o satisfies

1
—2 0 —E(In i, w
av €1e . V,0
Pe Z (8e2(1—a0)(1—61)n1‘5) e sp( )

M
L

>

1
"

I,V € (0,1)INg w0 €RE, st
Cow,0= Co W “Ha,w, 00 by LemBH(d). Then go,w,o = ¢, %

by Lemmal Furthermore, qa“ e = H?qi“v{,vt ¢ by Lemmal[IQl
Then q}“ 7¢:(0,1) = Py is continuous in « for the total
Varlatlon topology on P(V;) because g, w,, is by Lemma [l
Then q % is a transition probability from ((0, 1), 5((0,1))) to
(Y, Jit). We define q; W, as the Y; marginal of the probability

Proof Sketch. Since p € int
A

A . . -
measure Uy,e © q. V’[Z where u, . is the uniform probability

distribution on (o — e, @ + €(1 — )):

L at(1—a)e o
Qo,w, = ¢ / 5,0 do. (6)

— Qe

Let ¥;(m) be the Y; marginal of ¥(m) and ¢q.¢, ¢a, 03" be

mA, ¥ (m),qa

®
Q(x,ié(l_GQ)q(il,Wt"i_GQQ%,Wt,g Q()zéHtQOz,t Vo Ve
By [11, Lem 9-(b,d)], Lemma[[Q and In7 < 7 — 1 we have

a+(1 04)51 (m)|lq b, W,0
Do (T(m)|| ga) < 7% +/ %dqﬁ.
a(l—er)
Using Lemma [ [11l Lem 9-(a)], [[Z, Prop 2], Theorem 2l
pW@(m)) < ¢ and the definition of Cy y;, 4 we get

D,(T(m

Let (W(m)).~ be the component of W;(m) that is absolutely
continuous in g ¢. Furthermore, let £, and £ be

€mé n m
o =1 t

Then using [12, Lem 6], [11, Lem 9-(b,a)], [Z, Prop 2], and
Theorem 2] we get

Eox [|&0%

Then using the definition of v we get

)M ga) < 722

1—eo

+C o 7

m d(T(m))~
g Edten

—Evm[ M}

dg

1 (Cia,w,,o—Ine2)Vi
‘ } < 3x ai(lg )

1
|: =1 E”rT [|§$t| }:| < 3a(iyfa) ) @®)
On the other hand, ¥m € M, a € (0, 1) by the definition of v™

D1(v3"[| ) = Da(¥(m)]| ) — 725 Dr(vg'[[¥(m)) . (9)

Vi € R+, € (0,1).

Thus we can bound D; (v ¢,) using the non-negativity of
the Renyi divergence, i.e. [[Z, Thm 8], and equation (@) as
Di(v] || ga) < 722 -~ + C“W o+ Hence,

o}i{go Dl(va ” Qa) + 3(1,,1) <In% T +In 862(17a0§(11761)nL5

lim Dy (0| da) + g7y = 00

Dy (v qa) is continuous in a by [12] Lem 7], then by the
intermediate value theorem [[14]4.23]Vim € M3y, € (ap, 1) st.

Dy (’U(TH q‘l) + =1In % +In 8e2(1—a0§(11—€1)"1’5'

Lemma [13 follows from Lemma [I1] through a pigeon hole
argument similar to the one invoked in [12, eq (68)-(69)]. O

1|
3(1—a) lo=am

If W is stationary and memoryless Lemmall3|can be proved
Vo€ I, by setting g5 v, = [ Ua.c © 4o, w,, 2d¢. Furthermore,
bound given in (IQ) can be obtained for codes satisfying a
convex empirical distribution constraint A C P(X;) by setting
q(; W, :fua,e °qp,w, Ad¢ and o, = (11— 62)(];11]/[4 +€2 qr Wy, B,
where B4 2P({z € X1 :3p € A s.t. p(z) > 0}).

7= 3\/_((01/2 Wi s ) 1) \/’f)

PE" > (st

1

e el (Ll M
) 0 ,~nEL(F I Wi A) (10)
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