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Abstract—In this paper, the η-Nash equilibrium (η-NE) region
of the two-user linear deterministic interference channel (IC) with
noisy channel-output feedback is characterized for all η > 0. The
η-NE region, a subset of the capacity region, contains the set of all
achievable information rate pairs that are stable in the sense of
an η-NE. More specifically, given an η-NE coding scheme, there
does not exist an alternative coding scheme for either transmitter-
receiver pair that increases the individual rate by more than η
bits per channel use. Existing results such as the η-NE region
of the linear deterministic IC without feedback and with perfect
output feedback are obtained as particular cases of the result
presented in this paper.

Index Terms—Nash equilibrium, Linear Deterministic Inter-
ference Channel.

I. SYSTEM MODEL

Consider the two-user decentralized linear deterministic
interference channel with noisy channel-output feedback (D-
LD-IC-NOF) depicted in Figure 1. For all i ∈ {1, 2}, with
j ∈ {1, 2} \ {i}, the number of bit-pipes between transmitter
i and its intended receiver is denoted by −→n ii; the number of
bit-pipes between transmitter i and its non-intended receiver is
denoted by nji; and the number of bit-pipes between receiver i
and its corresponding transmitter is denoted by←−n ii. These six
non-negative integer parameters describe the D-LD-IC-NOF in
Figure 1.

At transmitter i, the channel-input Xi,n at channel use n,
with n ∈ {1, 2, . . . , Ni}, is a q-dimensional binary vector

Xi,n =
Ä
X

(1)
i,n , X

(2)
i,n , . . . , X

(q)
i,n

äT
∈ Xi, with Xi = {0, 1}q ,

q = max (−→n 11,
−→n 22, n12, n21) , (1)

and Ni ∈ N is the block-length of transmitter-receiver pair
i. At receiver i, the channel-output

−→
Y i,n at channel use n,

with n ∈ {1, 2, . . . ,max (N1, N2)}, is also a q-dimensional

binary vector
−→
Y i,n =

Ä−→
Y

(1)
i,n,
−→
Y

(2)
i,n, . . . ,

−→
Y

(q)
i,n

äT
. Let S be a

q×q binary lower shift matrix. The input-output relation during
channel use n is given by

−→
Y i,n=Sq−

−→n iiXi,n + Sq−nijXj,n, (2)
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Fig. 1. Two-user linear deterministic interference channel with noisy channel-
output feedback at channel use n.

where Xi,n = (0, 0, . . . , 0)
T for all n > Ni. The feedback

signal
←−
Y i,n available at transmitter i at the end of channel

use n is
←−
Y i,n=S(max(−→n ii,nij)−←−n ii)

+−→
Y i,n−d, (3)

where d is a finite delay, additions and multiplications are
defined over the binary field, and (·)+ is the positive part
operator.

Without any loss of generality, the feedback delay is
assumed to be equal to one channel use. Let Wi be the
set of message indices of transmitter i. Transmitter i sends
the message index Wi ∈ Wi by transmitting the codeword
Xi = (Xi,1,Xi,2, . . . ,Xi,Ni) ∈ XNi

i , which is a binary q×
Ni matrix. The encoder of transmitter i can be modeled as
a set of deterministic mappings f

(N)
i,1 , f

(N)
i,2 , . . . , f

(N)
i,Ni

, with
f
(N)
i,1 : Wi × N → {0, 1}q and for all n ∈ {2, 3, . . . , Ni},
f
(N)
i,n :Wi ×N× {0, 1}q×(n−1) → {0, 1}q , such that

Xi,1=f
(N)
i,1

(
Wi,Ωi

)
and (4a)

Xi,n=f
(N)
i,n

(
Wi,Ωi,

←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

)
, (4b)

where Ωi is a randomly generated index known by both
transmitter i and receiver i, while unknown by transmitter
j and receiver j. The decoder of receiver i is defined by
a deterministic function ψ

(N)
i : {0, 1}q×N × N → Wi.

At the end of the communication, receiver i uses the q ×
N binary matrix

Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

ä
and Ωi to obtain

an estimate Ŵi ∈ Wi of the message index Wi, i.e.,
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Ŵi = ψ
(N)
i

Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N ,Ωi

ä
. Let Wi be written

as ci,1 ci,2 . . . ci,Mi
in binary form, with Mi = dlog2 |Wi|e.

Let also Ŵi be written as ĉi,1 ĉi,2 . . . ĉi,Mi
in binary form.

A transmit-receive configuration for transmitter-receiver
pair i, denoted by si, can be described in terms of the block-
length Ni, the number of bits per block Mi, the channel-
input alphabet Xi, the codebook, the encoding functions
f
(N)
i,1 , f

(N)
i,2 , . . . , f

(N)
i,Ni

, the decoding function ψ(N)
i , etc.

The average bit error probability at decoder i given the
configurations s1 and s2, denoted by pi(s1, s2), is given by

pi(s1, s2)=
1

Mi

Mi∑

`=1

1{ĉi,` 6=ci,`}. (5)

Within this context, a rate pair (R1, R2) ∈ R2
+ is said to be

achievable if it complies with the following definition.
Definition 1 (Achievable Rate Pairs): A rate pair

(R1, R2) ∈ R2
+ is achievable if there exists at least

one pair of configurations (s1, s2) such that the decoding
bit error probabilities p1(s1, s2) and p2(s1, s2) can be made
arbitrarily small by letting the block-lengths N1 and N2 grow
to infinity.

The aim of transmitter i is to autonomously choose its
transmit-receive configuration si, in order to maximize its
achievable rate Ri. Note that the rate achieved by transmitter-
receiver i depends on both configurations s1 and s2 due to
mutual interference. This reveals the competitive interaction
between both links in the decentralized interference channel.
The following section models this interaction using tools from
game theory.

II. THE TWO-USER INTERFERENCE CHANNEL AS A GAME

The competitive interaction between the two transmitter-
receiver pairs in the decentralized interference channel can be
modeled by the following game in normal-form:

G =
(
K, {Ak}k∈K , {uk}k∈K

)
. (6)

The set K = {1, 2} is the set of players, that is, the set of
transmitter-receiver pairs. The sets A1 and A2 are the sets
of actions of players 1 and 2, respectively. An action of a
player i ∈ K, which is denoted by si ∈ Ai, is basically its
transmit-receive configuration as described in Section I. The
utility function of player i is ui : A1 × A2 → R+ and it is
defined as the information rate of transmitter i,

ui(s1, s2) =

ß
Ri = Mi

Ni
, if pi(s1, s2) < ε

0, otherwise,
(7)

where ε > 0 is an arbitrarily small number.
This game formulation was first proposed in [1] and [2].

A class of transmit-receive configurations s∗ = (s∗1, s
∗
2) ∈

A1×A2 that are particularly important in the analysis of this
game is referred to as the set of η-Nash equilibria (η-NE),
with η > 0. This type of configuration satisfies the following
definition.

Definition 2 (η-Nash equilibrium): In the game
G =

(
K, {Ak}k∈K , {uk}k∈K

)
, an action profile (s∗1, s

∗
2)

is an η-Nash equilibrium if for all i ∈ K and for all si ∈ Ai,
there exits an η > 0 such that

ui(si, s
∗
j ) 6 ui(s

∗
i , s
∗
j ) + η. (8)

Let (s∗1, s
∗
2) be an η-Nash equilibrium action profile of the

game in (6). Then, none of the transmitters can increase its
own information transmission rate more than η bits per channel
use by changing its own transmit-receive configuration and
keeping the average bit error probability arbitrarily close to
zero. Note that for η sufficiently large, from Definition 2, any
pair of configurations can be an η-NE. Alternatively, for η = 0,
the classical definition of Nash equilibrium is obtained [3]. In
this case, if a pair of configurations is a Nash equilibrium
(η = 0), then each individual configuration is optimal with
respect to each other. Hence, the interest is to describe the set
of all possible η-NE rate pairs (R1, R2) of the game in (6) with
the smallest η for which there exists at least one equilibrium
configuration pair. The set of rate pairs that can be achieved
at an η-NE is known as the η-Nash equilibrium region.

Definition 3 (η-NE Region): Let η > 0 be fixed. An achiev-
able rate pair (R1, R2) is said to be in the η-NE region of
the game G =

(
K, {Ak}k∈K , {uk}k∈K

)
if there exists a pair

(s∗1, s
∗
2) ∈ A1 ×A2 that is an η-NE and the following holds:

u1(s∗1, s
∗
2) = R1 and u2(s∗1, s

∗
2) = R2. (9)

The following section characterizes the η-NE region
(Def. 3) of the two-user D-LD-IC-NOF in (6), denoted
by Nη (−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22), for fixed parameters(−→n 11, −→n 22, n12, n21, ←−n 11,←−n 22

)
∈ N6 and for all η > 0.

III. MAIN RESULTS

The η-NE region is characterized in terms
of two regions: the capacity region, denoted by
C(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22) and a convex region,
denoted by Bη(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22). In the
following, the tuple (−→n 11, −→n 22, n12, n21, ←−n 11, ←−n 22) is used
only when needed.

The capacity region C of the two-user LD-IC-NOF is
described in Theorem 1 in [4], which is a generalization of
previous works in [5] and [6]. For all η > 0, the convex region
Bη is defined as follows:

Bη=
{

(R1, R2) :Li6Ri6Ui, for all i ∈ {1, 2}
}
, (10)

where,

Li=
Ä
(−→n ii − nij)+ − η

ä+
and (11a)

Ui= max (−→n ii, nij)−
(

min
Ä
(−→n jj−nji)+ , nij

ä
(11b)

−
Å

min
Ä
(−→n jj−nij)+,nji

ä
−(max(−→n jj ,nji)−←−n jj)+

ã+)+

+η,

with i ∈ {1, 2} and j ∈ {1, 2} \ {i}. Theorem 1 uses the
region Bη in (10) and the capacity region C to describe the
η-NE region Nη .

Theorem 1: Let η > 0 be fixed. The η-NE region Nη of
the two-user D-LD-IC-NOF with parameters −→n 11, −→n 22, n12,
n21, ←−n 11 and ←−n 22, is Nη = C ∩ Bη .
Figure 2 shows the capacity region C and the η-NE region
Nη of a channel with parameters −→n 11 = 7, −→n 22 = 6,
n12 = 4, n21 = 4 and different values for ←−n 11 and ←−n 22,
with η chosen arbitrarily small. Note that when ←−n 11 ∈
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Fig. 2. Capacity region C(7, 6, 4, 4, 0, 0) (thin blue line) and η-NE region Nη(7, 6, 4, 4, 0, 0) (thick black line) with η chosen arbitrarily small. Fig. 2a shows
the capacity region C(7, 6, 4, 4,←−n 11,

←−n 22) (thick red line) and the η-NE region Nη(7, 6, 4, 4,
←−n 11,

←−n 22) (thin green line), with←−n 11 ∈ {0, 1, 2, 3, 4} and←−n 22 ∈ {0, 1, 2, 3, 4}. Fig. 2b shows the capacity region C(7, 6, 4, 4, 5,←−n 22) (thick red line) and the η-NE region Nη(7, 6, 4, 4, 5,
←−n 22) (thin green line),

with ←−n 22 ∈ {0, 1, 2, 3, 4}. Fig. 2c shows the capacity region C(7, 6, 4, 4, 6,←−n 22) (thick red line) and the η-NE region Nη(7, 6, 4, 4, 6,
←−n 22) (thin green

line), with ←−n 22 ∈ {0, 1, 2, 3, 4}. Fig. 2d shows the capacity region C(7, 6, 4, 4, 7,←−n 22) (thick red line) and the η-NE region Nη(7, 6, 4, 4, 7,
←−n 22) (thin

green line), with ←−n 22 ∈ {0, 1, 2, 3, 4}. Fig. 2e shows the capacity region C(7, 6, 4, 4, 7, 5) (thick red line) and the η-NE region Nη(7, 6, 4, 4, 7, 5) (thin
green line). Fig. 2f shows the capacity region C(7, 6, 4, 4, 7, 6) (thick red line) and the η-NE region Nη(7, 6, 4, 4, 7, 6) (thin green line). Fig. 2g and Fig. 2h
illustrate the achievability scheme for the equilibrium rate pair (3, 4) and (5, 4) in Nη(7, 6, 4, 4, 5, 0).

{0, 1, 2, 3, 4} and ←−n 22 ∈ {0, 1, 2, 3, 4} (Figure 2a), it follows
that Nη(7, 6, 4, 4,←−n 11,

←−n 22) = Nη(7, 6, 4, 4, 0, 0). Thus, in
this case the use of feedback in any of the transmitter-receiver
pairs does not enlarge the η-Nash region. Alternatively, when←−n 11 > 4 and ←−n 22 ∈ {0, 1, 2, 3, 4} (Figures 2b, 2c and
2d), the resulting η-Nash region is strictly larger than in the
previous case. A similar effect is observed in Figures 2e and
2f. This observation implies the existence of a threshold on
each feedback parameter ←−n 11 and ←−n 22 beyond which the η-
Nash region is enlarged. The exact values of ←−n 11 and ←−n 22,
given a fixed tuple (−→n 11, −→n 22, n12, n21), beyond which the
η-Nash region can be enlarged is presented in [7]. Figure
2g and Figure 2h show the coding schemes to achieve the
rate pairs (3, 4) and (5, 4), respectively, when ←−n 11 = 5 and←−n 22 = 0. In Figure 2g, note that common randomness is used
by transmitter-receiver pair 2 to prevent transmitter-receiver
pair 1 from increasing its individual rate. More specifically,
the bits b̃1, b̃2, b̃3, . . . are known by both transmitter 2 and
receiver 2. The use of common randomness is also observed in
[8], [9] and [10]. Common randomness reflects a competitive

behavior between both transmitter-receiver pairs. In Figure 2g,
common randomness is not used by transmitter-receiver pair 2
and thus, transmitter-receiver pair 1 achieves a higher rate at
an η-NE with respect to the previous example. This suggests
a more altruistic behavior.

The η-NE region Nη without feedback, i.e., when←−n 11 = 0 and ←−n 22 = 0 (Theorem 1 in [8]), is
Nη(−→n 11,

−→n 22, n12, n21, 0, 0). The η-NE region with per-
fect feedback i.e., ←−n 11 = max(−→n 11, n12) and ←−n 22 =
max(−→n 22, n21) (Theorem 1 in [9]), is Nη(−→n 11, −→n 22, n12,
n21, max(−→n 11, n12), max(−→n 22, n21)). From the comments
above, it is interesting to highlight the following inclusions:

Nη
(−→n 11,

−→n 22, n12, n21, 0, 0
)
⊆ (12)

Nη
(−→n 11,

−→n 22, n12, n21,
←−n 11,

←−n 22

)
⊆

Nη
(−→n 11,

−→n 22, n12, n21,max (−→n 11, n12) ,max (−→n 22, n21)
)
,

for all η > 0. The inclusions above might appear trivial,
however, enlarging the set of actions often leads to paradoxes



(Braess Paradox [11]) in which the new game possesses equi-
libria at which players obtain smaller individual benefits and/or
smaller total benefit. Nonetheless, letting both transmitter-
receiver pairs to use feedback does not induce this type of
paradoxes with respect to the case without feedback.

IV. PROOFS

To prove Theorem 1, the first step is to show that a rate pair
(R1, R2), with Ri < Li or Ri > Ui for at least one i ∈ {1, 2},
is not achievable at an η-equilibrium for all η > 0. That is,

Nη ⊆ C ∩ Bη. (13)

The second step is to show that, for all η > 0, any point in
C ∩ Bη can be achievable at an η-equilibrium. That is,

Nη ⊇ C ∩ Bη, (14)

which proves the equality Nη = C ∩ Bη .
a) Proof of (13): The proof of (13) is completed by the

following lemmas.
Lemma 1: A rate pair (R1, R2) ∈ C, with either R1 < L1

or R2 < L2 is not achievable at an η-equilibrium for all
η > 0.

Proof: The proof of Lemma 1 is presented in [7].
The intuition behind this proof is that the rate
Ri = (−→n ii − nij)+ is always achievable independently
of the coding scheme of transmitter-receiver pair j. To
achieve Ri = (−→n ii − nij)+ transmitter i uses the most
significant bit-pipes, which are interference free, to transmit
new bits at each channel use n.

Lemma 2: A rate pair (R1, R2) ∈ C, with either R1 > U1

or R2 > U2 is not achievable at an η-equilibrium for all
η > 0.

Proof: The proof of Lemma 2 is presented in [7].
This proof is based on the fact that at an η-NE, transmitter
j might re-transmit some of the bits previously transmitted
by transmitter i. The interference produced by those re-
transmitted bits at receiver i can be eliminated if they were
received interference free during previous channel uses. This
allows transmitter i to use the bit-pipes interfered with by
those re-transmitted bits to send new information bits at each
channel use. The key point of this proof is to show that the
maximum number of bits that can be re-transmitted at an η-NE
is upper bounded.

b) Proof of (14): Consider a modification of the coding
scheme with noisy feedback presented in [4], which combines
rate splitting [12], block Markov superposition coding [13]
and backward decoding [14]. The novelty with respect to [4]
consists of allowing users to introduce common randomness
as suggested in [8] and [9].

Consider without any loss of generality that N = N1 = N2.
Let W (t)

i ∈ {1, 2, . . . , 2NRi} and Ω
(t)
i ∈ {1, 2, . . . , 2NRi,R}

denote the message index and the random message index sent
by transmitter i during the t-th block, with t ∈ {1, 2, . . . , T},
respectively. Following a rate-splitting argument,
assume that

Ä
W

(t)
i ,Ω

(t)
i

ä
is represented by the indicesÄ

W
(t)
i,C1,Ω

(t)
i,R1,W

(t)
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(t)
i,R2,W

(t)
i,P

ä
∈ {1, 2, . . . , 2NRi,C1} ×

{1, 2, . . . , 2NRi,R1} × {1, 2, . . . , 2NRi,C2} ×
{1, 2, . . . , 2NRi,R2} × {1, 2, . . . , 2NRi,P }, where

Ri = Ri,C1 + Ri,C2 + Ri,P and Ri,R = Ri,R1 + Ri,R2. The
rate Ri,R is the number of transmitted bits that are known by
both transmitter i and receiver i per channel use, and thus it
does not have an impact on the information rate Ri.

The codeword generation follows a four-level superposition
coding scheme. The indices W (t−1)

i,C1 and Ω
(t−1)
i,R1 are assumed

to be decoded at transmitter j via the feedback link of
transmitter-receiver pair j at the end of the transmission
of block t − 1. Therefore, at the beginning of block t,
each transmitter possesses the knowledge of the indices
W

(t−1)
1,C1 , Ω

(t−1)
1,R1 , W (t−1)

2,C1 and Ω
(t−1)
2,R1 . In the case of the

first block t = 1, the indices W
(0)
1,C1, Ω

(0)
1,R1, W (0)

2,C1 and
Ω

(0)
1,R2 are assumed to be known by all transmitters and

receivers. Using these indices both transmitters are able to
identify the same codeword in the first code-layer. This first
code-layer, which is common for both transmitter-receiver
pairs, is a sub-codebook of 2N(R1,C1+R2,C1+R1,R1+R2,R1)

codewords. Denote by u
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ä
the corresponding codeword in the first code-layer. The second
codeword is chosen by transmitter i using
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(t)
i,C1,Ω

(t)
i,R1

ä
from the second code-layer, which is a sub-codebook
of 2N(Ri,C1+Ri,R1) codewords corresponding to the
codeword u
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the

corresponding codeword in the second code-layer. The third
codeword is chosen by transmitter i using

Ä
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i,C2,Ω

(t)
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ä
from the third code-layer, which is a sub-codebook of
2N(Ri,C2+Ri,R2) codewords corresponding to the codeword
ui
Ä
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by vi
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the corresponding codeword in the third

code-layer. The fourth codeword is chosen by transmitter
i using W

(t)
i,P from the fourth code-layer, which is a

sub-codebook of 2N Ri,P codewords corresponding to the
codeword vi

(
W
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1,C1 ,Ω

(t−1)
1,R1 , W (t−1)

2,C1 ,Ω
(t−1)
2,R1 , W (t)
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. Denote by xi,P
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the

corresponding codeword in the fourth code-layer. Finally, the
codeword xi

(
W
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to be sent during block t ∈ {1, 2, . . . , T}

is a simple concatenation of the previous codewords, i.e.,
xi =

Ä
uT
i ,v

T
i ,x

T
i,P

äT ∈ {0, 1}q×N , where the message
indices have been dropped for ease of notation.

The decoder follows a backward decoding scheme. In the
following, this coding scheme is referred to as a randomized
Han-Kobayashi coding scheme with noisy feedback (R-HK-
NOF) and it is described in [7]. The rest of the proof consists
of showing that the R-HK-NOF coding scheme is capable of
achieving an η-NE with (R1, R2) ∈ C ∩ Bη for all η > 0,
subject to a proper choice of the rates Ri,R1 and Ri,R2, for
all i ∈ {1, 2}.

Lemma 3: The achievable region of the randomized Han-
Kobayashi coding scheme for the D-LD-IC-NOF is the set



of non-negative rates
(
R1,C1, R1,R1, R1,C2, R1,R2, R1,P ,

R2,C1, R2,R1, R2,C2, R2,R2, R2,P

)
that satisfy the following

conditions for all i ∈ {1, 2} and j ∈ {1, 2} \ {i}:
Rj,C1 +Rj,R16θ1,i, (15a)

Ri +Rj,C +Rj,R6θ2,i, (15b)
Rj,C2 +Rj,R26θ3,i, (15c)

Ri,P6θ4,i, (15d)
Ri,P +Rj,C2 +Rj,R26θ5,i, (15e)

Ri,C2 +Ri,P6θ6,i, and (15f)
Ri,C2 +Ri,P +Rj,C2 +Rj,R26θ7,i, (15g)

where,

θ1,i=
Ä
nij − (max (−→n ii, nij)−←−n ii)+

ä+
, (16a)

θ2,i=max (−→n ii, nij) , (16b)

θ3,i=min
Ä
nij , (max (−→n ii, nij)−←−n ii)+

ä
, (16c)

θ4,i=(−→n ii − nji)+ , (16d)

θ5,i=max
(

(−→n ii − nji)+ ,

min
Ä
nij , (max (−→n ii, nij)−←−n ii)+

ä)
, (16e)

θ6,i=min
Ä
nji, (max (−→n jj , nji)−←−n jj)+

ä
−min

(
(nji −−→n ii)+ , (max (−→n jj , nji)−←−n jj)+

)

+ (−→n ii − nji)+ , and (16f)

θ7,i=max
(

min
(
nij , (max (−→n ii, nij)−←−n ii)+

)
,

min
(
nji, (max (−→n jj , nji)−←−n jj)+

)

−min
(

(nji −−→n ii)+ , (max (−→n jj , nji)−←−n jj)+
)

+ (−→n ii − nji)+
)
. (16g)

Proof: The proof of Lemma 3 is presented in [7].
The set of inequalities in (15) can be written in terms of

the transmission rates R1 = R1,C1 +R1,C2 +R1,P and R2 =
R2,C1+R2,C2+R2,P to observe that the R-HK-NOF achieves
all the rates (R1, R2) ∈ C, when R1,R = R2,R = 0.

The following lemma shows than when both transmitter-
receiver links use the R-HK-NOF scheme and one of them
unilaterally changes its coding scheme, it obtains a rate
improvement that can be upper bounded.

Lemma 4: Let η > 0 be fixed and let the rate tuple
R = (R1,C − η

6 , R1,R − η
6 , R1,P − η

6 , R2,C − η
6 , R2,R −

η
6 , R2,P − η

6 ) be achievable with the R-HK-NOF such that
R1 = R1,P +R1,C − 1

3η and R2 = R2,P +R2,C − 1
3η. Then,

any unilateral deviation of transmitter-receiver pair i by using
any other coding scheme leads to a transmission rate R′i that
satisfies R′i 6 max (−→n ii, nij)− (Rj,C +Rj,R) + 2

3η.
Proof: The proof of Lemma 4 is presented in [7].

Lemma 4 reveals the relevance of the random symbols Ω1

and Ω2 used by the R-HK-NOF. Even though the random
symbols used by transmitter j do not increase the effective
transmission rate of transmitter-receiver pair j, they strongly
limit the rate improvement transmitter-receiver pair i can
obtain by deviating from the R-HK-NOF coding scheme. This
observation can be used to show that the R-HK-NOF can be
an η-NE, when both R1,R and R2,R are properly chosen. The
following lemma formalizes this intuition.

Lemma 5: Let η > 0 be fixed and let the rate tuple R =
(R1,C− η

6 , R1,R− η
6 , R1,P − η

6 , R2,C− η
6 , R2,R− η

6 , R2,P − η
6 )

be achieved by using the R-HK-NOF, with

Ri,C +Ri,P +Rj,C +Rj,R=max(−→n ii, nij) +
2

3
η, (17)

for all i ∈ {1, 2}. Then, the rate pair (R1, R2), with Ri =
Ri,C +Ri,P − 1

3η is achievable at an η-Nash equilibrium.
Proof: The proof of Lemma 5 is presented in [7].

The following lemma shows that all the rate pairs
(R1, R2) ∈ C ∩ Bη are achievable by the R-HK-NOF coding
scheme at an η-NE, for all η > 0.

Lemma 6: Let η > 0 be fixed. Then, for all rate pairs
(R1, R2) ∈ C ∩ Bη , there always exists at least one η-NE
transmit-receive configuration pair (s∗1, s

∗
2) ∈ A1 ×A2, such

that u1(s∗1, s
∗
2) = R1 and u2(s∗1, s

∗
2) = R2.

Proof: The proof of Lemma 6 is presented in [7].
This proof consists of showing that the set of inequalities

in (15) and (17) leads to a set of rate pairs identical to C ∩Bη .
This concludes the proof of Theorem 1.

V. CONCLUSIONS

In this paper, the η-NE region of the D-LD-IC-NOF has
been characterized for all η > 0. This region contains the η-
NE region without feedback studied in [8] and is contained
within the η-NE region with perfect channel-output feedback
studied in [9].
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