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Abstract

We study the problem of identifying the causal relationship between two discrete random
variables from observational data. We recently proposed a novel framework called entropic
causality that works in a very general functional model but makes the assumption that the
unobserved exogenous variable has small entropy in the true causal direction.

This framework requires the solution of a minimum entropy coupling problem: Given marginal
distributions of m discrete random variables, each on n states, find the joint distribution with
minimum entropy, that respects the given marginals. This corresponds to minimizing a con-
cave function of n" variables over a convex polytope defined by nm linear constraints, called
a transportation polytope. Unfortunately, it was recently shown that this minimum entropy
coupling problem is NP-hard, even for 2 variables with n states. Even representing points (joint
distributions) over this space can require exponential complexity (in n,m) if done naively.

In our recent work we introduced an efficient greedy algorithm to find an approximate solu-
tion for this problem. In this paper we analyze this algorithm and establish two results: that
our algorithm always finds a local minimum and also is within an additive approximation error
from the unknown global optimum.

1 Introduction

Causality is of interest to statisticians, philosophers, engineers and medical scientists [II [7], [I§].
Understanding the causal relations between observable parameters is important in analyzing the
workings of a system, as well as predicting how it will behave after a policy change. Causality has
been studied under several frameworks including potential outcomes [19] and structural equation
modeling [I5]. In this paper we rely on structure equation models and data-driven causality using
information theory.

The use of information theoretic tools for causal discovery is recently gaining increasing atten-
tion through various approaches: For example, Janzing et al. [9] propose an information geometry
approach that relies on a cause and mechanism independence assumption. Another line of work
focuses on time-series data and uses Granger causality and directed information [6, Bl 17, 12]. In
this paper we also use information measures but rely on a different framework that we recently

proposed [I1].
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Our framework, called entropic causality [IT] is data-driven, i.e., it can estimate causal directions
between two discrete random variables without interventions. Our approach uses Rényi entropy as
a complexity measure and considers the simpler model more likely to be the true causal direction.
In [T1] we showed that finding the simplest causal model that explains an observed joint distribution
requires solving a minimum entropy coupling problem: Given marginal distributions of m discrete
random variables, each on n states, find the joint distribution with minimum entropy, that respects
the given marginals. This corresponds to minimizing a concave function of n" variables over a
convex polytope defined by nm linear constraints, called a transportation polytope [3].

The minimum entropy coupling problem between two variables was shown to be NP-hard in [13].
In [IT], we proposed a greedy algorithm for the minimum entropy coupling problem and showed
that for two variables, it always finds a local optimum. The proof used a characterization of the
KKT conditions of the corresponding optimization problem and a characterization of the algorithm
output when there are two variables. However, this characterization cannot be used when there are
more variables.

In this work, we extend the result in [ITI]: We develop a new characterization of the algorithm
output for any number of variables. This characterization allows us to conclude that the algorithm
output satisfies the KKT conditions irrespective of the number of variables, which implies that the
algorithm returns a local optimum. Moreover, we show an additive approximation guarantee with
respect to the global optimum.

In Section Bl we provide a very short overview of the causal inference literature. In Section [,
we summarize the results of [I1] and explain how minimum entropy coupling arises in the entropic
causal inference framework. In Section M we identify the conditions necessary for a solution to be
a local optimum and show that our algorithm’s output always satisfies these conditions by deriving
a new characterization. In Section Bl we develop our approximation guarantee for a variant of this
algorithm, which is easier to analyze.

2 Related Work

Causal relationships between random variables can be represented by causal directed graphical
models [I5, 22]. Pearl’s framework led to a complete graph theoretic characterization of which
parts of a causal graph are learnable using statistical tests. Efficient algorithms were developed for
this learning task by Spirtes et al. [22]. Unfortunately, a general causal graph cannot be uniquely
identified from data samples.

A complete solution to the causal graph identification problem requires experiments, also called
interventions. An intervention forces the value of a variable without affecting the other system
variables. This removes the effect of its causes, effectively creating a new causal graph. These
changes in the causal graph create a post-interventional distribution among variables, which can
be used to learn additional causal relations in the original graph. The procedure can be applied
repeatedly to fully identify any causal graph [20]. There is significant progress recently on how to
efficiently perform experiments [4, 20], even under constraints [I0]. Unfortunately, in many cases it
is very difficult (or even impossible) to perform experiments and we are only given a static dataset.

When performing experiments is not an option, to identify the causal relations between the
variables we need additional assumptions on the data generating process. The most widely employed
assumption is the additive noise assumption, which asserts that the unobserved variables affect the
observable variables additively. Under this assumption, authors in [8] showed that, except for a
measure zero parameter set, one can identify the true causal direction between two variables, as long
as the relation is non-linear. A similar result is known when the noise is non-Gaussian, irrespective



of the relation between the variables [2I]. These approaches inherently assume continuous variables
and additive noise. Other works consider discrete variables with the additive noise [16], or continuous
variables without the additive noise assumption [14].

Another approach is to exploit the postulate that the cause and mechanism are in general
independently assigned by nature. The notion of independence here is captured by assigning maps, or
conditional distributions to random variables to argue about independence of cause and mechanism.
In this direction an information-geometry based approach is suggested [9]. Independence of cause
and mechanism is captured by treating the log-slope of the function as a random variable, and
assuming that it is independent from the cause. In the case of a deterministic relation Y = f(X),
there are theoretical guarantees on identifiability. However, this assumption is restrictive for real
data.

In [I1], we introduced the entropic causality framework. Our framework does not assume addi-
tive noise and uses probability distributions as opposed to variable values. Thus, it can naturally
handle both categorical as well as ordinal variables. The central postulate is that in the true di-
rection, the Rényi entropy of the exogenous variable is small. The central theoretical result of [11]
is identifiability for zero order Reényi entropy (i.e., support of distribution): If the cardinality of
the exogenous variable is small in the true direction, then there does not exist any causal model
where the cardinality of the exogenous variable in the reverse direction is also small, under mild
assumptions. We conjecture that a similar identifiability result is true for Rényi entropy of order
1, i.e., Shannon entropy, and numerical simulations seem to verify it. Furthermore, we showed that
the corresponding causality test can match or outperform the previous state of the art in causal
identification benchmarks in real and synthetic datasets [I1].

In very recent parallel work, Cicalese et al. [2] proposed a more involved greedy algorithm for
the minimum entropy coupling problem and showed a very strong 1-bit approximation guarantee
for it. The proposed algorithm only applies for two variables. Two variable algorithms for minimum
entropy coupling can only be used for entropic causality if one of the two variables takes only two-
values. Therefore, it would be very interesting if it can be extended for multiple variables, especially
if similar strong approximation guarantees are true.

3 Background

3.1 Notation

We use uppercase letters (X) for random variables, lowercase letters for their realizations and
constants (z, i, ), lowercase bold letters for column vectors (p), uppercase bold letters for matrices
and tensors (G). We represent the set {1,2,...,n} by [n], whereas [a,b] indicates the continuous
interval from a to b as usual. Vectors and sets with indices are simply represented through subscripts
as follows: [7;];c|, represents the column vector [z, 2, . .. ,z,]T and {ui}iepm) represents the set
{uy,ug,...,um}. X ~ px means the random variable X is distributed with the probability mass
function py, i.e., Pr(X = i) = px(i). 1L stands for the statistical independence between random
variables. The Shannon entropy H([p;];) = —)_, pilog(p;) naturally extends to matrices (and
tensors) as H([rilij) = —>_; ;7i,j10g(r;;), where log(.) stands for the logarithm base 2.

3.2 Causal Model

In this section, we introduce Pearl’s causal model for two variables and no unobserved common
causes. Causal models are powerful because they can answer hypothetical questions involving
experiments. An experiment, called an intervention in this context, means forcing a set of random



variables to take certain values. This operation is captured by the do(.) operator of Pearl [15].
Thus, by definition, the causal model captures the knowledge of what will happen after performing
any intervention on the observed variables. Consider two variables X, Y. Suppose X causes Y. The
following are what this causal model entails: (i) There exists an exogenous (unobserved) random
variable £ 1l X and a map f such that Y = f(X,F). Let E ~ pg, X ~ px. (ii) An intervention
do(X = x) changes the data generating model and yields X = z,E ~ pg,Y = f(z,E). Thus,
an intervention on X does not change the distribution of £, but fixes the value of X. Hence the
distribution of Y is affected through these changes. However, an intervention on Y has a different
effect. (iil) do(Y = y) changes the model as follows: X ~ px, F ~ pg,Y = y. The important thing
to notice here is that intervening on Y makes it independent from X, whereas intervening on X
does not make it independent from YEl

The fact that a causal model can answer interventional queries is what makes it so powerful, but
also hard to learn from data. In general, given a joint distribution over X,Y one can find functions
fyg where Y = f(X,FE),E 1L X and X = g(Y, E),E 1L Y. This makes the problem of learning
the causal relation between X and Y unidentifiable in general. The objective of data driven causal
inference is to identify the assumptions on either the function f or the variable F, under which the
causal model can be learned.

3.3 The Entropic Causal Inference Framework

Entropic causal inference [I1] uses the number of random bits as a complexity measure and chooses
the simpler model as the true causal model. Suppose we observe the joint distribution of two
variables X,Y each with n states. Consider the problem of identifying the exogenous variable with
minimum Shannon entropy such that there is a causal model where X causes Y, that yields this
joint distribution. In [II], we established that this problem is equivalent to the minimum entropy
coupling problem between n variables each with n states.

Consider the variables X,Y with X,Y € [n]. Suppose X causes Y. Then Y = f(X, E), where
FE is an exogenous variable of cardinality m for some m independent from X, and f is some map
f :[n] x [m] — [n]. Let U; be a random variable that has the same distribution as the distribution
of X conditioned on Y =i: Pr(U; = j) = Pr(X = j|Y =1i). We have the following lemma:

Lemma 1. [11] Let X,Y be two variables with X,Y € [n]. Consider any causal model X =
g(Y,E),E 1L Y. Then H(E) > H*(Uy,...,Uy,), where H*(Uy,...,Uy,) is the minimum joint
entropy of variables {Uy,..., Uy} subject to the constraint that each U; has the same marginal
distribution as the conditional distribution of X given Y =i.
Moreover, there is an E 1LY with H(E) = H*(Uy,...,U,).

Proof. See the proof of Theorem 3 in the appendix of [I1]. O

Lemma [ puts the minimum entropy coupling problem at the center of the entropic causal
inference framework. If we could solve the minimum entropy coupling problem, we could identify
the exogenous variable with minimum entropy. If the identifiability result holds (Conjecture 1 in
[IT]), H(Y) + H(E) will be greater than H(X) + H(FE) if entropy of E is sufficiently small. Hence,
closely approximating the minimum entropy coupling is essential for an effective causal inference
algorithm using the entropic causal inference framework.

ITechnically, to talk about statistical independence, we need stochastic interventions: Consider do(X = U) which
forces X to take the same values as an independent random variable U.



3.4 Greedy Minimum Entropy Coupling Algorithm

Different from [II], we provide the version of the greedy minimum entropy coupling algorithm that
constructs the joint distribution tensor, rather than only the non-zero probability values, which is
more instructional for this paper. The greedy algorithm is given in Algorithm [II The marginal
distribution of variable 4 is shown by the column vector p;. Note that in practice, one would only
store the non-zero probability values output by the algorithm, rather than creating the extremely
sparse tensor P with n" entries.

Algorithm 1 Joint Entropy Minimization Algorithm

: Input: Marginal distributions of m variables each with n states {p1, P2, ..., Pm}-
Initialize the tensor P(iy,ia,...,i,) = 0,Vi; € [n],Vj € [n].
Initialize r = 1.
while r» > 0 do
({pPi}iem);7) = UpdateRoutine({p;};c[m], 7)
end while
return P.
UpdateRoutine({p1,p2, -, Pm},7)
Find i; := arg max, {p;(k)},Vj € [m].
Find v = min{pk(4;) } ren
. Assign P(i1,42,...,1,) = u.
: Update px(i;) + pk(i;) — u,Vk € [m].
: Update r =3, P1(k)
: return {p1,P2, .-, Pm},"

= = = = e
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At each iteration, the algorithm finds the largest probability mass in each marginal, and assigns
the minimum of these to the corresponding coordinate in the joint probability tensor. The moti-
vation is that, the large chunks of probability masses are not split into smaller chunks, making as
small contribution as possible to the total entropy. The algorithm satisfies at least one marginal
constraint at each step, and m of them in the last step. Thus it terminates in at most nm —m + 1
steps.

4 Greedy Algorithm Gives Local Optimum

In this section, we present our main theorem and show that the greedy algorithm always finds a
local optimum. We consider n variables each with n states. The extension of the analysis to m
variables each with n states is trivial. Let us first formalize the entropy minimization problem:

Definition 1 (Minimum Entropy Coupling). Let U;,i € [n] be discrete random variables with n
states, with marginal distributions p; € [0,1]". The minimum entropy coupling problem is to find
the joint distribution with minimum entropy that is consistent with the given marginals:

min H(Uy,Us,...,U,)
p(U17U27~~~7Un)
s. t. Z Z pur, ug, ... up) = pi(ui), Vi, u;. (1)
J#1 uj€ln)

We can equivalently write down this optimization problem by representing the joint probability
value for each configuration as a different variable. This representation has n™ variables and n?
constraints (n marginals and n points for each marginal). Let x(iy,d2,...,4,) be a variable for



every n-tuple (iy,i2,...,i,) € [n]". Notice that the index for jth dimension, i.e., i;, captures the
realization of variable U;. Then the optimization problem can be written as follows:

min S —a(ivia, .. in)loga(in, iz, .. i)
xr
ij€[n],Vi€n]
s. t. Z x(i1, 12, -, in) = p1(4), V7,1 € [n]
i €[n],Yk#Li=]
x(il,ig,...,in) ZO,V(il,ig,...,in) € [n]” (2)
In (@), we dropped the constraint » Ji x(i1,42...,i,) = 1. Total sum is equivalent to first marginal-

izing out dimensions 1 to n — 1, and then marginalizing out dimension n. If marginalizing out the
first n—1 dimensions gives py, which is already captured as a separate equality constraint, summing
across this dimension gives 1 since p, sums to 1.

In this section, we show the following theorem:

Theorem 1. Algorithm[dl finds a local optimum point of the optimization problem in (3).

4.1 KKT Conditions

First, we characterize the points that satisfy the KK'T conditions. We have the following lemma:

Lemma 2. Consider the optimization problem in (3). Let x*(iy,i2,...,1n),%; € [n],j € [n] be a
point that satisfies the KKT conditions. Then there are n vectors uy, k € [n] each of length n such
that either x*(i1,12,...,1,) =0, or

log 2% (i1, 49, ... ,ip) + 1= Zke[n} ugc (i) (3)
Proof. Consider the following general optimization problem:
min  fo(z)
s. t. hi(z) =0,i € [p] (4)
fi(x) <0,i € [m],
Lagrangian becomes
m p
L(w, A\ v) = folx) + > Nifi(x) + D vihi(x), (5)
i=1 i=1
which gives the KKT conditions
fi(z®) < 0,i € [m]
Ap 2 0,i € [m]
Ai fi(x™) = 0,i € [m]
VL(z",\*,v*) =0
This implies, for fixed 4, either f;(2*) = 0 or A} = 0. Matching the constraints in (2)) to the functions
in @), we identify f(i,42,...,%,) and hy; as follows:
f(il,ig, . ,in) = —x(il,ig, R ,in),V(il,iQ, R ,in) S [n]"

hig= Y. @it in) — pi(j), VI € [n],j € [n]
in€[n|Vk£l,i;=j



The Lagrangian of (2]) can be written as follows:

L(z,\,v) = Z —x(i1,l2, ..., in) log z(iy, 2, ..., ip)
ij€[n],Vji€ln]

= " Ainyiz, . in)a(in, i, . i)
(41,82;-.s0n) E[n]"

+ Y w QO wlinsis, o in) = pi()), (6)

jE€n],len] ik €[n|VE#L,

u=j
for the dual parameters A(iy, 42, ...,%,) and vy ;. The gradient being zero gives us the following:
oL
=—1 1,02, ,0pn) — 1
817(7:1,7:2,...,7:”) ng(Z17Z27 7ZTL)
—)\(il,ig,...,in)-i-z Vl,il:()
l€[n]
oL o, it A(ig,...,1,) =0
8)\(2‘1,2‘2, . ,in) - —a:(z'l, v ,in), if )\(il, . ,in) 75 0
The conditions above imply the following for the optimal point z*: Either x*(iy,i2,...,i,) =0
or if x*(iy,i9,...,1,) # 0 it satisfies
2 (it i,y i) = 27 2kelnl Ve (7)
Thus, for n vectors uy == vy, k € [n] of length n, we have log z*(iq,i2,...,1,) + 1 = Eke[n} ug (ix).

By Lemma [2] the optimal point satisfies the following: Each nonzero joint probability can be
written as a product of the corresponding entries of n vectors {Vk}ke[n} of length n. Inspired by the
definition of independence, we will term such joint distributions as quasi-independent:

Definition 2. A joint distribution p(Xy, Xa,...,Xm) for X; € [n] is called quasi-independent,
if there are m wvectors wj,j € [m] such that either p(ii,iz,...,im) = 0 or p(i1,i2,...,0m) =
[T epm) wi(is), Vij € [n],j € [m].

4.2 Characterization of Greedy Algorithm Output

Consider Algorithm [l It selects the minimum of maximum probability values across each marginal
at each step, subtracts this probability mass from the corresponding coordinates in each marginal

and iterates. Next, we show that one can always construct uy vectors that satisfy log (i1, i2, . . . , in )+
1= Zke[n} uy (i), where x (i1, 12, ...,1iy,) is the probability mass assigned to point (i1, s,...,4,) by
the algorithm. o ‘

Let the algorithm select a probability mass for the point S; = (iJ,4),...,4,) at iteration

j. x(S;) > 0. Let a; = logx(S;) + 1 after this assignment. Define the column vector u :=
LS PRI W i {ui}igpn) are length-n vectors to be decided. We will show that, given the assign-
ments made by the algorithm, one can always construct a u such that (3] holds.

Observe that each iteration of the algorithm corresponds to a linear equation in u. Note that

u has length n? and at iteration j, u should satisfy the constraint ]lgju = aj, where ]lgj is the

indicator vector that is 1 in the columns from S; and zero otherwise: If §; = (z{,zé, e ,i%), then



1s;(k) = 1,Vk € &, where §; = {il + (t — 1)n}yem)- We know that the algorithm terminates in at
most n(n — 1) + 1 steps. Thus, we have m < n(n — 1) + 1 linear equations and n? variables. This
corresponds to a system of linear equations Gu = a, where G(j,:) = ]lgj and a = [a;];c)m) 18 a
column vector.

We have the following key observation: At each iteration step, the algorithm satisfies at least
one of the marginal constraints, since it chooses the minimum of maximum probabilities. Thus, if
at iteration j the algorithm select the set of the coordinates (z{,z%, .. ,z‘%), then for some k € [n]
algorithm never selects the coordinate zi again, since the corresponding marginal constraint is
already satisfied. In terms of the matrix G, this translates to the following statement: Fvery row j
of G contains a column k € & where G(l, k) = 0,Vl > j. Thus, every row of G has a column where
that row contains the last 1 in that column. We have the following lemma:

Lemma 3. Let G be a 0,1 matriz where no row is identically zero. If for every row j, of all the
columns with value 1, there exists a column k such that G(l,k) = 0,Yl > j, then the rows of G are
linearly independent.

Proof. Assume otherwise. Then there exists a set of rows S and coefficients «; > 0 such that
> jesjG(j,:) = 0. Let | = min{i : 4 € S}. By definition, " row of G has a column k with
G(t,k) = 0,Vt > [. Thus, this column cannot be made 0 using a linear combination of rows with a
larger index, which contradicts with Zjes a;G(j,:) = 0. O

By Lemma (@), the rows of G are linearly independent. This is also true for the augmented
matrix of the system Gu = a. Hence, the assignments are consistent and there is at least one
solution to the linear system Gu = a.

Proof of Theorem [ Consider the joint distribution output by the greedy algorithm. From the
above discussion, the assignments to the joint distribution by the greedy entropy minimization
algorithm can always be used to create n vectors, such that the points where the joint is non-zero
can be written as the product of the corresponding coordinates of these n vectors. Thus, the greedy
algorithm outputs a point which is quasi-independent, and satisfies the KKT conditions of the
minimum entropy coupling problem. Hence, this is a stationary point. Since entropy is a concave
function, there are no saddle points. Thus, greedy algorithm outputs a local optimum. O

5 Approximation Guarantee

In this section, we analyze a variant of the greedy algorithm, Algorithm 2] which is easier to develop
an approximation guarantee for. Different from Algorithm [ Algorithm [2] looks at each value of
every given marginal exactly once during Phase I. This allows us to relate the entropy contribution
of Phase I to a lower bound to the optimum entropy.

Consider two random variables X7, Xo. We use 1, o to represent the marginal distributions of
X1 and Xs after sorting their probabilities in decreasing order. We can extend the entropy function
to operate on vectors which do not necessarily sum to 1. To make the distinction from entropy, we
use h(.) for this operatmﬁ.

Theorem 2. Let X1, Xa be two discrete random wvariables with n states and p1 = [p1(i)lien),
p2 = [p2(9)]icm) be their marginal distribution vectors sorted in decreasing order. Let py,(i) =

2R(.) is often used for the differential entropy operator. Since we do not use differential entropy in this paper, we
believe this is not a source of confusion.



Algorithm 2 Joint Entropy Minimization - Alternative

Input: Marginal distributions {p1, p2, .., Pm}-
Initialize the tensor P (i1, i2,...,im) = 0,Vi; € [n],Vj € [m].
Initialize empty sets S; = 0,V € [m].
Phase I
for 1 <t<ndo
Find 7} = argmax,¢ (s, {Pj(k)}, Vi € [n].
Find pin (t) = min{pi(i%) }rem)-
Assign P(il, b, ..., it) = pmin(t).
Update pk(i5) = P (i5) — pmin(t)-
Update Sj «— Sj U {’L;}
: end for
: Initialize 7 = >, ., P1(k)
: Phase II
: while » > 0 do
({i} e 7) = UpdateRoutine({ps}icpm,
: end while
: return P.

el e el el
N U A WY RO

min{p;(7),p2(7)}. Let U be the joint distribution output by the greedy algorithm, and H*(X1, X2)
the minimum joint entropy of all joints that respect the marginals. Then

H(U) < H*(X1,X3)+1—Tlog(1/T) +min{h(ly), h(l2)},

where 1 = [p;(i) — pm(i)]icpn) for j € {1,2}, and T'= 0.5}, 1,n[p1(2) — p2(2)] is the total variation
distance between the sorted marginals of X1 and Xo.

Proof. Define p, (i) = min{p (i), p2(i)}. In Phase I, algorithm chooses p,, (i) for i € [n]. Consider

H, = H(pm(l)’pl(l) _pm(l)vpm(2)’p1(2) _pm(2)y
s Pm(n), p1(n) = pm(n)). (8)

H, is the entropy of the distribution which is obtained by splitting p; (i) into py, (i) and p1 (i) — pp, (7).
Since each probability value is divided into at most 2 probability values,

H, < H(Xy) + 1. 9)
Similarly, we can write

Hy = H(pm(l)’p2(1) _pm(l)vpm(2)’p2(2) _pm(2)y
- Pm(n),p2(n) = pm(n)) < H(X2) + 1. (10)

Then in Phase I, algorithm creates an entropy contribution Hpp1 = h(pp (1), pm(2), ..., pm(n)) =
— 2 icn) Pm (1) 10g(pm (7). Based on the definitions of Iy, I

H, = Hppy + h(ly), Hy = Hpp1 + h(l2). (11)
Let a € {0,1}. Combining with (@) and (), we get
Hppi + ah(ly) + (1 — a)h(ly) < aH(X7) + (1 — a)H(X2) + 1.

To bound the contribution of the second phase, we use an "independence" bound. The following
lemma is useful:



Lemma 4. Consider the vectors p = [Dilicin], 4 = [@i]icpn) where pi,qi >0 and Y ;pi =3 ;¢ =T.
Let h(p) = =, pilog(p;). Let R(i,j) = r;j fori € [n],j € [n] be a matriz with row sum equal
to p and column sum equal to q, i.e., Zje[n] ri; = pi and Zie[n} ri; = q;,Vi,j € [n]. Then
h(R) < T'log(T) + h(p) + h(q).

Moreover, when R is the outer product of p/\/T and q/\/T, the equality holds.

Proof. Define the random variables U and V as the variables with marginal distributions p/T" and
q/T, respectively. Let S(i,j) = [si i jem) be the joint distribution matrix for U,V that respects
the marginals p/T" and q/7T. Since H(U,V) < H(U) + H(V), we have

- E - 5 (8)e(3) - £ (4] s(%)

i,j€[n] i€[n] J€Eln]

sz log(ps) + sz log(T Z g;log(q;) + Z g log(T
1

=7 (h(p) + h(a) + 2T 10g(T) )

Define R(i,j) = 7 ; where r; j = T's; ;. Notice that row sum of R is p and column sum of R is q.
Then we have,

Z ri ;log(ri ;) Z T's; jlog(T's; ;)

7.7

- Z sijlog(si;) | — Tlog(T)

—7 (% <h(p) +h(q) + 2T log(T)>> — Tlog(T)
= h(p) + h(q) + T'log(T’)
. Then we have,

=5 () e (22

Y}

( szqglogpz — > pigjlog(g;) + T log(T ))

7.7

(Th(p) + Th(q) + T? log(T)> = h(p) + h(q) + Tlog(T).

Suppose R(i,j) = 22

1
T
O]

Following Lemma [l the maximum contribution of the second phase to the entropy is obtained
when we place the scaled outer product of the remaining probability values on the joint probability
matrix. The remaining probabilities after phase 1 are [y and Iy for X; and Xs. The remaining
probability mass is the total variation distance, i.e., Y . 11(i) = >, l2(i) = T". Thus, in Phase II, [
and [y contributes the entropy of Hppo < T'logT + h(ly) + h(l3). Finally, we can write

H(U) = Hpp1 + Hppa < Hppy + T'log T + h(ly) + h(l2)
<aH(X1)+ (1 —-a)H(X2)+1+TlogT + (1 — a)h(lh) + ah(ly)
< H*(X1, Xs) + 1 — Tlog(1/T) + min{h(i1), h(is)}. (12)



(I2) is obtained by selecting av = 1 if h(ly) > h(lg) and a = 0 if h(l;) < h(l2), and through the
bound H*(X;, X9) > max(H (X1), H(X2)) > aH(X1) + (1 — o) H(X?2). O

Consider the bound given in Theorem 21 1 — T'log(1/T) is a constant less than 1. However,
the term min{h(ly),h(l2)} can scale with log(n) depending on the difference between the sorted
marginals. In Section ] we give an example where min{h(l1),h(l2)} = O(log(n)). Interestingly,
for the same example we can show that the greedy algorithm output is at most 1 bit away from the
global optimum. Thus, it may be possible to identify a tighter bound.

We can extend the analysis to the case of m variables instead of only 2. We then have the
following theorem:

Theorem 3. Let {X;}icm) be m random variables each with n states and p; = [pi(j)]jefn), Vi € [m]
be their marginal distribution vectors sorted in decreasing order. Let ppmin(j) = min{p;(j),i € [m]}.

Let U be the joint distribution output by Algorithm[Q and H*(X1, ..., Xy,) the global optimum. Then

H(U) < H (X1, Xa, ..., Xp) + 1 — (m — 1)Tlog(1/T)
+ 2 h(l) = max{h(l)}, (13)

where 1; = [pi(7) = Pin (Vi) for i € ], and T = ¥,y (p1(0) = pmini)

Proof. Define pyin (i) = min;j{p;(i),j € [m]}. In Phase 1, the algorithm chooses pyn (i) for i € [n].
Consider for all j € [m]

Haj = H(pmin(l)ypj(l) _pmin(l)ypmin(2)apj(2) _pmin(2)7
. 7pmin(n)7pj(n) - pmin(n))- (14)

H,; is the entropy of the distribution which is obtained by splitting p;(i) into pmin (i) and p;(i) —
Pmin (7). Since each probability value is divided into at most 2 probability values,

H,, < H(X;)+1. (15)

In Phase I, algorithm creates an entropy contribution Hpp1 = h(pmin(1), Dmin(2),s - -+ s Pmin(n)) =

- Zie[n] Pmin (1) 10g(Pmin (7). Define I; = [pj(1) = pmin(1),05(2) — pmin(2), - - -, pj(n) — Pmin(n)] for
all j € [m]. Then we have

Haj = Hpp1 + h(l]),V] € [m] (16)
Let a; € [0,1] and }; o; = 1. Combining with (I5), we get

Hppi+ Y azh(l) <) o H(X,
J

J

To bound the contribution of the second phase, we use an "independence" bound similar to the
one in the proof of Theorem 2l We need the following lemma:

Lemma 5. Consider the vectors pi = [pi(j)]jepn) i € [m] where pi(j) > 0,Vi € [m],j € [n] and
Z pi(4) = T,Vi € [m]. Let h(p;) = —E pi(7)log(pi(7)). Let R = [Ti1,iz,...,im]z'je[n} be a tensor
that satisfies the following: 3=, cin vkatiiy=t Tivsizssim = PU(t), VL € [m],t € [n]. Then h(R) <
> iepm) MP1) + (m — 1)T log(T).

Moreover, when R is the outer product of Tl—,for all i € [m], the equality holds.

m




Proof. Define the random variables U; as the variables with marginal distributions p;/T for all
i € [n]. Let S(i1,i2,...,0m) = [Sh,iz,...,im]ije[n],v]'e[m} be the joint distribution temsor for U; that
respects the marginals p; /T and q; /7. Since H(Uy,Us,...,Uy,) < >, H(U;), we have

— Z S yigynnrim L0 (Siy igoonsim) < — Z <#> log <#)

i;€[n),j€[m] i,j€[n]

_ % <Z h(pi) + mT log(T)>

Define R(i1,42,...,0m) = Tiyig,....im Where 7, i, i = Ts; 4, 4. Notice that with this scaling,

m m*
marginalizing out every dimension in R except for dimension i gives p; vector. Then we have,
MR)=— Z Vit ize.oiim VOB (Tin i, i) = — g T'Siyig,..sim 108(T'Siy s iy )
11,82, y0m 1,3250eesim
=T | — Z Sitvigim 108(Sitia o im) | — T 1og(T)
11,825 50m

—7 <% (Z h(ps) + mTlog(T)>> — Tlog(T)

= Z h(p;) 4+ (m — 1)T log(T)

Suppose R(i1,i2,...,0im) = H:}fi(ij). Then we have,
I, ;i) I, p;(ij)
hR)=- <%> log <%)
i1yi,mrim
1

e (777 D2 hlpn) 4 (m = DT 0g(7)) = D7 h(pi) + (m — 1T log(7).

O

Following Lemma B the maximum contribution of the second phase to the entropy is obtained
when we place the scaled outer product of the remaining probability values on the joint probability
matrix. The remaining probabilities after Phase 1 are I; for X; for all ¢ € [m]. The remaining
probability mass is >, l;(i) = T,Vj € [m]. Thus, in Phase II, [;, j € [m] contributes the entropy of
Hppa < 32 h(l;) + (m —1)Tlog T Finally, we can write

H(U) = Hpp1 + Hppa < Hpp1 + Zh(lj) +(m—1)TlogT

J
<Y o H(X;) +1=> ajh(ly)+ Y h(l;) + (m —1)Tlog T (17)
J J J
< H*(X1,X2,..., Xm) + 1= (m — D)Tlog(1/T) + Y h(l;) - max h(l;). (18)
J

is obtained by selecting a; = 1 for j = arg maxy{h(l;)}, and through the bound
J
H* (X1, Xg,..., Xpn) = max(H (X1), H(X3), ..., H(Xm)) = > a;H(X;). (19)
J

O



5.1 A special family of distributions

Let X1 be uniformly distributed random variable over n states, i.e., p1(i) = 1/n,Vi € [n]. Let Xy
have the distribution zip with the following: po(i) = 2,Vi € [n/2] and po(i) = £2,Vi € {n/2 +
1,n/2+42,...,n}, where 1 < a < 2. One can check that ps sums to 1 with this parameterization.
We can calculate the entropies of X; and X, which yields H(X;) = log(n), H(X2) = log(n) —
5 log(a) — 2_T°‘ log(2 — ). Running Algorithm 2lon X; and X5, we have the following:

a—1 2 —«

H(U) =log(n) — log(aw — 1) —

log(2 — «)

o o 1

1 1
— H(X2) + 5 log(1+¢) + glog(l +3) (20)
< H(X2)+1< H'(X1,X2) + 1. (21)

where in ([20) we used the reparameterization o = € + 1 for 0 < € < 1. Since H(U) > H*(X1, X2),
algorithm outputs a joint distribution with entropy at most 1 bit away from the optimum. However,
we have h(l1) = h(ls) = %2 log =25. Thus, min{h(l1), h(l2)} = 25t log -2 yielding a gap of at
least O‘T_l log(n). In the light of this example, we believe that a tighter guarantee should be provable
for the given algorithm.
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