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Secret Key Agreement under
Discussion Rate Constraints

Chung Chan, Manuj Mukherjee, Navin Kashyap and QiaogiaauZho

Abstract—For the multiterminal secret key agreement prob- Z; Zy X Z3
lem, new single-letter lower bounds are obtained on the puid 1 Xa 9 — 3
discussion rate required to achieve any given secret key rat Xe

below the secrecy capacity. The results apply to general sme
model without helpers or wiretapper’s side information but can
be strengthened for hypergraphical sources. In particulay for the
pairwise independent network, the results give rise to a coplete
characterization of the maximum secret key rate achievable
under a constraint on the total discussion rate.

Fig. 1: The graphical representation of the PIN1j. Each
edge corresponds to an independent random variable oldserve
by the incident nodes.

|. INTRODUCTION lower bound was further single-letterized and simplifiecio
sily computable bound iri()], where the condition for the
ptimality of omniscience was also generalized from PINs to

hypergraphical sourcesl]], using the idea of decremental

We consider the multiterminal secret key agreement
public discussion in J] under the source model without

helpers or wiretapper’s side information. While the maximu " il for th bound 13
achievable secret key rate with unlimited public discussio>CCTet K€Yy agreement | 4 for the upper bound I ]Z
Unfortunately, the lower bound can be loose even for simple

called the secrecy capacity, was characterizedjrug§ing an P : | , d that the | bound failed
achieving scheme through the omniscience of the source, ”\IS twas aiso conjecturg t, at the Ower bound faile to
ve the condition for the optimality of omniscience for geal

was pointed out]] that the proposed scheme may not achieWd
the minimum public discussion rate, referred to as the com urces. . . .
By resolving the conjecture inl]], we discovered new

nication complexity. While a multi-letter characterizatiwas hni h . he | bound further. Al
derived in P] for the 2-user case, a computable single-lettetPC nlque_st at can improve the lower ooun urther. Algiou
characterization is a challenging open problem. thg tecr_mlques are also based on tr_le idea of MMI, they work
Simpler versions of the problem have been considereq};'te df_ferently Vcilompartlad ttr? thet'dia.Of Wytner l;:tor_nmon
such as the introduction of the vocality constraints @ [ information []. We apply these techniques 1o obtain an
outer bound on the region of achievable secret key rate and

5]. Using the result of §] with silent users and viewing ~. ) te tuoles. | tcular. for PIN del <

the secrecy capacity as the multivariate mutual infornnatiéjl'SCUSS'On rate tuples. in particutar, tor MOdES oesre
measure (MMI) ], these simpler problems can be resolvefur outer bound turns out to be an exact characterization.
completely [/]. Combining the idea of Wyner common infor-In contra_st with -the ratg region charactgrlzed m[for
mation and the MMI, a multi-letter lower bound on the com:V° terminals using the idea of two-way interactive source

munication complexity was derived ir8][ For the pairwise

independent network (PINY], the bound leads to a precis
single-letter condition in § under which the omniscience
strategy in [] achieves the communication complexity. Théj
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coding [L9], the result is the first instance of an exact and
easily computable characterization for the case with atlea
three terminals with unlimited number of rounds of intenset
iscussion. We also use the outer bound to characterize the
communication complexity, and more generally, the maximum
secret key rate achievable under any given total discusaten
referred to as the rate-constrained secrecy capacity.

II. MOTIVATION

We first motivate the idea of secret key agreement and the
main results informally using a simple example. Rgf, X,
andX. be uniformly random and independent bits, and define

Zl = Xa
Zy := (Xa, Xp, Xc) (2.1)
Zs:=( Xp,Xo).

Consider 3 users 1, 2 and 3 observidg, Z, and Zs
respectively in private. The private sour@® , Z», Z3) is called
a PIN [9, 16] in the sense that its statistical dependency can be
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described by a (multi-)graph as shown in Figwith the nodes

representing the userX, represented by an edge incident
on nodes 1 and 2, and;,, and X, represented by two edges

incident on nodes 2 and 3.

If user 2 reveald := X, ® X}, in public so that everyone

can observe it, then user 3 can recoXgrasF @ Xy,. K := X,

is called a secret key bit generated by the public discussi®
F becauseK is not only recoverable by all users but alsd"
uniformly random and independent of the public discussid

F. A general asymptotic secret key agreement protocol
interactive public discussion was formulated ifi,[where
the maximum achievable key rate, called Hezrecy capacity
and denoted by's, was characterized by a single-letter line
program. For the current example, it is easy to seedhat 1,
since user 1 observes at most 1 bit in private aihit of secret
key is achievable by the above discussion scheme.

A quantity of interest but not characterized ifi] [is the
smallest public discussion rate required to achieve theesgc
capacity, called theeommunication complexitand denoted
by Rg. For the current example?g < 1 because the abow
capacity-achieving discussidnis 1 bit. However, the precise
characterization oRq has been unknown even for the curre
simple example.

In this work, we introduce new techniques that not or
implies Rg = 1 for the current example but also characteriz
the maximum key rate under a total public discussion fate
0, called the rate-constrained secrecy capacity and dethgte
Cs(R). For the current example, it will follow that

Cs(R) = min{R,1}. (2.2)
Although it is easy to see thafg(0) > 0 and Cyq(R) = 1,
for R > 1, and thatCq(R) > min{R, 1} by time sharing,
proving the reverse inequality is non-trivial and calls faw
techniques not covered bg,[10]. Indeed, our techniques will
also imply that only user 2 needs to discuss in public, anc
a secret key rate ofx € [0, 1] is achievable by a discussio
rate tuple(ry,ro, r3) iff they belong to the region

X = {(TKv (7’1’7’2’7’3)) | Tk € [Oa 1]’

2.3
r1 > 0,79 > 1,73 > 0} 23)

This matches our intuition, since users 1 and 3 have indej
dent private observations, i.eZ; is independent o¥3, and
so only user 2 can help them share a non-trivial secret |
It turns out that the techniques apply to more general sot
model with private randomization and interactive discoiss
allowed as in {]. It also completely characteriz€s(R) for
the PIN model.

Ill. PROBLEM FORMULATION

We consider the multiterminal secret key agreemeit [

without helpers or wiretapper’s side information. It inves
a finite setV := [m] := {1,2,...,m} of m > 2 users. The

users have access to a private (discrete memoryless maiiltip

source denoted by the random vector
Zy := (Z;|i € V) ~ Pz, taking values from
Zy = Hiev Z;, assumed to be finite.

N.b., capital letters in sans serif font are used for random
riables and the corresponding capital letters in the lusua
ath italic font denote the alphabet sef%, denotes the
ﬂint distribution of Z;’s. The protocol can be divided into
H1ye following phases:

Private observatiorEach user € V' observes am-sequence
Z (Zir, Ziz, - -+, Zin)

i.i.d. generated from the sour@ for some block lengt.
Private randomizationEach useri € V generates a random
variableU; independent of the private source, i.e.,

H(Uy|Zyv) =Y H(U)).
eV
For convenience, we denote the entire private observation o
user: € V as

i = (Zult € [n]) =

(3.1)

Public discussion:Using a public authenticated noiseless
channel, each user € V broadcasts a message in round

Fir .= fu(Zi, Fir) where (3.3a)

IN:it = (F[i—l]ta F?/_l)v (3.3b)

t € [¢] for some positive integef number of roundsfF;_,;
consists of the previous messages broadcast in the samd roun
while Fﬁjl denotes the messages broadcast in the previous
rounds. Without loss of generality, we assume this intaract
discussion is conducted in the ascending order of usergndic
We also write

F;, .= Fi[g] = (Fit|t S [Z]) (3.3¢)
F:=Fy =(FlieV) (3.3d)

to denote the aggregate message from uses V and

the aggregation of the messages from all users respectively

Key generationA random variableK, called the secret key,
is required to satisfy the recoverability constraint that

lim Pr(3i € V,K # 6;(Z;,F)) =0, (3.4)
n—o0
for some functiord;, and the secrecy constraint that
1
lim — [log| K| — H(K|F)] =0, (3.5)
n—oo N

where K denotes the finite alphabet set of possible key values.
Definition 3.1 Given the private sourcgy,, a secret key rate
rk IS achievable by the public discussion rate tuple :=

1 1
| 7k < liminf — log| K| andr; > limsup — log|F;|, (3.6)
n—oo N n—oo N



in addition to @.4) and @.5). The set of achievablérk,ry) Proposition 3.2 (B, 1€]) For a PIN with weightc, there is a
is denoted byZ. The rate-constrained secrecy capacity secret key agreement scheme, calledttbe-packing protocol
defined forR > 0 as which achievegry,ry) € Z with

CS(R) = maX{TK | (TKa TV) €EZ, T(V) < R}7 (37) TK = Z 14 and r; := Z (de (i)—l)?’]j fori e V,(313a)

where, for convenience(B) := >, 7 for BC V. 0 JEK] JEK]
Proposition 3.1 Cs(R) is continuous, non-decreasing and'N€rék is a non-negative integer); € R.. is a non-negative
concave forR > 0. real number;7T; := (V,&;) is a spanning tree with edge set

E CV2\ {(i,4) | i € V} satisfying
PrROOF Continuity is because the liminf and limsup i8.6)

always exist, sinc€'s(R) is bounded within0, H(Zy)]. The Z n; <c(B) VB e2V\ {0}, (3.13b)
monotonicity is obvious, and concavity follows from the abku jElk]:BEE;
time sharing argument. n

_ o which is the constraint for fractional tree-packing]; and
The unconstrained secrecy capaciiefined and character-q;, (i) is the degree of nodé in 7. Furthermore, the un-

ized in [1] is the special case constrained secrecy capacity is the maximum over the
fractional tree packin LT) | e K]}
Coim i - packing{ (1. T}) | i € [K]} :
— 00

However, it was left as an open problem i#] whether the
= Gs(Rco) = H(Zy) — Reo above scheme achievé. We resolve this in the affirmative
where Rco is the smallest rate of communication for omni-by providing a matching converse.

science characterzied inl]] by the linear program
IV. MAIN RESULTS

Reo = min{r(V) [ r(B) =2 H(Z5|Zv\p), VB S V}. (3.9)  \ne will make use of the following alternative character-

It was also mentioned inl] that the unconstrained capacityization of the unconstrainted secrecy capacity I]{ For
can be attained by a possibly smaller discussion rate reeferthe no-helper cases = I(Zy) whereI(Zy) is called the

to as the communication Comp|exity multivariate mutual information (MM') defined as
Rg := min{r(V) | (Cs,7v) € %} (3.10) [Zv) = i Ip(Zv), with (4.1a)

Our goal is to characterize or bour@(R) and % using Ip(Zv) = Pl -1 {Zcep H(Zc) = H(Zv)|  (4.1b)
only single-letter expressions. We will also specialized an =D(Psy [ Tleep Pre)

strengthen the results to the hypergraphical source model:
o o ] . andII'(V) being the set of partitions oV into at least 2
Definition 3.2 (Definition 2.4 of [L1]) Zy is ahypergraphi- non_empty disjoint subsets df. The conditional versions

cal sourcew‘./r.t. a hypergrapi(V, E., &) with edge functions 1(Zy|W') and Ip(Zy |W') are defined in the same way but
§: E — 2\ {0} iff, for some independent (hyper)edg&yith the entropy terms conditioned o’ in addition. D(-|-)
variablesX. for ¢ € E with H(X.) > 0, is the Kullback—Leibler divergence, which is non-negatiued
L . . so arel andIp. It was pointed out inq] that the set of optimal
Zii= (X Je€Bicg(e)), forieV. (3.11) solutions form a lattice w.r.t. the partial ord®f = P iff

The weight functione : 2V \ {#} — R of a hypergraphical
source is defined as VC eP,3C" e P CC .

¢(B) := H(X. | e € E,£(e) = B) with support (3.12a) Eence, thire egistsfa ur(ljique finesr: op;tim;tl partiticl)n, dsphot
. v y P*(Zy) and referred to as the fundamental partition.
supp(e) = {B €2\ {0} [«(B) > O} (3.12b) FurtheEmore, both the MMI and the optimal partitions can
The PIN model §] such as 2.1) is an example, where thebe computed in strongly polynomial time w.r.t. the number of
corresponding hypergraph is the graph in Figwith weight evaluation of the entropies.
c({1,2}) = H(Xa) = 1, c({2,3}) = H(Xp,Xc) = 2 and0 |n the bivariate case whe¥i = {1,2}, the MMI reduces to
otherwise. Shannon’s mutual information

Definition 3.3 ([9]) Zy is a PIN iff it is hypergraphical w.r.t. — — _

a graph(V, E, £) with edge function¢ : E — V2 \ {(i,4) | [Zaay) = H& 1 22) = HTa) + H(Zo) = H(Z, 22),

i € V} (i.e., no self loops). o becausg{1},{2}} is the unique partition idl'({1,2}) (and

is therefore the fundamental partitigh* (Zy, oy)).

o We begin with some general lower bounds on the public
discussion rates:

For this special source model, there is a protocol i, [
Proof of Theorem 3.3] that achieves the unconstrained sgcr
capacity [L6, (15),(17)].



Theorem 4.1 For any (rg,rv) € %, we have Zy

1
r(VAB) =z (IP| = Dlrx — Ir(ZB)] (4.2)
N Xe Xa
for any B C V with size|B| > 1 and P € II'(B). o
PROOF See Appendi. - 3 — 2
Z3 ’ Zy

(4.2) is a lower bound on the total discussion ra{& \ B)
of the subseV \ B of users required to achieve a secret key Fig. 2: The triangle PIN defined in(6).
rate ofry, for any choice of subseé® of more than one user.
ChoosingP to be the fundamental partitigR*(Zg) in (4.2),
Ip(Zp) = I(Zp), which gives the following lower bound in The lower bound is achievable by PropositiGr?, hence

terms of the MMIL. completing the proof of4.59. -

Corollary 4.1 For any (rg,rv) € %, we have The current example has a weight functiomwith
r(V\B) > (IP*(Zp)l = Dk — 1(Zp)]  (4.3) supp(e) = {{1,2},{2,3}},

for any B C V with size|B| > 1. o which is a spanning tree with node degrees given by

Note thatl(Z) in (4.3) is the secrecy capacity when users in d(1) =d(3)=1 and d(2) =2,

V\B are rem_oved. Hence, t(_) achieve a secret key rate beyopd -, gives the lower bound4(4) and hence the region
I(Zp), users inV \ B must discuss.4.3) states that the total ;, (2.3). The capacity is the minimum edge weight, i.e.,
discussion rate of users In\ B is at least the additional secret

key ratery —I(Z ) amplified by a factor of P*(Zg)|—1 > 1. Cs = min {c({1,2}),c({2,3})} = min{1,2} = 1.
Applying (4.2) to the example in Sectioml with B =

(1,3}, P = {{1},{3}} (or simply @.3), we have Unfortunately, the lower boundi(2) can be loose for PIN

with cycles. E.g., consider a triangle PIN with:= [3] and

re > (2= g — 1(Z1 NZ3)] =1k (4.4) Zi=(Xay  Xo)
This is achievable as mentioned in Sectlomy time sharing Zy = (Xa, Xp ) (4.6)
between(TKa (7’1, T2, 7’3)) = (07 (Oa 07 O)) and (17 (Oa 17 O)) S Z3 = ( Xba Xc)

Z. SinceCy = I(Z{123y) < I(Z;12y NZ3) = 1 and is
achievable, we have2(3) as the achievable rate regioa.
More generally,

whereX,, X, X. are independent uniformly random bits. This
a PIN with correlation represented by a triangle in Eiglt
follows from (3.8), (3.9) and @.10 that
Theorem 4.2 For PIN with weight ¢ such that supp(c),
defined in(3.12), forms a spanning tree, we have Cs = Rco = 1.5 2 Rs.
% = {(ric,7v) | 7 € [0, C5], In particular, t.he sgcret k_ey rate af is achievable by the
v > (d(0) — 1) r,i €V}, where (4.52) scheme described in Section
= ’ ’ Applying (4.2) with B = {1,3} andP = {{1},{3}} as
Cs = min {c({4,j}) | {i,7} € supp(c)}, (4.5b) pefore,
and d(i) is the degree of nodein the spanning tree. o ro 2 rg —I(ZiNZ3) =g — 1.

PROOF Since the source model forms a Markov tree w.r.This is the best possible bound involving over all possible
the spannnig tree given byipp(c), the unconstrained secrecychoices of B and P, but it is trivial whenrg < 1. By

capacity ¢.5b) follows from [1, (36)]. symmetry, the best bounds feyr andrs are also trivial when
To prove ¢.59, consider any PIN with weight function 7k < 1.
such thatsupp(c) forms a spanning tree. For anye V, Nevertheless, we discovered a different bounding teclniqu

chooseB = V' \ {i} and letP be the connected component$hat can give a nonjtrivial bound in the above case, by ekploi
of the spanning tree after nodeand its incident edges areing the hypergraphical dependency structure of the source:

removed. It follows tha® < II'(B) with Theorem 4.3 For hypergraphical source, we havey,ry) €

|P|=d(i) and Ip(Zp)=0 Z only if
due to the fact thatupp(c) forms a spanning tree. Byi(l)  @(P)r(V) = [1 —a(P)]rx VP €II'(V), where (4.7a)
in Theorem4.2, we have w(P) = max.cp|{C € P|CNEeE) £ 0} — 1 4.7b)
ri 2 (|P| = 1) [rx — Ip(ZB)] P| -1

= (d(i) — 1) rk. and¢ is the edge function of the hypergraph(iB.11). o



N.b., it is easy to see that(P) € [0,1] because the maxi- unclear how one can generalize ) to more general sources
mization in the numerator of4(7b) is the maximum number that are possibly non-hypergraphical. Another intergstipen

of blocks inP that an edges € F can intersect, which is problem is to characteriz&Z for PINs with cycles, thereby
betweenl and|P|. If a(P) = 0 for someP € II'(V), then improving Theorem}.2 to allow for cycles.

(4.79 becomes ik <0, i.e., Cg = 0. This happens when no The bound in 4.7) can be loose for hypergraphical sources.
edge crosseP, i.e., the source corresponds to a disconnect@dtrivial example is wherd/ := [3] and

hypergraph. Z, = (X Xe)
PROOF See Appendix. n Zs = (Xa, Xp, Xe)
For the current example, choo%e= {{1}, {2}, {3}}. For Zs:=  (Xp,Xe).

each edge, ’{C € PICNE(e) # 0} simplifies to the number The numerator ofa(P) in (4.7 is 0 for any P, as the

of incident nodes, which is alwaysfor graphs. Hence, mininum is achieved by the hyperedgeincident on all
21 1 11 the nodes. Hencey(P) = 0 and so ¢.7) becomes trivial.
a(P)=3—7=5 andso (V)= — 2rg = k- However, with B = {1,3} andP = {{1},{3}}, (4.2) gives

2 ry > rg — 1, which is non-trivial forl < rx < 2 = C.
SinceCy = Rco = 1.5, the lower bound above is achievableye also conjecture thati(2) and ¢.7) are both loose for the

by time-sharing, which gives example wherd’ := [6] and

Cg(R) =min{R,1.5} and so Rg = 1.5. Z; = (Xa, o)
Surprisingly, the argument can be extended to any PIN for a Zy == (Xa, Xp )
complete characterization of the communication comp}east Z3 := (Xa, X, Xa)
well as the rate-constrained secrecy capacity. Zi=(  Xp,Xe,Xa)
Theorem 4.4 For PIN, Zy:=( Xp,Xo )

R Lg = Xe.

Cs(R) = min {7 CS} : (4.8) 0 ¢

Vi-2 We conjecture thatry,rv) € Z only if

which givesRg = (|V| — 2)Cs. o

PROOF The converse follows from4(739 with P = {{i}|i € o _ ) ]
V'}. More precisely, the minimization in the numerator ofhich is achievable using the idea of secret key agreement
a(P) is always equal t@ as it is the number of incident by network coding 11]. It can be shown that the best lower

r(V) > 1.5rk,

nodes of an edge. Hence, bound from ¢.2) and @.7) is »(V') > ri. Hence, we expect
] that resolving the conjecture in the affirmative potengidads
a(P) = V1 and so to new techniques for obtaining better lower bounds on the

public discussion rate required for secret key agreement.
r(V) = (VI =2)rx by (4.79.

The lower bound can be shown to be achievable by Proposi- P APP'_:‘I_ND'XA 4.1
tion 3.2 With (ri, ry) defined in 8.133, ROOF OF THEOREM 4.
k To prove Theoremi.1, we will first prove the mult-letter
r(V) = Z Z[dT (i) — 1n; version of the bound in terms d:
J
eV =1 Lemma A.1 For any B C V' with size|B| > 1,
k
= "n; > ldr, (i) — 1] = (V] - 2)r, H(Fy\p)—H(F|Zg) > (|P|—1)[IP(ZB|F) — In(Zp)| (A1)

j=1 eV

where the last equality follows from the fact thafor @nyP €Il'(B). o

Yiev dr; (1) = |&;| = |V| — 1 asT} is a spanning tree. m  ProoF Consider anyB C V such that|/B| > 1, and P €

, : .
V. EXTENSIONS AND CHALLENGES IT'(B) as stated in the lemma. Define

While thg lower bound4.2) can be_Ioose in the presence g, .— Ip(Zp|Fi) — IP(ZB|F§;1) for ¢ € [], (A.2)
of cycles, it can be shown to be tight for hypergraphical o _ _
sources that correspond to hypergraphs that are minimapere F, =0 determlmstlc_ally for notational convenience.
connected in the sense that removing any edge disconnectsfthen, we have the telescoping sum
hypergraphs. This generalizes the result of Theofenfrom ’
PINs to hypergraphical sources. Both lower bounég)(and o Zaf _ IP(ZB“:) _ IP(ZB),
(4.7) can also be extended to include helpers. However, it is P}



and so it suffices to show that Sincer:1 by = H(Fv\B) andeZ1 ¢ = H(Fy|Zp) by the
chain rule, the above inequality and.{) gives

¢
(IP| - 1) Z <rh.s. of @.1). (A.3) ¢
t=1 (1P| =1)> a < H(Fy\5) — H(Fv|Zp),
By the definition ¢.10) of Ip, t=1
S S which establishesA(.3) as desired. ™
. ZCGPH(ZC“:\/)_H(ZB“:\/) i . i i
ar = Pl 1 We now single-letterize A.1) to give the desired lower
~ _ - _ bound @.2) in Theorem4.1:
 Seep HZolFS ) — HZsIFLY) €2 | o
Pl =1 PROOF(THEOREM4.1) Consider anyB C V with size
_ 5 t—1 |B| > 1andP € II'(B) as stated in the theorem. L.h.s. 6£()
(PPl =1ar = I(Zp A FvelFy ) ® in LemmaA.1 can be bounded by the total discussion rate as
©) - (A.4) follows:
- ZI(ZC/\FVJFi;l)a .
ber H(Fy\p) — H(Fv|Zp) < H(Fy\p) < Y log|F|
where we have grouped the entropy terms in different bracket EVAB
into the mutual information terms in the last expressiontsgy t <n [T(V \ B) + 61(11)} (A.5)
definition of conditional mutual information. Using standa
techniques (cf. 18, Lemma B.1]), for someé,(ll) — 0 asn — 0 by (3.6). Next, we simplify first
@ Z Z R R term on the r.h.s. ofA.1) as follows:
@= I(Zc NFitlFit) - -
cePieV (Z |F) (a) ZCEP (ZC|F) _H(ZB“:)
(b) - Pl-1
> Z ZH(Fit|Fit) () | |~
CepieC > H(K|F) + Ip(Zp|F,K) — nd(?
© ©
=> i} > H i (FrlFi) >n(r — 6@ — 6() (A.6)
i€B CeP:ie
@ £ « Where (a) is by the definitiod.1b of Ip;
= H(Fi|F; : . . . .
; (FielFar) « (b) is obtained by applying the inequalities
®© _ 7 2) |P|-1 5
> ZH(FMF%/ Y Ficunse Fvse) H(Zc|F) + nd; - 2 H(K Zo|F) )
ieh = H(K[F) + H(Zc|F, K)

f _
QH(FBAF@ 17FV\Bt)

« where (a) follows from the chain rule and the defini-

for somes?) — 0, by (3.4) and Fano’s inequality, and

tion (3.3b) of Fy; H(Zp|F) < H(K, Zp|F)
« (b) is because = H(K|F) + H(Zp|F,K),
~ - = H(FitIIEit) if i € C by (3.39, and then grouping the entropy terms involvilg to form
I(Zc A Fit“:it) . I (Z |F K);
>0 otherwise PAEBIT TNy ~ _
« (c) is becauselp(Zp|F,K) > 0 by the positivity of
« (C) is obtained by interchanging sums; divergence in 4.10), and H(K|F) > n[rgx — 57(13)] for

« (d) is because the summand on r.h.s. of (c) is constant somes’® — 0 by (3.5).
w.r.t. ¢, and so the inner summation gives a multiplicativeinally, the last term on the r.h.s. ofA(l) can be single-

factor of 1. letterized as follows:
« (e) is obtained by3.3b and an additional conditioning ~ ~

on Fy\ g+, Which does not increase the entropy. Ip(Z )@ 2cepH(Zc) —H(Zp)
« (f) follows from the chain rule. Pl-1

Hence, © dcep 2oicc HUi) = > cp H(U))
_ _1 5 Pl -1
®-@ < [HFvlF) - HFvIF ", Zp)] S eepnH(Ze) — nH(Zp)
— [H(Fvi|F) — H(Fy\go|Fy )] Pl -1
= HFw\pilFi ) — H(FvlF ', Zp) O 1p(Z5) (A.7)

<be:=H(Fv\5:|F\'5) t « where (d) is by the definitiond(1h) of Ip;



« (e) is obtained by the expansion It follows that, if f is modular, the summation i(B.2g) is

. o 1
H(Zc) H(Uo,70) = ZH 4 nH(Ze) constant for all feasible: satisfying(B.2h). o
i€C The algorithm is illustrated in Fig3a, which is a plot ofws
H(ZB) HWUpg,Z%) ZH )+nH(Zp) againsts € S. In particular, the horizontal axis enumerates
i€B the elementsS in a descending order of their weighis as

desired by the greedy algorithm in StépThe set of first;
elements form the sef;, and thep*(S;) is the drop in height
from the j-th bar to the(j + 1)-th bar, with the exception that
(Sk) (or equivalentlyu*(.S)) is the height of the last bar.

by the definition 8.2) of Zy, the independence assump-
tion (3.1) and the fact that{, is i.i.d. generated from the
sourceZy;

« (f) is because the expression in the first pair of bracke/fLs
evaluates td) by exchanging the first two summation, The proof is by a lamination procedure that can turn any
and the expression in the second pair brackets evaluatdo p* gradually without increasing the sum iB.@a) or
to nlp(Zp). violating (B.2h):

Applying (A.5), (A.6) and @A.7) to (A.1) and dividing both
sides byn, we have the desired lower bounél) in the limit Lamination:For everyB,, B, € supp(u) such thatB; crosses

asn — oo. m B2 in the sense that
APPENDIX B {B1, B2} # {B1 N Bz, B1 U Ba},
PROOF OFTHEOREM4.3 reducey(B;) and ;u(B,) by & and increase.(B; N B,) and

To prove Theorem4.3, we will make use of Edmonds (B U Bs) by 4, where
greedy algorithm in combinatorial optimizatioi7. A set L
function f : 25 — R with a finite ground sef is said to be 0= min{p(Br), u(B2)} 2 0,
submodulariff for all By, B2 C S, where the non-negativity is by the assumption thds non-

negative. Doing so reduces ;¢ 1(S) f(S) by
f(B1) + f(Bz2) = f(B1NBz) + f(B1UBz).  (B.1) -
_ , , _ _ S[f(B1) + f(Bz2) — f(B1N Ba) — f(B1UBz)] >0,
f is said to besupermodularif —f is submodular. Iff is o ]
both submodular and supermodular, it is said tonedular Where the non-negativity is by the submodularity1) of f.

f is said to benormalizedif f(#) = 0. The entropy function

B — H(Zg) [19, for instance, is a well-known normalized The procedure turns the supportofo that of u*, namely
submodular functionZ0]. Edmonds’ greedy algorithm states{g; | 1 < j < k}, which forms a laminar family (or more
that: specifically, a chain).

Proposition B.1 ([17, Theorem 44.3]) For any normalized ,
submodular functionf : 25 — R with a finite ground set PROOF(THEOREM4.3) For anyP € II'(V), by (3.4) and

S, and any non-negative weight vectog := (w; | s € S) € Fano’s inequality,
Ri, consider the linear program
min > (B (B) B-22) 5. > 3 H(K|Ze,F)
= cepP
such thaty : 29 — Ry is a non-negative set function  _ Y H(Zc,F.K)— > H(Zc)- Y H(F|Zc) (B.4)
satisfying ceP cep CeP
> wB)=w, VseS. (B.2b) S pS >

BCS: seS

Then, the optimal solutiop* to the above problem is given

as follows: for somes,, — 0 asn — oo, where the last equality is by the
1) EnumerateS as {si, ..., sx} (with k& :=|S|) such that  chain rule expansion. We will bour@, @ and® to obtained
the desired lower bound!(7).
Ws,y > Zwsk-
® can be bounded by the usual technique (ci8, |
2) With S, :={s; |1 < j' <j} for1 <j <k, set

*

Sj) i=ws;, —ws,,, forl1<j<k (B.3a)

*(Sk) (S) = Wsy, (B-3b) 1This is because- f is submodular and so the samé defined in B.3)
. ) . both minimizes and maximizes the sum iB.Zg), the value of which must
and p*(B) = 0 otherwise, i.e., ifB # S, for 1 < j < k. therefore be a constant.



‘ 51 = {0}
Wsq wo = |P|
1 (S1) = |P| — wey
=+ Weq + - — -
" ii=|{s; |57 <3} w. [t = {0}y U {e;r |5 <5}
FI I e f— ej F-=-T- - -
J p*(S;) == Ws; — Ws ;44 . n (Sj+1):wej — Weyy g
Wsipq - —db o Vejq1 +-——|---4F--
’ T SEti={0}uE
s AT e T T e
S = Sivi+iEl41 55 I” (S1E(41) = weyp — 1
Wy F—==F- == === 1 f——=F=——FF——==FF——+ =
T [ (5) = e Jur(s) =1
s 1F se S ” F s @rl// > - s P se S
- T A S
v 4 X,
(a) p* in general B.3). (b) 1~ applied to the proof of§.10).
Fig. 3: lllustration of Edmonds’ greedy algorithm in LemrBal.
Lemma B.1)): with
4 Yo = (F,K) (B.6a)
a
®2 Z ZZ FulFir, Zc) Y, =U;, forieV (B.6b)
t=1ieV
p Ye =X fore e E. (B.6C)
(b) -
<> N H(Fit|Fir)

Note thatZc = (Uc,Z,.) = (Uc,X%,.), where the first
equality is by 8.2), and the second equality is by.(1).

¢
(ZC)ZZ Z H(Fi|Fir) Hence, we can rewrite) as the sum)_ g u(B)f(B) in
t=1icV CeP: igC (B.29) with
4
B):=H(Y for BCS.
(d) (IP| —1) ZZH zt|F1t f(B) (Yn) C
Py (B)__{l, B={0}UCUEqCeP
1P| - 1)H(F) (B.5) 0, otherwise
« where (a) follows from the chain rule expansion ORpen f is normalized and submodular as it is an entropy
F(3.3; function of Yg [20], and B.2b) holds with the non-negative
« (b) is because weights defined as
=0 if i € C by (3.39,
ilFit, Z = : =
( t| ! C) {< H( itlFit) Other\lee wo C;ESM(B)
« (C) is obtained by interchanging sums; Z ({0} UC U Eg) = [P, (B.7a)
e (d) is because the summand on r.h.s. of (c) is constant P
w.r.t. C, and so the inner summation gives a muItipIicative .
factor of |P| — 1. Z forieV
« (e) follows again from the chain rule expansion on
F (3.3 Z p({0}UCUED) =1 (B.7h)
Next, we will bound@® and @ using Edmonds’ greedy EPu
algorithm in PropositiorB.1. For notational simplicity, define  w, := Z w(B) forec FE
. . BCS:eeS
E;:={e|i€(e)} forieV -
= 0fUCUE
Ec =] E for C CV, cageEc #({0} c)
iecC =|{C eP|CnEe)# 0} (B.7¢)

which denote the collection of edges incident on nodeV
and nodes irC' C V' respectively. LetS = {0}UVUE, where As an example, for the triangle PIN( ;3 defined in
we assumd ¢ V U E without loss of generality. Defin®¥s  (4.6) and illustrated in Fig.2, and the partition? :=



{{1},{2}, {3}} into singletons, which is identical to B.10) except thatF, K) is removed from
every entropy term. We also have equality here becguise

wo = [P| =3 modularove/ U E' due to the fact tha¥, for s € VU E de-
wy =wp = w3 =1 fined in B.6b) and B.6¢) are mutually independent because
We = Wp = We = 2, of (3.1) and the independence of the edge variables. It follows
asw, in (B.7¢) reduces to the number of incident nodes dhat
edgee for singleton partition. O-@ = (IP| — we, ) H(F, K)
®
It follows that Q4P| = 1)[1 — (P)] H(F,K)
wo =Pl >we>1=w; Vee€EieV. Q1P| —1)[1 — a(P)] [H(F) + H(K) — nd.]
EnumerateE as{ey, ..., e g} such that for somed;, — 0 asn — oo, where
« (f) is because byR.8) and B.70),
Wey 2 Wey 2 717 2 Weypy: (B.8) wey 1= maxw, = max|{C € P | CNE(e) # 0}
Then, the desired ord(fering in Stépof the greedy algorithm = (|P| = Da(P)+1 by @.79.
in PropositionB.1 satisfies
P [Pl = we, = (1P| = 1) [1 - a(P)]
s1 = {0} (B.93a) « (g) is by the secrecy constrairi.p).
{s2,...815141} = {e1,-- - eim} (B.9b) Applying the above inequality and3(5) to (B.4) and simpli-
ing, we have
{sip142, - s1p 11V} =V (B.9c) NG we hav
and soy* defined in B.3) can be evaluated as shown in a(P)@ > [1 - «a(P)] {w —64 _ _n T
Fig. 3b, with possibly non-zero values at " " Pl -
S = {s1} = {0} which implies ¢.79 by (3.6) in the limit asn — oo. n
S ={0}U{ej |1<4 <4} for1<j<|E| ACKNOWLEDGMENT
Sy =8={0JUEUV. The authors would like to thank Dr. S. W. Ho for inspiring

. . discussion and helpful comments.
By Proposition B.1, we can lower bound@ with P
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