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Vector Approximate Message Passing
Sundeep Rangan, Fellow, IEEE, Philip Schniter, Fellow, IEEE, and Alyson K. Fletcher, Member, IEEE.

Abstract—The standard linear regression (SLR) problem is to
recover a vector x0 from noisy linear observations y = Ax0

+w.
The approximate message passing (AMP) algorithm proposed by
Donoho, Maleki, and Montanari is a computationally efficient
iterative approach to SLR that has a remarkable property: for
large i.i.d. sub-Gaussian matrices A, its per-iteration behavior is
rigorously characterized by a scalar state-evolution whose fixed
points, when unique, are Bayes optimal. The AMP algorithm,
however, is fragile in that even small deviations from the i.i.d.
sub-Gaussian model can cause the algorithm to diverge. This
paper considers a “vector AMP” (VAMP) algorithm and shows
that VAMP has a rigorous scalar state-evolution that holds under
a much broader class of large random matrices A: those that are
right-orthogonally invariant. After performing an initial singular
value decomposition (SVD) of A, the per-iteration complexity of
VAMP is similar to that of AMP. In addition, the fixed points of
VAMP’s state evolution are consistent with the replica prediction
of the minimum mean-squared error derived by Tulino, Caire,
Verdú, and Shamai. Numerical experiments are used to confirm
the effectiveness of VAMP and its consistency with state-evolution
predictions.

Index Terms—Belief propagation, message passing, inference
algorithms, random matrices, compressive sensing.

I. INTRODUCTION

Consider the problem of recovering a vector x0 ∈ R
N from

noisy linear measurements of the form

y = Ax0 +w ∈ R
M , (1)

where A is a known matrix and w is an unknown, unstructured

noise vector. In the statistics literature, this problem is known

as standard linear regression, and in the signal processing

literature this is known as solving a linear inverse problem, or

as compressive sensing when M ≪ N and x0 is sparse.

A. Problem Formulations

One approach to recovering x0 is regularized quadratic

loss minimization, where an estimate x̂ of x0 is computed

by solving an optimization problem of the form

x̂ = argmin
x∈RN

1

2
‖y −Ax‖22 + f(x). (2)
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Here, the penalty function or “regularization” f(x) is chosen

to promote a desired structure in x̂. For example, the choice

f(x) = λ‖x‖1 with λ > 0 promotes sparsity in x̂.

Another approach is through the Bayesian methodology.

Here, one presumes a prior density p(x) and likelihood

function p(y|x) and then aims to compute the posterior density

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x) dx (3)

or, in practice, a summary of it [1]. Example summaries

include the maximum a posteriori (MAP) estimate

x̂MAP = argmax
x

p(x|y), (4)

the minimum mean-squared error (MMSE) estimate

x̂MMSE = argmin
x̃

∫
‖x− x̃‖2p(x|y) dx = E[x|y], (5)

or the posterior marginal densities {p(xn|y)}Nn=1.

Note that, if the noise w is modeled as w ∼ N (0, γ−1
w I),

i.e., additive white Gaussian noise (AWGN) with some preci-

sion γw > 0, then the regularized quadratic loss minimization

problem (2) is equivalent to MAP estimation under the prior

p(x) ∝ exp[−γwf(x)], where ∝ denotes equality up to a

scaling that is independent of x. Thus we focus on MAP,

MMSE, and marginal posterior inference in the sequel.

B. Approximate Message Passing

Recently, the so-called approximate message passing

(AMP) algorithm [2], [3] was proposed as an iterative method

to recover x0 from measurements of the form (1). The AMP

iterations are specified in Algorithm 1. There,1 g1(·, γk) :
R

N → R
N is a denoising function parameterized by γk, and

〈g′
1(rk, γk)〉 is its divergence at rk. In particular, g′

1(rk, γk) ∈
R

N is the diagonal of the Jacobian,

g′
1(rk, γk) = diag

[
∂g1(rk, γk)

∂rk

]
, (6)

and 〈·〉 is the empirical averaging operation

〈u〉 := 1

N

N∑

n=1

un. (7)

When A is a large i.i.d. sub-Gaussian matrix, w ∼
N (0, γ−1

w0 I), and g1(·, γk) is separable, i.e.,

[g1(rk, γk)]n = g1(rkn, γk) ∀n, (8)

with identical Lipschitz components g1(·, γk) : R→ R, AMP

displays a remarkable behavior, which is that rk behaves like

1The subscript “1” in g1 is used promote notational consistency with Vector
AMP algorithm presented in the sequel.

http://arxiv.org/abs/1610.03082v2
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Algorithm 1 AMP

Require: Matrix A∈RM×N , measurement vector y, denoiser

g1(·, γk), and number of iterations Kit.

1: Set v−1 = 0 and select initial r0, γ0.

2: for k = 0, 1, . . . ,Kit do

3: x̂k = g1(rk, γk)
4: αk = 〈g′

1(rk, γk)〉
5: vk = y −Ax̂k + N

M αk−1vk−1

6: rk+1 = x̂k +ATvk

7: Select γk+1
8: end for

9: Return x̂Kit
.

a white-Gaussian-noise corrupted version of the true signal x0

[2]. That is,

rk = x0 +N (0, τkI), (9)

for some variance τk > 0. Moreover, the variance τk can be

predicted through the following state evolution (SE):

E(γk, τk) =
1

N
E

[∥∥g1

(
x0 +N (0, τkI), γk

)
− x0

∥∥2
]

(10a)

τk+1 = γ−1
w0 +

N

M
E(γk, τk), (10b)

where E(γk, τk) is the MSE of the AMP estimate x̂k.

The AMP SE (10) was rigorously established for i.i.d.

Gaussian A in [4] and for i.i.d. sub-Gaussian A in [5] in the

large-system limit (i.e., N,M → ∞ and N/M → δ ∈ (0, 1))
under some mild regularity conditions. Because the SE (10)

holds for generic g1(·, γk) and generic γk-update rules, it

can be used to characterize the application of AMP to many

problems, as further discussed in Section II-A.

C. Limitations, Modifications, and Alternatives to AMP

An important limitation of AMP’s SE is that it holds only

under large i.i.d. sub-Gaussian A. Although recent analysis

[6] has rigorously analyzed AMP’s performance under finite-

sized i.i.d. Gaussian A, there remains the important question

of how AMP behaves with general A.

Unfortunately, it turns out that the AMP Algorithm 1 is

somewhat fragile with regard to the construction of A. For

example, AMP diverges with even mildly ill-conditioned or

non-zero-mean A [7]–[9]. Although damping [7], [9], mean-

removal [9], sequential updating [10], and direct free-energy

minimization [11] all help to prevent AMP from diverging,

such strategies are limited in effectiveness.

Many other algorithms for standard linear regression (1)

have been designed using approximations of belief propagation

(BP) and/or free-energy minimization. Among these are the

Adaptive Thouless-Anderson-Palmer (ADATAP) [12], Expec-

tation Propagation (EP) [13], [14], Expectation Consistent

Approximation (EC) [15]–[17], (S-transform AMP) S-AMP

[18], [19], and (Orthogonal AMP) OAMP [20] approaches.

Although numerical experiments suggest that some of these al-

gorithms are more robust than AMP Algorithm 1 to the choice

of A, their convergence has not been rigorously analyzed. In

particular, there remains the question of whether there exists

an AMP-like algorithm with a rigorous SE analysis that holds

for a larger class of matrices than i.i.d. sub-Gaussian. In the

sequel, we describe one such algorithm.

D. Contributions

In this paper, we propose a computationally efficient itera-

tive algorithm for the estimation of the vector x0 from noisy

linear measurements y of the form in (1). (See Algorithm 2.)

We call the algorithm “vector AMP” (VAMP) because i)

its behavior can be rigorously characterized by a scalar SE

under large random A, and ii) it can be derived using an

approximation of BP on a factor graph with vector-valued

variable nodes. We outline VAMP’s derivation in Section III

with the aid of some background material that is reviewed in

Section II.

In Section IV, we establish the VAMP SE in the case of

large right-orthogonally invariant random A and separable

Lipschitz denoisers g1(·, γk), using techniques similar to those

used by Bayati and Montanari in [4]. Importantly, these right-

orthogonally invariant A allow arbitrary singular values and

arbitrary left singular vectors, making VAMP much more

robust than AMP in regards to the construction of A. In

Section V, we establish that the asymptotic MSE predicted by

VAMP’s SE agrees with the MMSE predicted by the replica

method [21] when VAMP’s priors are matched to the true

data. Finally, in Section VI, we present numerical experiments

demonstrating that VAMP’s empirical behavior matches its SE

at moderate dimensions, even when A is highly ill-conditioned

or non-zero-mean.

E. Relation to Existing Work

The idea to construct algorithms from graphical models

with vector-valued nodes is not new, and in fact underlies the

EC- and EP-based algorithms described in [13]–[17]. The use

of vector-valued nodes is also central to the derivation of S-

AMP [18], [19]. In the sequel, we present a simple derivation

of VAMP that uses the EP methodology from [13], [14], which

passes approximate messages between the nodes of a factor

graph. But we note that VAMP can also be derived using the

EC methodology, which formulates a variational optimization

problem using a constrained version of the Kullback-Leibler

distance and then relaxes the density constraints to moment

constraints. For more details on the latter approach, we refer

the interested reader to the discussion of “diagonal restricted

EC” in [15, App. D] and “uniform diagonalized EC” in [17].

It was recently shown [16] that, for large right-orthogonally

invariant A, the fixed points of diagonal-restricted EC are

“good” in the sense that they are consistent with a certain

replica prediction of the MMSE that is derived in [16]. Since

the fixed points of ADATAP and S-AMP are known [18]

to coincide with those of diagonal-restricted EC (and thus

VAMP), all of these algorithms can be understood to have

good fixed points. The trouble is that these algorithms do not

necessarily converge to their fixed points. For example, S-

AMP diverges with even mildly ill-conditioned or non-zero-

mean A, as demonstrated in Section VI. Our main contribution
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is establishing that VAMP’s behavior can be exactly predicted

by an SE analysis analogous to that for AMP. This SE analysis

then provides precise convergence guarantees for large right-

orthogonally invariant A. The numerical results presented in

Section VI confirm that, in practice, VAMP’s convergence is

remarkably robust, even with very ill-conditioned or mean-

perturbed matrices A of finite dimension.

The main insight that leads to both the VAMP algorithm

and its SE analysis comes from a consideration of the sin-

gular value decomposition (SVD) of A. Specifically, take the

“economy” SVD,

A = UDiag(s)V
T
, (11)

where s ∈ R
R for R := rank(A) ≤ min(M,N). The VAMP

iterations can be performed by matrix-vector multiplications

with V ∈ R
N×R and V

T
, yielding a structure very similar

to that of AMP. Computationally, the SVD form of VAMP

(i.e., Algorithm 2) has the benefit that, once the SVD has

been computed, VAMP’s per-iteration cost will be dominated

by O(RN) floating-point operations (flops), as opposed to

O(N3) for the EC methods from [15, App. D] or [17].

Furthermore, if these matrix-vector multiplications have fast

implementations (e.g., O(N) when V is a discrete wavelet

transform), then the complexity of VAMP reduces accord-

ingly. We emphasize that VAMP uses a single SVD, not a

per-iteration SVD. In many applications, this SVD can be

computed off-line. In the case that SVD complexity may be

an issue, we note that it costs O(MNR) flops by classical

methods or O(MN logR) by modern approaches [22].

The SVD offers more than just a fast algorithmic implemen-

tation. More importantly, it connects VAMP to AMP in such

a way that the Bayati and Montanari’s SE analysis of AMP

[4] can be extended to obtain a rigorous SE for VAMP. In this

way, the SVD can be viewed as a proof technique. Since it

will be useful for derivation/interpretation in the sequel, we

note that the VAMP iterations can also be written without an

explicit SVD (see Algorithm 3), in which case they coincide

with the uniform-diagonalization variant of the generalized EC

method from [17]. In this latter implementation, the linear

MMSE (LMMSE) estimate (24) must be computed at each

iteration, as well as the trace of its covariance matrix (25),

which both involve the inverse of an N ×N matrix.

The OAMP-LMMSE algorithm from [20] is similar to

VAMP and diagonal-restricted EC, but different in that it ap-

proximates certain variance terms. This difference can be seen

by comparing equations (30)-(31) in [20] to lines 8 and 10 in

Algorithm 2 (or lines 14 and 7 in Algorithm 3). Furthermore,

OAMP-LMMSE differs from VAMP in its reliance on matrix

inversion (see, e.g., the comments in the Conclusion of [20]).

Shortly after the initial publication of this work, [23] proved

a very similar result for the complex case using a fully

probabilistic analysis.

F. Notation

We use capital boldface letters like A for matrices, small

boldface letters like a for vectors, (·)T for transposition, and

an = [a]n to denote the nth element of a. Also, we use

‖a‖p = (
∑

n |an|p)1/p for the ℓp norm of a, ‖A‖2 for the

spectral norm of A, Diag(a) for the diagonal matrix created

from vector a, and diag(A) for the vector extracted from the

diagonal of matrix A. Likewise, we use IN for the N × N
identity matrix, 0 for the matrix of all zeros, and 1 for the

matrix of all ones. For a random vector x, we denote its

probability density function (pdf) by p(x), its expectation

by E[x], and its covariance matrix by Cov[x]. Similarly, we

use p(x|y), E[x|y], and Cov[x|y] for the conditional pdf,

expectation, and covariance, respectively. Also, we use E[x|b]
and Cov[x|b] to denote the expectation and covariance of

x ∼ b(x), i.e., x distributed according to the pdf b(x). We refer

to the Dirac delta pdf using δ(x) and to the pdf of a Gaussian

random vector x ∈ R
N with mean a and covariance C using

N (x; a,C) = exp(−(x − a)TC−1(x − a)/2)/
√
(2π)N |C|.

Finally, p(x) ∝ f(x) says that functions p(·) and f(·) are

equal up to a scaling that is invariant to x.

II. BACKGROUND ON THE AMP ALGORITHM

In this section, we provide background on the AMP algo-

rithm that will be useful in the sequel.

A. Applications to Bayesian Inference

We first detail the application of the AMP Algorithm 1 to

the Bayesian inference problems from Section I-A. Suppose

that the prior on x is i.i.d., so that it takes the form

p(x) =
N∏

n=1

p(xn). (12)

Then AMP can be applied to MAP problem (4) by choosing

the scalar denoiser as

g1(rkn, γk) = argmin
xn∈R

[γk
2
|xn − rkn|2 − ln p(xn)

]
. (13)

Likewise, AMP can be applied to the MMSE problem (5) by

choosing

g1(rkn, γk) = E[xn|rkn, γk], (14)

where the expectation in (14) is with respect to the conditional

density

p(xn|rkn, γk) ∝ exp
[
−γk

2
|rkn − xn|2 + ln p(xn)

]
. (15)

In addition, p(xn|rkn, γk) in (15) acts as AMP’s iteration-k
approximation of the marginal posterior p(xn|y). For later use,

we note that the derivative of the MMSE scalar denoiser (14)

w.r.t. its first argument can be expressed as

g′1(rkn, γk) = γkvar [xn|rkn, γk] , (16)

where the variance is computed with respect to the density (15)

(see, e.g., [24]).

In (13)-(15), γk can be interpreted as an estimate of τ−1
k ,

the iteration-k precision of rk from (9). In the case that τk is

known, the “matched” assignment

γk = τ−1
k (17)
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leads to the interpretation of (13) and (14) as the scalar MAP

and MMSE denoisers of rkn, respectively. Since, in practice,

τk is usually not known, it has been suggested to use

γk+1 =
M

‖vk‖2
, (18)

although other choices are possible [25].

B. Relation of AMP to IST

The AMP Algorithm 1 is closely related to the well-known

iterative soft thresholding (IST) algorithm [26], [27] that can

be used2 to solve (2) with convex f(·). In particular, if the

term

N

M
αk−1vk−1 (19)

is removed from line 5 of Algorithm 1, then what remains is

the IST algorithm.

The term (19) is known as the Onsager term in the statistical

physics literature [28]. Under large i.i.d. sub-Gaussian A, the

Onsager correction ensures the behavior in (9). When (9)

holds, the denoiser g1(·, γk) can be optimized accordingly, in

which case each iteration of AMP becomes very productive.

As a result, AMP converges much faster than ISTA for i.i.d.

Gaussian A (see, e.g., [25] for a comparison).

C. Derivations of AMP

The AMP algorithm can be derived in several ways. One

way is through approximations of loopy belief propagation

(BP) [29], [30] on a bipartite factor graph constructed from

the factorization

p(y,x) =

[
M∏

m=1

N (ym; aT
mx, γ−1

w )

][
N∏

n=1

p(xn)

]
, (20)

where aT
m denotes the mth row of A. We refer the reader

to [3], [24] for details on the message-passing derivation of

AMP, noting connections to the general framework of expec-

tation propagation (EP) [13], [14]. AMP can also be derived

through a “free-energy” approach, where one i) proposes a

cost function, ii) derives conditions on its stationary points,

and iii) constructs an algorithm whose fixed points coincide

with those stationary points. We refer the reader to [18], [31],

[32] for details, and note connections to the general framework

of expectation consistent approximation (EC) [15], [17].

III. THE VECTOR AMP ALGORITHM

The Vector AMP (VAMP) algorithm is stated in Algo-

rithm 2. In line 9, “s2” refers to the componentwise square

of vector s. Also, Diag(a) denotes the diagonal matrix whose

diagonal components are given by the vector a.

2The IST algorithm is guaranteed to converge [27] when ‖A‖2 < 1.

Algorithm 2 Vector AMP (SVD Form)

Require: Matrix A ∈ R
M×N ; measurements y ∈ R

M ;

denoiser g1(·, γk); assumed noise precision γw ≥ 0; and

number of iterations Kit.

1: Compute economy SVD UDiag(s)V
T
= A with U

T
U =

IR, V
T
V = IR, s ∈ R

R
+, R = rank(A).

2: Compute preconditioned ỹ := Diag(s)−1U
T
y

3: Select initial r0 and γ0 ≥ 0.

4: for k = 0, 1, . . . ,Kit do

5: x̂k = g1(rk, γk)
6: αk = 〈g′

1(rk, γk)〉
7: r̃k = (x̂k − αkrk)/(1− αk)
8: γ̃k = γk(1 − αk)/αk

9: dk = γwDiag
(
γws

2 + γ̃k1
)−1

s2

10: γk+1 = γ̃k〈dk〉/(NR − 〈dk〉)
11: rk+1 = r̃k + N

RVDiag
(
dk/〈dk〉

)(
ỹ −V

T
r̃k
)

12: end for

13: Return x̂Kit
.

A. Relation of VAMP to AMP

A visual examination of VAMP Algorithm 2 shows many

similarities with AMP Algorithm 1. In particular, the denoising

and divergence steps in lines 5-6 of Algorithm 2 are identical

to those in lines 3-4 of Algorithm 1. Likewise, an Onsager

term αkrk is visible in line 7 of Algorithm 2, analogous to

the one in line 5 of Algorithm 1. Finally, the per-iteration

computational complexity of each algorithm is dominated by

two matrix-vector multiplications: those involving A and AT

in Algorithm 1 and those involving V and V
T

in Algorithm 2.

The most important similarity between the AMP and VAMP

algorithms is not obvious from visual inspection and will be

established rigorously in the sequel. It is the following: for

certain large random A, the VAMP quantity rk behaves like a

white-Gaussian-noise corrupted version of the true signal x0,

i.e.,

rk = x0 +N (0, τkI), (21)

for some variance τk > 0. Moreover, the noise variance τk can

be tracked through a scalar SE formalism whose details will

be provided in the sequel. Furthermore, the VAMP quantity

γk can be interpreted as an estimate of τ−1
k in (21), analogous

to the AMP quantity γk discussed around (17).

It should be emphasized that the class of matrices A under

which the VAMP SE holds is much bigger than the class under

which the AMP SE holds. In particular, VAMP’s SE holds

for large random matrices A whose right singular3 vector

matrix V ∈ R
N×N is uniformly distributed on the group of

orthogonal matrices. Notably, VAMP’s SE holds for arbitrary

(i.e., deterministic) left singular vector matrices U and singular

values, apart from some mild regularity conditions that will be

3We use several forms of SVD in this paper. Algorithm 2 uses the

“economy” SVD A = UDiag(s)V
T

∈ R
M×N , where s ∈ R

R

+
with

R = rank(A), so that U and/or V may be tall. The discussion in

Section III-A uses the “standard” SVD A = USVT, where S ∈ R
M×N and

both U and V are orthogonal. Finally, the state-evolution proof in Section IV
uses the standard SVD on square A ∈ R

N×N .
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PSfrag replacements

p(x1)

x1

δ(x1 − x2)

x2

N (y;Ax2, γ
−1
w I)

Fig. 1. The factor graph used for the derivation of VAMP. The circles represent
variable nodes and the squares represent factor nodes from (23).

detailed in the sequel. In contrast, AMP’s SE is known to hold

[4], [5] only for large i.i.d. sub-Gaussian matrices A, which

implies i) random orthogonal U and V and ii) a particular

distribution on the singular values of A.

B. EP Derivation of VAMP

As with AMP (i.e., Algorithm 1), VAMP (i.e., Algorithm 2)

can be derived in many ways. Here we present a very simple

derivation based on an EP-like approximation of the sum-

product (SP) belief-propagation algorithm. Unlike the AMP

algorithm, whose message-passing derivation uses a loopy

factor graph with scalar-valued nodes, the VAMP algorithm

uses a non-loopy graph with vector-valued nodes, hence the

name “vector AMP.” We note that VAMP can also be derived

using the “diagonal restricted” or “uniform diagonalization”

EC approach [15], [17], but that derivation is much more

complicated.

To derive VAMP, we start with the factorization

p(y,x) = p(x)N (y;Ax, γ−1
w I), (22)

and split x into two identical variables x1 = x2, giving an

equivalent factorization

p(y,x1,x2) = p(x1)δ(x1 − x2)N (y;Ax2, γ
−1
w I), (23)

where δ(·) is the Dirac delta distribution. The factor graph

corresponding to (23) is shown in Figure 1. We then pass

messages on this factor graph according to the following rules.

1) Approximate beliefs: The approximate belief bapp(x) on

variable node x is N (x; x̂, η−1I), where x̂ = E[x|bsp]
and η−1 = 〈diag(Cov[x|bsp])〉 are the mean and aver-

age variance of the corresponding SP belief bsp(x) ∝∏
i µfi→x(x), i.e., the normalized product of all messages

impinging on the node. See Figure 2(a) for an illustration.

2) Variable-to-factor messages: The message from a vari-

able node x to a connected factor node fi is µx→fi(x) ∝
bapp(x)/µfi→x(x), i.e., the ratio of the most recent

approximate belief bapp(x) to the most recent message

from fi to x. See Figure 2(b) for an illustration.

3) Factor-to-variable messages: The message from a factor

node f to a connected variable node xi is µf→xi
(xi) ∝∫

f(xi, {xj}j 6=i})
∏

j 6=i µxj→f (xj) dxj . See Figure 2(c)

for an illustration.

By applying the above message-passing rules to the factor

graph in Figure 1, one obtains Algorithm 3. (See Appendix A

for a detailed derivation.) Lines 11–12 of Algorithm 3 use

g2(r2k, γ2k) :=
(
γwA

TA+ γ2kI
)−1 (

γwA
Ty + γ2kr2k

)
,

(24)

which can be recognized as the MMSE estimate of a random

vector x2 under likelihood N (y;Ax2, γ
−1
w I) and prior x2 ∼

PSfrag replacements

x

x

x2

x3

x1f(x1,x2,x3)f1(x)

f1(x)

f2(x)

f2(x)

f3(x)

f3(x) µf1→x(x)

µf2→x(x)

µf2→x(x)

µf3→x(x)
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(b) (c)

Fig. 2. Factor graphs to illustrate (a) messaging through a factor node and
(b) messaging through a variable node.

Algorithm 3 Vector AMP (LMMSE form)

Require: LMMSE estimator g2(r2k, γ2k) from (24), denoiser

g1(·, γ1k), and number of iterations Kit.

1: Select initial r10 and γ10 ≥ 0.

2: for k = 0, 1, . . . ,Kit do

3: // Denoising

4: x̂1k = g1(r1k, γ1k)
5: α1k = 〈g′

1(r1k, γ1k)〉
6: η1k = γ1k/α1k

7: γ2k = η1k − γ1k
8: r2k = (η1kx̂1k − γ1kr1k)/γ2k
9:

10: // LMMSE estimation

11: x̂2k = g2(r2k, γ2k)
12: α2k = 〈g′

2(r2k, γ2k)〉
13: η2k = γ2k/α2k

14: γ1,k+1 = η2k − γ2k
15: r1,k+1 = (η2kx̂2k − γ2kr2k)/γ1,k+1
16: end for

17: Return x̂1Kit
.

N (r2k, γ
−1
2k I). Since this estimate is linear in r2k , we will

refer to it as the “LMMSE” estimator. From (6)-(7) and (24),

it follows that line 12 of Algorithm 3 uses

〈g′
2(r2k, γ2k)〉 =

γ2k
N

Tr

[(
γwA

TA+ γ2kI
)−1

]
. (25)

Algorithm 3 is merely a restatement of VAMP Algorithm 2.

Their equivalence can then be seen by substituting the “econ-

omy” SVD A = UDiag(s)V
T

into Algorithm 3, simplifying,

and equating x̂k ≡ x̂1k, rk ≡ r1k, γk ≡ γ1k, γ̃k ≡ γ2k, and

αk ≡ α1k .

As presented in Algorithm 3, the steps of VAMP exhibit an

elegant symmetry. The first half of the steps perform denoising

on r1k and then Onsager correction in r2k, while the second

half of the steps perform LMMSE estimation r2k and Onsager

correction in r1,k+1.

C. Implementation Details

For practical implementation with finite-dimensional A, we

find that it helps to make some small enhancements to VAMP.

In the discussion below we will refer to Algorithm 2, but the

same approaches apply to Algorithm 3.



6

First, we suggest to clip the precisions γk and γ̃k to a

positive interval [γmin, γmax]. It is possible, though uncom-

mon, for line 6 of Algorithm 2 to return a negative αk, which

will lead to negative γk and γ̃k if not accounted for. For the

numerical results in Section VI, we used γmin = 1 × 10−11

and γmax = 1× 1011.

Second, we find that a small amount of damping can be

helpful when A is highly ill-conditioned. In particular, we

suggest to replace lines 5 and 10 of Algorithm 2 with the

damped versions

x̂k = ρg1(rk, γk) + (1− ρ)x̂k−1 (26)

γk+1 = ργ̃k〈dk〉R/(N − 〈dk〉R) + (1− ρ)γk (27)

for all iterations k > 1, where ρ ∈ (0, 1] is a suitably chosen

damping parameter. Note that, when ρ = 1, the damping has

no effect. For the numerical results in Section VI, we used

ρ = 0.97.

Third, rather than requiring VAMP to complete Kit iter-

ations, we suggest that the iterations are stopped when the

normalized difference ‖r1k − r1,k−1‖/‖r1k‖ falls below a

tolerance τ . For the numerical results in Section VI, we used

τ = 1× 10−4.

We note that the three minor modifications described above

are standard features of many AMP implementations, such

as the one in the GAMPmatlab toolbox [33]. However, as

discussed in Section I-C, they are not enough to stabilize AMP

for in the case of ill-conditioned or non-zero-mean A.

Finally, we note that the VAMP algorithm requires the user

to choose the measurement-noise precision γw and the de-

noiser g1(·, γk). Ideally, the true noise precision γw0 is known

and the signal x0 is i.i.d. with known prior p(xj), in which

case the MMSE denoiser can be straightforwardly designed.

In practice, however, γw0 and p(xj) are usually unknown.

Fortunately, there is a simple expectation-maximization (EM)-

based method to estimate both quantities on-line, whose details

are given in [34]. The numerical results in [34] show that

the convergence and asymptotic performance of EM-VAMP is

nearly identical to that of VAMP with known γw0 and p(xj).
For the numerical results in Section VI, however, we assume

that γw0 and p(xj) are known.

Matlab implementations of VAMP and EM-VAMP can be

found in the public-domain GAMPmatlab toolbox [33].

IV. STATE EVOLUTION

A. Large-System Analysis

Our primary goal is to understand the behavior of the

VAMP algorithm for a certain class of matrices in the high-

dimensional regime. We begin with an overview of our anal-

ysis framework and follow with more details in later sections.

1) Linear measurement model: Our analysis considers a

sequence of problems indexed by the signal dimension N .

For each N , we assume that there is a “true” vector x0 ∈ R
N

which is observed through measurements of the form,

y = Ax0 +w ∈ R
N , w ∼ N (0, γ−1

w0 IN ), (28)

where A ∈ R
N×N is a known transform and w is Gaussian

noise with precision γw0. Note that we use γw0 to denote the

“true” noise precision to distinguish it from γw, which is the

noise precision postulated by the estimator.

For the transform A, our key assumption is that it can

be modeled as a large, right-orthogonally invariant random

matrix. Specifically, we assume that it has an SVD of the

form

A = USVT, S = Diag(s), (29)

where U and V are N × N orthogonal matrices such that

U is deterministic and V is Haar distributed (i.e. uniformly

distributed on the set of orthogonal matrices). We refer to A as

“right-orthogonally invariant” because the distribution of A is

identical to that of AV0 for any fixed orthogonal matrix V0.

We will discuss the distribution of the singular values s ∈ R
N

below.

Although we have assumed that A is square to streamline

the analysis, we make this assumption without loss of gener-

ality. For example, by setting

U =

[
U0 0

0 I

]
, s =

[
s0
0

]
,

our formulation can model a wide rectangular matrix whose

SVD is U0S0V
T with diag(S0) = s0. A similar manipulation

allows us to model a tall rectangular matrix.

2) Denoiser: Our analysis applies to a fairly general class

of denoising functions g1(·, γ1k) indexed by the parameter

γ1k ≥ 0. Our main assumption is that the denoiser is separable,

meaning that it is of the form (8) for some scalar denoiser

g1(·, γ1k). As discussed above, this separability assumption

will occur for the MAP and MMSE denoisers under the

assumption of an i.i.d. prior. However, we do not require the

denoiser to be MAP or MMSE for any particular prior. We will

impose certain Lipschitz continuity conditions on g1(·, γ1k) in

the sequel.

3) Asymptotic distributions: It remains to describe the

distributions of the true vector x0 and the singular-value

vector s. A simple model would be to assume that they are

random i.i.d. sequences that grow with N . However, following

the Bayati-Montanari analysis [4], we will consider a more

general framework where each of these vectors is modeled as

deterministic sequence for which the empirical distribution of

the components converges in distribution. When the vectors

x0 and s are i.i.d. random sequences, they will satisfy this

condition almost surely. Details of this analysis framework

are reviewed in Appendix B.

Using the definitions in Appendix B, we assume that the

components of the singular-value vector s ∈ R
N in (29)

converge empirically with second-order moments as

lim
N→∞

{sn}Nn=1

PL(2)
= S, (30)

for some positive random variable S. We assume that E[S] > 0
and S ∈ [0, Smax] for some finite maximum value Smax.

Additionally, we assume that the components of the true

vector, x0, and the initial input to the denoiser, r10, converge

empirically as

lim
N→∞

{(r10,n, x0
n)}Nn=1

PL(2)
= (R10, X

0), (31)
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for some random variables (R10, X
0). Note that the conver-

gence with second-order moments requires that E[(X0)2] <
∞ and E[R2

10] <∞, so they have bounded second moments.

We also assume that the initial second-order term, if dependent

on N , converges as

lim
N→∞

γ10(N) = γ10, (32)

for some γ10 > 0.

As stated above, most of our analysis will apply to general

separable denoisers g1(·, γ1k). However, some results will

apply specifically to MMSE denoisers. Under the assumption

that the components of the true vector x0 are asymptotically

distributed like the random variable X0, as in (31), the MMSE

denoiser (14) and its derivative (16) reduce to

g1(r1, γ1) = E
[
X0|R1 = r1

]
,

g′1(r1, γ1) = γ1var
[
X0|R1 = r1

]
,

(33)

where R1 is the random variable representing X0 corrupted

by AWGN noise, i.e.,

R1 = X0 + P, P ∼ N (0, γ−1
1 ),

with P being independent of X0. Thus, the MMSE denoiser

and its derivative can be computed from the posterior mean

and variance of X0 under an AWGN measurement.

B. Error Functions

Before describing the state evolution (SE) equations and

the analysis in the LSL, we need to introduce two key

functions: error functions and sensitivity functions. We begin

by describing the error functions.

The error functions, in essence, describe the mean squared

error (MSE) of the denoiser and LMMSE estimators under

AWGN measurements. Recall from Section IV-A, that we have

assumed that the denoiser g1(·, γ1) is separable with some

componentwise function g1(·, γ1). For this function g1(·, γ1),
define the error function as

E1(γ1, τ1) := E
[
(g1(R1, γ1)−X0)2

]
,

R1 = X0 + P, P ∼ N (0, τ1). (34)

The function E1(γ1, τ1) thus represents the MSE of the esti-

mate X̂ = g1(R1, γ1) from a measurement R1 corrupted by

Gaussian noise of variance τ1. For the LMMSE estimator, we

define the error function as

E2(γ2, τ2) := lim
N→∞

1

N
E
[
‖g2(r2, γ2)− x0‖2

]
,

r2 = x0 + q, q ∼ N (0, τ2I),

y = Ax0 +w, w ∼ N (0, γ−1
w0I), (35)

which is the average per component error of the vector esti-

mate under Gaussian noise. Note that E2(γ2, τ2) is implicitly

a function of the noise precision levels γw0 and γw (through

g2 from (24)), but this dependence is omitted to simplify the

notation.

We will say that both estimators are “matched” when

τ1 = γ−1
1 , τ2 = γ−1

2 , γw = γw0,

so that the noise levels used by the estimators both match the

true noise levels. Under the matched condition, we will use

the simplified notation

E1(γ1) := E1(γ1, γ−1
1 ), E2(γ2) := E2(γ2, γ−1

2 ).

The following lemma establishes some basic properties of the

error functions.

Lemma 1. Recall the error functions E1, E2 defined above.

(a) For the MMSE denoiser (33) under the matched condition

τ1 = γ−1
1 , the error function is the conditional variance

E1(γ1) = var
[
X0|R1 = X0+P

]
, P ∼ N (0, γ−1

1 ).
(36)

(b) The LMMSE error function is given by

E2(γ2, τ2) = lim
N→∞

1

N
Tr
[
Q−2Q̃

]
, (37)

where Q and Q̃ are the matrices

Q := γwA
TA+ γ2I, Q̃ :=

γ2
w

γw0
ATA+ τ2γ

2
2I. (38)

Under the matched condition τ2 = γ−1
2 and γw = γw0,

E2(γ2) = lim
N→∞

1

N
Tr
[
Q−1

]
. (39)

(c) The LMMSE error function is also given by

E2(γ2, τ2) = E

[
γ2
wS

2/γw0 + τ2γ
2
2

(γwS2 + γ2)2

]
, (40)

where S is the random variable (30) representing the

distribution of the singular values of A. For the matched

condition τ2 = γ−1
2 and γw = γw0,

E2(γ2) = E

[
1

γwS2 + γ2

]
. (41)

Proof. See Appendix C. �

C. Sensitivity Functions

The sensitivity functions describe the expected divergence

of the estimator. For the denoiser, the sensitivity function is

defined as

A1(γ1, τ1) := E [g′1(R1, γ1)] ,

R1 = X0 + P, P ∼ N (0, τ1), (42)

which is the average derivative under a Gaussian noise input.

For the LMMSE estimator, the sensitivity is defined as

A2(γ2) := lim
N→∞

1

N
Tr

[
∂g2(r2, γ2)

∂r2

]
. (43)

Lemma 2. For the sensitivity functions above:

(a) For the MMSE denoiser (33) under the matched condition

τ1 = γ−1
1 , the sensitivity function is given by

A1(γ1, γ
−1
1 ) = γ1var

[
X0|R1 = X0 +N (0, γ−1

1 )
]
,
(44)

which is the ratio of the conditional variance to the

measurement variance γ−1
1 .
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(b) The LMMSE estimator’s sensitivity function is given by

A2(γ2) = lim
N→∞

1

N
γ2Tr

[
(γwA

TA+ γ2I)
−1
]
.

(c) The LMMSE estimator’s sensitivity function can also be

written as

A2(γ2) = E

[
γ2

γwS2 + γ2

]
.

Proof. See Appendix C. �

D. State Evolution Equations

We can now describe our main result, which is the SE

equations for VAMP. For a given iteration k ≥ 1, consider

the set of components,

{(x̂1k,n, r1k,n, x
0
n), n = 1, . . . , N}.

This set represents the components of the true vector x0,

its corresponding estimate x̂1k and the denoiser input r1k.

Theorem 1 below will show that, under certain assumptions,

these components converge empirically as

lim
N→∞

{(x̂1k,n, r1k,n, x
0
n)}

PL(2)
= (X̂1k, R1k, X

0), (45)

where the random variables (X̂1k, R1k, X
0) are given by

R1k = X0 + Pk, Pk ∼ N (0, τ1k), (46a)

X̂1k = g1(R1k, γ1k), (46b)

for constants γ1k and τ1k that will be defined below. Thus,

each component r1k,n appears as the true component x0
n

plus Gaussian noise. The corresponding estimate x̂1k,n then

appears as the denoiser output with r1k,n as the input. Hence,

the asymptotic behavior of any component x0
n and its corre-

sponding x̂1k,n is identical to a simple scalar system. We will

refer to (45)-(46) as the denoiser’s scalar equivalent model.

For the LMMSE estimation function, we define the trans-

formed error and transformed noise,

qk := VT(r2k − x0), ξ := UTw, (47)

where U and V are the matrices in the SVD decomposition

(29). Theorem 1 will also show that these transformed errors

and singular values sn converge as,

lim
N→∞

{(qk,n, ξn, sn)}
PL(2)
= (Qk,Ξ, S), (48)

to a set of random variables (Qk,Ξ, S). These random vari-

ables are independent, with S defined in the limit (30) and

Qk ∼ N (0, τ2k), Ξ ∼ N (0, γ−1
w0 ), (49)

where τ2k is a variance that will be defined below and γw0 is

the noise precision in the measurement model (28). Thus (48)-

(49) is a scalar equivalent model for the LMMSE estimator.

The variance terms are defined recursively through what are

called state evolution equations,

α1k = A1(γ1k, τ1k) (50a)

η1k =
γ1k

α1k
, γ2k = η1k − γ1k (50b)

τ2k =
1

(1− α1k)2
[
E1(γ1k, τ1k)− α2

1kτ1k
]
, (50c)

α2k = A2(γ2k, τ2k) (50d)

η2k =
γ2k

α2k
, γ1,k+1 = η2k − γ2k (50e)

τ1,k+1 =
1

(1− α2k)2
[
E2(γ2k, τ2k)− α2

2kτ2k
]
, (50f)

which are initialized with

τ10 = E[(R10 −X0)2], (51)

and γ10 defined from the limit (32).

Theorem 1. Under the above assumptions and definitions,

assume additionally that for all iterations k:

(i) The solution α1k from the SE equations (50) satisfies

α1k ∈ (0, 1). (52)

(ii) The functions Ai(γi, τi) and Ei(γi, τi) are continuous at

(γi, τi) = (γik, τik).
(iii) The denoiser function g1(r1, γ1) and its derivative

g′1(r1, γ1) are uniformly Lipschitz in r1 at γ1 = γ1k. (See

Appendix B for a precise definition of uniform Lipschitz

continuity.)

Then, for any fixed iteration k ≥ 0,

lim
N→∞

(αik, ηik, γik) = (αik, ηik, γik) (53)

almost surely. In addition, the empirical limit (45) holds almost

surely for all k > 0, and (48) holds almost surely for all k ≥ 0.

E. Mean Squared Error

One important use of the scalar equivalent model is to

predict the asymptotic performance of the VAMP algorithm

in the LSL. For example, define the asymptotic mean squared

error (MSE) of the iteration-k estimate x̂ik as

MSEik := lim
N→∞

1

N
‖x̂ik − x0‖2. (54)

For this MSE, we claim that

MSEik = Ei(γik, τik). (55)

To prove (55) for i = 1, we write

MSE1k = lim
N→∞

1

N

N∑

n=1

(x̂1k,n − x0
n)

2

(a)
= E[(X̂1k −X0)2]

(b)
= E[(g1(R1, γ1k)−X0)2]

(c)
= E1(γ1k, τ1k)

where (a) and (b) follow from the convergence in (45) and the

scalar equivalent model (45), and where (c) follows from (34).

Using the scalar equivalent model (48), the definition of E2(·)
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in (35), and calculations similar to the proof of Lemma 1, one

can also show that (55) holds for i = 2.

Interestingly, this type of calculation can be used to compute

any other componentwise distortion metric. Specifically, given

any distortion function d(x, x̂) that is pseudo-Lipschitz of

order two, its average value is given by

lim
N→∞

1

N

N∑

n=1

d(x0
n, x̂1k,n) = E

[
d(X0, X̂1k)

]
,

where the expectation is from the scalar equivalent model (45).

F. Contractiveness of the Denoiser

An essential requirement of Theorem 1 is the condition (52)

that α1k ∈ (0, 1). This assumption requires that, in a certain

average, the denoiser function g1(·, γ1) is increasing (i.e.,

g′1(r1n, γ1) > 0) and is a contraction (i.e., g′1(r1n, γ1) < 1).

If these conditions are not met, then α1k ≤ 0 or α1k ≥ 1,

and either the estimated precision η1k or γ2k in (50b) may be

negative, causing subsequent updates to be invalid. Thus, α1k

must be in the range (0, 1). There are two important conditions

under which this increasing contraction property are provably

guaranteed:

Strongly convex penalties: Suppose that g1(r1n, γ1) is the

either the MAP denoiser (13) or the MMSE denoiser (14) for

a density p(xn) that is strongly log-concave. That is, there

exists constants c1, c2 > 0 such that

c1 ≤ −
∂2

∂x2
n

ln p(xn) ≤ c2.

Then, using results from log-concave functions [35], it is

shown in [11] that

g′1(r1n, γ1) ∈
[

γ1
c2 + γ1

,
γ1

c1 + γ1

]
⊂ (0, 1),

for all r1n and γ1 > 0. Hence, from the definition of the

sensitivity function (42), the sensitivity α1k in (50a) will be

in the range (0, 1).
Matched MMSE denoising: Suppose that g1(r1n, γ1) is

the MMSE denoiser in the matched condition where γ1k =
τ−1
1k for some iteration k. From (44),

A1(γ1, γ
−1
1 ) = γ1var

[
X0|R1 = X0 +N (0, γ−1

1 )
]
.

Since the conditional variance is positive, A1(γ1, γ
−1
1 ) > 0.

Also, since the variance is bounded above by the MSE of a

linear estimator,

γ1var
[
X0|R1 = X0 +N (0, γ−1

1 )
]

≤ γ1
γ−1
1 τx0

τx0
+ γ−1

1

=
γ1τx0

1 + γ1τx0

< 1,

where τx0 = var(X0). Thus, we have A1(γ1, γ
−1
1 ) ∈ (0, 1)

and α1k ∈ (0, 1).

In the case when the prior is not log-concave and the

estimator uses an denoiser that is not perfectly matched, α1k

may not be in the valid range (0, 1). In these cases, VAMP

may obtain invalid (i.e. negative) variance estimates.

V. MMSE DENOISING, OPTIMALITY, AND CONNECTIONS

TO THE REPLICA METHOD

An important special case of the VAMP algorithm is when

we apply the MMSE optimal denoiser under matched γw. In

this case, the SE equations simplify considerably.

Theorem 2. Consider the SE equations (50) with the MMSE

optimal denoiser (33), matched γw = γw0, and matched initial

condition γ10 = τ−1
10 . Then, for all iterations k ≥ 0,

η1k =
1

E1(γ1k)
, γ2k = τ−1

2k = η1k − γ1k, (56a)

η2k =
1

E2(γ2k)
, γ1,k+1 = τ−1

1,k+1 = η2k − γ2k. (56b)

In addition, for estimators i = 1, 2, ηik is the inverse MSE:

η−1
ik = lim

N→∞

1

N
‖x̂ik − x0‖2. (56c)

Proof. See Appendix H. �

It is useful to compare this result with the work [21], which

uses the replica method from statistical physics to predict

the asymptotic MMSE error in the LSL. To state the result,

given a positive semidefinite matrix C, we define its Stieltjes

transform as

SC(ω) =
1

N
Tr
[
(C− ωIN)−1

]
=

1

N

N∑

n=1

1

λn − ω
, (57)

where λn are the eigenvalues of C. Also, let RC(ω) denote

the so-called R-transform of C, given by

RC(ω) = S−1
C

(−ω)− 1

ω
, (58)

where the inverse S−1
C

(·) is in terms of composition of

functions. The Stieltjes and R-transforms are discussed in

detail in [36]. The Stieltjes and R-transforms can be extended

to random matrix sequences by taking limits as N →∞ (for

matrix sequences where these limits converge almost surely).

Now suppose that x̂ = E[x0|y] is the MMSE estimate of

x0 given y. Let η−1 be the asymptotic inverse MSE

η−1 := lim
N→∞

1

N
‖x̂− x0‖2.

Using a so-called replica symmetric analysis, it is argued in

[21] that this MSE should satisfy the fixed point equations

γ1 = RC(−η−1), η−1 = E1(γ1), (59)

where C = γw0A
TA. A similar result is given in [16].

Theorem 3. Let γi, ηi be any fixed point solutions to the SE

equations (56) of VAMP under MMSE denoising and matched

γw = γw0. Then η1 = η2. If we define η := ηi as the common

value, then γ1 and η satisfy the replica fixed point equation

(59).

Proof. Note that we have dropped the iteration index k since

we are discussing a fixed point. First, (56) shows that, at any

fixed point,

γ1 + γ2 = η1 = η2,
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so that η1 = η2. Also, in the matched case, (41) shows that

E2(γ2) = SC(−γ2).

Since η−1 = E2(γ2), we have that

γ1 = η − γ2 = η + S−1
C

(η−1) = RC(−η−1).

Also, η−1 = η−1
1 = E(γ1). �

The consequence of Theorem 3 is that, if the replica

equations (59) have a unique fixed point, then the MSE

achieved by the VAMP algorithm exactly matches the Bayes

optimal MSE as predicted by the replica method. Hence,

if this replica prediction is correct, then the VAMP method

provides a computationally efficient method for finding MSE

optimal estimates under very general priors—including priors

for which the associated penalty functions are not convex.

The replica method, however, is generally heuristic. But in

the case of i.i.d. Gaussian matrices, it has recently been proven

that the replica prediction is correct [37], [38].

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments that

compare the VAMP4 Algorithm 2 to the VAMP state evo-

lution from Section IV, the replica prediction from [21], the

AMP Algorithm 1 from [3], the S-AMP algorithm from [18,

Sec. IV], the adaptively damped (AD) GAMP algorithm from

[9], and the support-oracle MMSE estimator, whose MSE

lower bounds that achievable by any practical method. In all

cases, we consider the recovery of vectors x0 ∈ R
N from

AWGN-corrupted measurements y ∈ R
M constructed from

(1), where x0 was drawn i.i.d. zero-mean Bernoulli-Gaussian

with Pr{x0
j 6= 0} = 0.1, where w ∼ N (0, I/γw0), and

where M = 512 and N = 1024. All methods under test

were matched to the true signal and noise statistics. When

computing the support-oracle MMSE estimate, the support of

x0 is assumed to be known, in which case the problem reduces

to estimating the non-zero coefficients of x0. Since these non-

zero coefficients are Gaussian, their MMSE estimate can be

computed in closed form. For VAMP we used the implemen-

tation enhancements described in Section III-C. For line 7 of

AMP Algorithm 1, we used 1/γk+1 = 1/γw0 +
N
Mαk/γk, as

specified in [3, Eq. (25)]. For the AMP, S-AMP, and AD-

GAMP algorithms, we allowed a maximum of 1000 iterations,

and for the VAMP algorithm we allowed a maximum of 100
iterations.

A. Ill-conditioned A

First we investigate algorithm robustness to the condition

number of A. For this study, realizations of A were con-

structed from the SVD A = UDiag(s)V
T ∈ R

M×N with geo-

metric singular values s ∈ R
M . That is, s̄i/s̄i−1 = ρ ∀i, with ρ

chosen to achieve a desired condition number κ(A) := s̄1/s̄M
and with s̄1 chosen so that ‖A‖2F = N . The singular vector

matrices U,V were drawn uniformly at random from the

group of orthogonal matrices, i.e., from the Haar distribution.

4A Matlab implementation of VAMP can be found in the public-domain
GAMPmatlab toolbox [33].
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Fig. 3. NMSE versus condition number κ(A) at final algorithm iteration. The
reported NMSE is the median over 500 realizations, with error bars shown
on the VAMP trace.

Finally, the signal and noise variances were set to achieve a

signal-to-noise ratio (SNR) E[‖Ax‖2]/E[‖w‖2] of 40 dB.

Figure 3 plots the median normalized MSE (NMSE)

achieved by each algorithm over 500 independent realizations

of {A,x,w}, where NMSE(x̂) := ‖x̂ − x0‖2/‖x0‖2. To

enhance visual clarity, NMSEs were clipped to a maximum

value of 1. Also, error bars are shown that (separately) quantify

the positive and negative standard deviations of VAMP’s

NMSE from the median value. The NMSE was evaluated for

condition numbers κ(A) ranging from 1 (i.e., row-orthogonal

A) to 1× 106 (i.e., highly ill-conditioned A).

In Figure 3, we see that AMP and S-AMP diverged for

even mildly ill-conditioned A. We also see that, while adaptive

damping helped to extend the operating range of AMP, it had a

limited effect. In contrast, Figure 3 shows that VAMP’s NMSE

stayed relatively close to the replica prediction for all condition

numbers κ(A). The small gap between VAMP and the replica

prediction is due to finite-dimensional effects; the SE analysis

from Section IV establishes that this gap closes in the large-

system limit. Finally, Figure 3 shows that the oracle bound is

close to the replica prediction at small κ(A) but not at large

κ(A).
Figure 4(a) plots NMSE versus algorithm iteration for

condition number κ(A) = 1 and Figure 4(b) plots the same for

κ(A) = 1000, again with error bars on the VAMP traces. Both

figures show that the VAMP trajectory stayed very close to the

VAMP-SE trajectory at every iteration. The figures also show

that VAMP converges a bit quicker than AMP, S-AMP, and

AD-GAMP when κ(A) = 1, and that VAMP’s convergence

rate is relatively insensitive to the condition number κ(A).

B. Non-zero-mean A

In this section, we investigate algorithm robustness to the

componentwise mean of A. For this study, realizations of A

were constructed by first drawing an i.i.d. N (µ, 1/M) matrix

and then scaling it so that ‖A‖2F = N (noting that essentially

no scaling is needed when µ ≈ 0). As before, the signal and
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noise variances were set to achieve an SNR of 40 dB. For

AD-GAMP, we used the mean-removal trick proposed in [9].

Figure 5 plots the NMSE achieved by each algorithm over

200 independent realizations of {A,x,w}. The NMSE was

evaluated for mean parameters µ between 0.001 and 10. Note

that, when µ > 0.044, the mean is larger than the standard

deviation. Thus, the values of µ that we consider are quite

extreme relative to past studies like [8].

Figure 5 shows that AMP and S-AMP diverged for even

mildly mean-perturbed A. In contrast, the figure shows that

VAMP and mean-removed AD-GAMP (MAD-GAMP) closely

matched the replica prediction for all mean parameters µ.

It also shows a relatively small gap between the replica

prediction and the oracle bound, especially for small µ.

Figure 6(a) plots NMSE versus algorithm iteration for

matrix mean µ = 0.001 and Figure 6(b) plots the same for

µ = 1. When µ = 0.001, VAMP closely matched its SE at
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Fig. 6. NMSE versus algorithm iteration when A has mean µ = 0.001 in (a)
and µ = 1 in (b). The reported NMSE is the median over 200 realizations,
with error bars shown on the VAMP traces.

all iterations and converged noticeably quicker than AMP, S-

AMP, and MAD-VAMP. When µ = 1, there was a small but

noticeable gap between VAMP and its SE for the first few

iterations, although the gap closed after about 10 iterations.

This gap may be due to the fact that the random matrix A used

for this experiment was not right-orthogonally invariant, since

the dominant singular vectors are close to (scaled versions of)

the 1s vector for sufficiently large µ.

C. Row-orthogonal A

In this section we investigate algorithm NMSE versus

SNR for row-orthogonal A, i.e., A constructed as in Sec-

tion VI-A but with κ(A) = 1. Previous studies [16], [19]

have demonstrated that, when A is orthogonally invariant but

not i.i.d. Gaussian (e.g., row-orthogonal), the fixed points of

S-AMP and diagonal-restricted EC are better than those of

AMP because the former approaches exploit the singular-value

spectrum of A, whereas AMP does not.

Table I reports the NMSE achieved by VAMP, S-AMP, and

AMP at three levels of SNR: 10 dB, 20 dB, and 30 dB. The

NMSEs reported in the table were computed from an average

of 1000 independent realizations of {A,x,w}. Since the

NMSE differences between the algorithms are quite small, the

table also reports the standard error on each NMSE estimate

to confirm its accuracy.

Table I shows that VAMP and S-AMP gave nearly identical

NMSE at all tested SNRs, which is expected because these two

algorithms share the same fixed points. The table also shows

that VAMP’s NMSE was strictly better than AMP’s NMSE

at low SNR (as expected), but that the NMSE difference

narrows as the SNR increases. Finally, the table reports the

replica prediction of the NMSE, which is about 3% lower

(i.e., −0.15 dB) than VAMP’s empirical NMSE at each SNR.

We attribute this difference to finite-dimensional effects.
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SNR replica VAMP(stderr) S-AMP(stderr) AMP(stderr)

10 dB 5.09e-02 5.27e-02(4.3e-04) 5.27e-02(4.3e-04) 5.42e-02(4.2e-04)
20 dB 3.50e-03 3.57e-03(2.7e-05) 3.58e-03(2.7e-05) 3.62e-03(2.6e-05)
30 dB 2.75e-04 2.84e-04(2.2e-06) 2.85e-04(2.2e-06) 2.85e-04(2.1e-06)

TABLE I
AVERAGE NMSE VERSUS SNR FOR ROW-ORTHOGONAL A, WHERE THE

AVERAGE WAS COMPUTED FROM 1000 REALIZATIONS. STANDARD ERROR

DEVIATIONS ARE ALSO REPORTED.

D. Discussion

Our numerical results confirm what is already known about

the fixed points of diagonally restricted EC (via VAMP) and

S-AMP. That is, when A is large and right-orthogonally invari-

ant, they agree with each other and with the replica prediction;

and when A is large i.i.d. Gaussian (which is a special case

of right-orthogonally invariant [36]), they furthermore agree

with the fixed points of AMP [16], [19].

But our numerical results also clarify that it is not enough

for an algorithm to have good fixed points, because it may not

converge to its fixed points. For example, although the fixed

points of S-AMP are good (i.e., replica matching) for any large

right-orthogonally invariant A, our numerical results indicate

that S-AMP converges only for a small subset of large right-

orthogonally invariant A: those with singular-value spectra

similar (or flatter than) i.i.d. Gaussian A.

The SE analysis from Section IV establishes that, in the

large-system limit and under matched priors, VAMP is guar-

anteed to converge to a fixed point that is also a fixed point

of the replica equation (59). Our numerical results suggest

that, even with large but finite-dimensional right orthogonally

invariant A (i.e., 512×1024 in our simulations), VAMP attains

NMSEs that are very close to the replica prediction.

VII. CONCLUSIONS

In this paper, we considered the standard linear regression

(SLR) problem (1), where the goal is to recover the vector x0

from noisy linear measurements y = Ax0 +w. Our work is

inspired by Donoho, Maleki, and Montanari’s AMP algorithm

[2], which offers a computationally efficient approach to SLR.

AMP has the desirable property that its behavior is rigorously

characterized under large i.i.d. sub-Gaussian A by a scalar

state evolution whose fixed points, when unique, are Bayes

optimal [4]. A major shortcoming of AMP, however, is its

fragility with respect to the i.i.d. sub-Gaussian model on A:

even small perturbations from this model can cause AMP to

diverge.

In response, we proposed a vector AMP (VAMP) algorithm

that (after performing an initial SVD) has similar complexity

to AMP but is much more robust with respect to the matrix A.

Our main contribution is establishing that VAMP’s behavior

can be rigorously characterized by a scalar state-evolution

that holds for large, right-orthogonally invariant A. The fixed

points of VAMP’s state evolution are, in fact, consistent with

the replica prediction of the minimum mean-squared error

recently derived in [21]. We also showed how VAMP can

be derived as an approximation of belief propagation on a

factor graph with vector-valued nodes, hence the name “vector

AMP.” Finally, we presented numerical experiments to demon-

strate VAMP’s robust convergence for ill-conditioned and

mean-perturbed matrices A that cause earlier AMP algorithms

to diverge.

As future work, it would be interesting to extend VAMP

to the generalized linear model, where the outputs Ax0 are

non-linearly mapped to y. Also, it would be interesting to

design and analyze extensions of VAMP that are robust to

more general models for A, such as the case where A is

statistically coupled to x0.

APPENDIX A

MESSAGE-PASSING DERIVATION OF VAMP

In this appendix, we detail the message-passing derivation

of Algorithm 3. Below, we will use k to denote the VAMP

iteration and n to index the elements of N -dimensional vectors

like x1, r1k and x̂1k. We start by initializing the message-

passing with µδ→x1
(x1) = N (x1; r10, γ

−1
10 I). The following

steps are then repeated for k = 0, 1, 2, . . . .
From Rule 1, we first set the approximate belief on

x1 as N (x1; x̂1k, η
−1
1k I), where x̂1k = E[x1|bsp(x1)] and

η−1
1k = 〈diag(Cov[x1|bsp(x1)])〉 for the SP belief bsp(x1) ∝
p(x1)N (x1; r1k, γ

−1
1k I). With an i.i.d. prior p(x1) as in (12),

we have that [x̂1k]n = g1(r1k,n, γ1k) for the conditional-mean

estimator g1(·, γ1k) given in (14), yielding line 4 of Algo-

rithm 3. Furthermore, from (16) we see that the corresponding

conditional covariance is γ−1
1k g′1(r1k,n, γ1k), yielding lines 5-6

of Algorithm 3.

Next, Rule 2 says to set the message µx1→δ(x1) propor-

tional to N (x1; x̂1k, η
−1
1k I)/N (x1; r1k, γ

−1
1k I). Since

N (x; x̂, η−1I)/N (x; r, γ−1I)

∝ N
(
x; (x̂η − rγ)/(η − γ), (η − γ)−1I

)
, (60)

we have µx1→δ(x1) = N (x1; r2k, γ
−1
2k I) for r2k = (x̂1kη1k−

r1kγ1k)/(η1k−γ1k) and γ2k = η1k−γ1k, yielding lines 7-8 of

Algorithm 3. Rule 3 then implies that the message µx1→δ(x1)
will flow rightward through the δ node unchanged, manifesting

as µδ→x2
(x2) = N (x2; r2k, γ

−1
2k I) on the other side.

Rule 1 then says to set the approximate belief on

x2 at N (x2; x̂2k, η
−1
2k I), where x̂2k = E[x2|bsp(x2)] and

η−1
2k = 〈diag(Cov[x2|bsp(x2)])〉 for the SP belief bsp(x2) ∝
N (x2; r2k, γ

−1
2k I)N (y;Ax2, γ

−1
w I). Using standard manipu-

lations, it can be shown that this belief is Gaussian with mean

x̂2k =
(
γwA

TA+ γ2kI
)−1 (

γwA
Ty + γ2kr2k

)
(61)

and covariance (γwA
TA+γ2kI)

−1. The equivalence between

(61) and (24) explains line 11 of Algorithm 3. Furthermore, it

can be seen by inspection that the average of the diagonal

of this covariance matrix coincides with γ−1
2k 〈g′

2(r2k, γ2k)〉
for 〈g′

2(r2k, γ2k)〉 from (25), thus explaining lines 12-13 of

Algorithm 3.

Rule 2 then says to set the message µx2→δ(x2) at

N (x2; x̂2k, η
−1
2k I)/N (x2; r2k, γ

−1
2k I), which (60) simplifies to

N (x2; r1,k+1, γ
−1
1,k+1I) for r1,k+1 = (x̂2kη2k − r2kγ2k)/(η2k −

γ2k) and γ1,k+1 = η2k − γ2k, yielding lines 14-15 of Algo-

rithm 3. Finally, Rule 3 implies that the message µx2→δ(x2)
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flows left through the δ node unchanged, manifesting as

µδ→x1
(x1) = N (x1; r1k+1, γ

−1
1,k+1I) on the other side. The

above messaging sequence is then repeated with k ← k + 1.

APPENDIX B

CONVERGENCE OF VECTOR SEQUENCES

We review some definitions from the Bayati-Montanari

paper [4], since we will use the same analysis framework in

this paper. Fix a dimension r > 0, and suppose that, for each

N , x(N) is a vector of the form

x(N) = (x1(N), . . . ,xN (N)),

with vector sub-components xn(N) ∈ R
r. Thus, the total

dimension of x(N) is rN . In this case, we will say that x(N)
is a block vector sequence that scales with N under blocks

xn(N) ∈ R
r. When r = 1, so that the blocks are scalar, we

will simply say that x(N) is a vector sequence that scales with

N . Such vector sequences can be deterministic or random. In

most cases, we will omit the notational dependence on N and

simply write x.

Now, given p ≥ 1, a function f : Rs → R
r is called pseudo-

Lipschitz of order p, if there exists a constant C > 0 such that

for all x1,x2 ∈ R
s,

‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖
[
1 + ‖x1‖p−1 + ‖x2‖p−1

]
.

Observe that in the case p = 1, pseudo-Lipschitz continuity

reduces to the standard Lipschitz continuity.

Now suppose that x = x(N) is a block vector sequence,

which may be deterministic or random. Given p ≥ 1, we will

say that x = x(N) converges empirically with p-th order

moments if there exists a random variable X ∈ R
r such that

(i) E|X |p <∞; and

(ii) for any scalar-valued pseudo-Lipschitz continuous func-

tion f(·) of order p,

lim
N→∞

1

N

N∑

n=1

f(xn(N)) = E [f(X)] a.s.. (62)

Thus, the empirical mean of the components f(xn(N))
converges to the expectation E[f(X)]. When x converges

empirically with p-th order moments, we will write, with some

abuse of notation,

lim
N→∞

{xn}Nn=1

PL(p)
= X, (63)

where, as usual, we have omitted the dependence xn =
xn(N). Note that the almost sure convergence in condition (ii)

applies to the case where x(N) is a random vector sequence.

Importantly, this condition holds pointwise over each function

f(·). It is shown in [4, Lemma 4] that, if condition (i) is true

and condition (ii) is true for any bounded continuous functions

f(x) as well as f(x) = xp, then condition (ii) holds for all

pseudo-Lipschitz functions of order p.

We conclude with one final definition. Let φ(r, γ) be a

function on r ∈ R
s and γ ∈ R. We say that φ(r, γ) is

uniformly Lipschitz continuous in r at γ = γ if there exists

constants L1 and L2 ≥ 0 and an open neighborhood U of γ,

such that

‖φ(r1, γ)− φ(r2, γ)‖ ≤ L1‖r1 − r2‖, (64)

for all r1, r2 ∈ R
s and γ ∈ U ; and

‖φ(r, γ1)− φ(r, γ2)‖ ≤ L2 (1 + ‖r‖) |γ1 − γ2|, (65)

for all r ∈ R
s and γ1, γ2 ∈ U .

APPENDIX C

PROOF OF LEMMAS 1 AND 2

For Lemma 1, part (a) follows immediately from (33) and

(34). To prove part (b), suppose

y = Ax0 +w, r2 = x0 + q.

Then, the error is given by

g2(r2, γ2)− x0 (a)
=
(
γwA

TA+ γ2I
)−1

×
(
γwA

TAx0 + γwA
Tw+ γ2r2

)
− x0

(b)
=
(
γwA

TA+ γ2I
)−1 (

γ2q+ γwA
Tw
)
,

(c)
= Q−1

(
γ2q+ γwA

Tw
)
,

where (a) follows by substituting y = Ax0+w into (24); part

(b) follows from the substitution r2 = x0 + q and collecting

the terms with x0; and (c) follows from the definition of Q

in (38). Hence, the error covariance matrix is given

E

[
(g2(r2, γ2)− x0)(g2(r2, γ2)− x0)T

]

= Q−1
[
γ2
2E[qq

T] + γ2
wAE[wwT]AT

]
Q−1

= Q−1Q̃Q−1,

where we have used the the fact that q and w are independent

Gaussians with variances τ2 and γ−1
w0 . This proves (37). Then,

under the matched condition, we have that Q = Q̃, which

proves (39). Part (c) of Lemma 1 follows from part (b) by

using the SVD (29).

For Lemma 2, part (a) follows from averaging (33) over r1.

Part (b) follows by taking the derivative in (24) and part (c)

follows from using the SVD (29).

APPENDIX D

ORTHOGONAL MATRICES UNDER LINEAR CONSTRAINTS

In preparation for proving Theorem 1, we derive various

results on orthogonal matrices subject to linear constraints.

To this end, suppose V ∈ R
N×N is an orthogonal matrix

satisfying linear constraints

A = VB, (66)

for some matrices A,B ∈ R
N×s for some s. Assume A and

B are full column rank (hence s ≤ N ). Let

UA = A(ATA)−1/2, UB = B(BTB)−1/2. (67)
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Also, let UA⊥ and UB⊥ be any N × (N − s) matrices

whose columns are an orthonormal bases for Range(A)⊥ and

Range(B)⊥, respectively. Define

Ṽ := UT
A⊥VUB⊥ , (68)

which has dimension (N − s)× (N − s).

Lemma 3. Under the above definitions Ṽ satisfies

V = A(ATA)−1BT +UA⊥ṼUT
B⊥ . (69)

Proof. Let PA := UAUT
A

and P⊥
A

:= UA⊥UT
A⊥ are

the orthogonal projections onto Range(A) and Range(A)⊥

respectively. Define PB and P⊥
B

similarly. Since, A = VB,

we have VTA = B and therefore,

P⊥
A
VPB = 0, PAVP⊥

B
= 0. (70)

Therefore,

V = (PA +P⊥
A
)V(PB +P⊥

B
)

= (PAVPB +P⊥
AVP⊥

B). (71)

Now,

PAVPB = PAVB(BBT)−1BT

= PAA(BBT)−1BT

= A(BBT)−1BT = A(ATA)−1BT, (72)

where, in the last step we used the fact that

ATA = BTVTVB = BTB.

Also, using the definition of Ṽ in (68),

PA⊥VPT
B⊥ = UA⊥ṼUT

B⊥ . (73)

Substituting (72) and (73) into (71) obtains (69). To prove that

Ṽ is orthogonal,

ṼTṼ
(a)
= UT

B⊥VPAVUB⊥

(b)
= UT

B⊥V
TVUB⊥

(c)
= I,

where (a) uses (68); (b) follows from (70) and (c) follows

from the fact that V and UB⊥ have orthonormal columns.

�

Lemma 4. Let V ∈ R
N×N be a random matrix that is Haar

distributed. Suppose that A and B are deterministic and G
is the event that V satisfies linear constraints (66). Then, the

conditional distribution given G, Ṽ is Haar distributed matrix

independent of G. Thus,

V|G
d
= A(ATA)−1BT +UA⊥ṼUT

B⊥ ,

where Ṽ is Haar distributed and independent of G.

Proof. Let ON be the set of N ×N orthogonal matrices and

let L be the set of matrices V ∈ ON that satisfy the linear

constraints (66). If pV(V) is the uniform density on ON (i.e.

the Haar measure), the conditional density on V given the

event G,

pV|G(V|G) =
1

Z
pV(V)1{V∈L},

where Z is the normalization constant. Now let φ : Ṽ 7→ V

be the mapping described by (69) which maps ON−s to L.

This mapping is invertible. Since φ is affine, the conditional

density on Ṽ is given by

p
Ṽ|G(Ṽ|G) ∝ pV|G(φ(Ṽ)|G)

∝ pV(φ(Ṽ))1{φ(Ṽ∈L)} = pV(φ(Ṽ)), (74)

where in the last step we used the fact that, for any matrix

Ṽ, φ(Ṽ) ∈ L (i.e. satisfies the linear constraints (66)). Now

to show that Ṽ is conditionally Haar distributed, we need to

show that for any orthogonal matrix W0 ∈ ON−s,

p
Ṽ|G(W0Ṽ|G) = p

Ṽ|G(Ṽ|G). (75)

To prove this, given W0 ∈ ON−s, define the matrix,

W = UAUT
A +UA⊥W0U

T
A⊥ .

One can verify that W ∈ ON (i.e. it is orthogonal) and

φ(W0Ṽ) = Wφ(Ṽ). (76)

Hence,

p
Ṽ|G(W0Ṽ|G)

(a)∝ pV(φ(W0Ṽ))

(b)∝ pV(Wφ(Ṽ))
(c)∝ pV(φ(Ṽ)),

where (a) follows from (74); (b) follows from (76); and

(c) follows from the orthogonal invariance of V. Hence,

the conditional density of Ṽ is invariant under orthogonal

transforms and is thus Haar distributed. �

We will use Lemma 4 in conjunction with the following

simple result.

Lemma 5. Fix a dimension s ≥ 0, and suppose that x(N)
and U(N) are sequences such that for each N ,

(i) U = U(N) ∈ R
N×(N−s) is a deterministic matrix with

UTU = I;

(ii) x = x(N) ∈ R
N−s a random vector that is isotropically

distributed in that Vx
d
= x for any orthogonal (N−s)×

(N − s) matrix V.

(iii) The normalized squared Euclidean norm converges al-

most surely as

lim
N→∞

1

N
‖x‖2 = τ,

for some τ > 0.

Then, if we define y = Ux, we have that the components of

y converge empirically to a Gaussian random variable

lim
N→∞

{yn}
PL(2)
= Y ∼ N (0, τ). (77)

Proof. Since x is isotropically distributed, it can be generated

as a normalized Gaussian, i.e.

x
d
=
‖x‖
‖w0‖

w0, w0 ∼ N (0, IN−s).

For each N , let U⊥ be an N×s matrix such that S := [UU⊥]
is orthogonal. That is, the s columns of U⊥ are an orthonormal
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basis of the orthogonal complement of the Range(U). If we

let w1 ∼ N (0, Is), then if we define

w =

[
w0

w1

]
,

so that w ∼ N (0, IN ). With this definition, we can write y

as

y = Ux
d
=
‖x‖
‖w0‖

[Sw −U⊥w1] . (78)

Now,

lim
N→∞

‖x‖
‖w0‖

=
√
τ,

almost surely. Also, since w ∼ N (0, I) and S is orthogonal,

Sw ∼ N (0, I). Finally, since w1 is s-dimensional,

lim
N→∞

1

N
‖U⊥w1‖2 = lim

N→∞

1

N
‖w1‖2 = 0,

almost surely. Substituting these properties into (78), we obtain

(77). �

APPENDIX E

A GENERAL CONVERGENCE RESULT

To analyze the VAMP method, we a consider the following

more general recursion. For each dimension N , we are given

an orthogonal matrix V ∈ R
N×N , and an initial vector u0 ∈

R
N . Also, we are given disturbance vectors

wp = (wp
1 , . . . , w

p
n), wq = (wq

1 , . . . , w
q
n),

where the components wp
n ∈ R

np and wq
n ∈ R

nq for some

finite dimensions np and nq that do not grow with N . Then,

we generate a sequence of iterates by the following recursion:

pk = Vuk (79a)

α1k = 〈f ′p(pk,w
p, γ1k)〉, γ2k = Γ1(γ1k, α1k) (79b)

vk = C1(α1k) [fp(pk,w
p, γ1k)− α1kpk] (79c)

qk = VTvk (79d)

α2k = 〈f ′q(qk,w
q, γ2k)〉, γ1,k+1 = Γ2(γ2k, α2k) (79e)

uk+1 = C2(α2k) [fq(qk,w
q, γ2k)− α2kqk] , (79f)

which is initialized with some vector u0 and scalar γ10. Here,

fp(·) and fq(·) are separable functions, meaning

[fp(p,w
p, γ1)]n = fp(pn, w

p
n, γ1) ∀n,

[fq(q,w
q, γ2)]n = fq(qn, w

q
n, γ2) ∀n,

(80)

for scalar-valued functions fp(·) and fq(·). The functions Γi(·)
and Ci(·) are also scalar-valued. In the recursion (79), the

variables γ1k and γ2k represent some parameter of the update

functions fp(·) and fq(·), and the functions Γi(·) represent how

these parameters are updated.

Similar to our analysis of the VAMP, we consider the

following large-system limit (LSL) analysis. We consider a

sequence of runs of the recursions indexed by N . We model

the initial condition u0 and disturbance vectors wp and wq

as deterministic sequences that scale with N and assume that

their components converge empirically as

lim
N→∞

{u0n}
PL(2)
= U0, (81)

and

lim
N→∞

{wp
n}

PL(2)
= W p, lim

N→∞
{wq

n}
PL(2)
= W q, (82)

to random variables U0, W p and W q . The vectors Wp and Wq

are random vectors in R
np and R

nq , respectively. We assume

that the initial constant converges as

lim
N→∞

γ10 = γ10, (83)

for some γ10. The matrix V ∈ R
N×N is assumed to

be uniformly distributed on the set of orthogonal matrices

independent of r0, wp and wq . Since r0, wp and wq are

deterministic, the only randomness is in the matrix V.

Under the above assumptions, define the SE equations

α1k = E
[
f ′
p(Pk,W

p, γ1k)
]
, (84a)

τ2k = C2
1 (α1k)

{
E
[
f2
p (Pk,W

p, γ1k)
]
− α2

1kτ1k
}

(84b)

γ2k = Γ1(γ1k, α1k) (84c)

α2k = E
[
f ′
q(Qk,W

q, γ2k

]
, (84d)

τ1,k+1 = C2
2 (α2k)

{
E
[
f2
q (Qk,W

q, γ2k)
]
− α2

2kτ2k
}

(84e)

γ1,k+1 = Γ2(γ2k, α2k), (84f)

which are initialized with γ10 in (83) and

τ10 = E[U2
0 ], (85)

where U0 is the random variable in (81). In the SE equa-

tions (84), the expectations are taken with respect to random

variables

Pk ∼ N (0, τ1k), Qk ∼ N (0, τ2k),

where Pk is independent of W p and Qk is independent of

W q.

Theorem 4. Consider the recursions (79) and SE equations

(84) under the above assumptions. Assume additionally that,

for all k:

(i) For i = 1, 2, the functions

Ci(αi), Γi(γi, αi),

are continuous at the points (γi, αi) = (γik, αik) from

the SE equations; and

(ii) The function fp(p, w
p, γ1) and its derivative

f ′
p(p, w

p, γ1) are uniformly Lipschitz continuous in

(p, wp) at γ1 = γ1k.

(iii) The function fq(q, w
q , γ2) and its derivative

f ′
q(q, w

q , γ2) are uniformly Lipschitz continuous in

(q, wq) at γ2 = γ2k.

Then,

(a) For any fixed k, almost surely the components of

(wp,p0, . . . ,pk) empirically converge as

lim
N→∞

{(wp
n, p0n, . . . , pkn)}

PL(2)
= (W p, P0, . . . , Pk),

(86)

where W p is the random variable in the limit (82) and

(P0, . . . , Pk) is a zero mean Gaussian random vector
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independent of W p, with E[P 2
k ] = τ1k. In addition, we

have that

lim
N→∞

(α1k, γ1k) = (α1k, γ1k), (87)

almost surely.

(b) For any fixed k, almost surely the components of

(wq ,q0, . . . ,qk) empirically converge as

lim
N→∞

{(wq
n, q0n, . . . , qkn)}

PL(2)
= (W q, Q0, . . . , Qk),

(88)

where W q is the random variable in the limit (82) and

(Q0, . . . , Qk) is a zero mean Gaussian random vector

independent of W q, with E[P 2
k ] = τ2k. In addition, we

have that

lim
N→∞

(α2k, γ2k) = (α2k, γ2k), (89)

almost surely.

Proof. We will prove this in the next Appendix, Appendix F.

�

APPENDIX F

PROOF OF THEOREM 4

A. Induction Argument

We use an induction argument. Given iterations k, ℓ ≥ 0,

define the hypothesis, Hk,ℓ as the statement:

• Part (a) of Theorem 4 is true up to k; and

• Part (b) of Theorem 4 is true up to ℓ.

The induction argument will then follow by showing the

following three facts:

• H0,−1 is true;

• If Hk,k−1 is true, then so is Hk,k;

• If Hk,k is true, then so is Hk+1,k.

B. Induction Initialization

We first show that the hypothesis H0,−1 is true. That is,

we must show (86) and (87) for k = 0. This is a special

case of Lemma 5. Specifically, for each N , let U = IN , the

N ×N identity matrix, which trivially satisfies property (i) of

Lemma 5 with s = 0. Let x = p0. Since p0 = Vu0 and

V is Haar distributed independent of u0, we have that p0 is

orthogonally invariant and satisfies property (ii) of Lemma 5.

Also,

lim
N→∞

‖p0‖2
(a)
= lim

N→∞
‖u0‖2

(b)
= E[U2

0 ]
(c)
= τ10,

where (a) follows from the fact that p0 = Vu0 and V is

orthogonal; (b) follows from the assumption (81) and (c)

follows from the definition (85). This proves property (iii) of

Lemma 5. Hence, p0 = Up0, we have that the components

of p0 converge empirically as

lim
N→∞

{p0n}
PL(2)
= P0 ∼ N (0, τ10),

for a Gaussian random variable P0. Moreover, since V is

independent of wp, and the components of wp converge

empirically as (82), we have that the components of pn,w
p

almost surely converge empirically as

lim
N→∞

{wp
n, p0n}

PL(2)
= (W p, P0),

where W p is independent of P0. This proves (86) for k = 0.

Now, we have assumed in (83) that γ10 → γ10 as N →∞.

Also, since f ′
p(p, w

p, γ1) is uniformly Lipschitz continuous in

(p, wp) at γ1 = γ10, we have that α10 = 〈f ′p(p0,w
p, γ10)〉

converges to α10 in (84a) almost surely. This proves (87).

C. The Induction Recursion

We next show the implication Hk,k−1 ⇒ Hk,k. The impli-

cation Hk,k ⇒ Hk+1,k is proven similarly. Hence, fix k and

assume that Hk,k−1 holds. Since Γ1(γi, αi) is continuous at

(γ1k, α1k), the limits (87) combined with (84c) show that

lim
N→∞

γ2k = lim
N→∞

Γ1(γ1k, α1k) = γ2k.

In addition, the induction hypothesis shows that for ℓ =
0, . . . , k, the components of (wp,pℓ) almost surely converge

empirically as

lim
N→∞

{(wp
n, pℓn)}

PL(2)
= (W p, Pℓ),

where Pℓ ∼ N (0, τ1ℓ) for τ1ℓ given by the SE equations.

Since fp(·) is Lipschitz continuous and C1(α1ℓ) is continuous

at α1ℓ = α1ℓ, one may observe that the definition of vℓ in

(79c) and the limits (87) show that

lim
N→∞

{(wp
n, pℓn, vℓn)}

PL(2)
= (W p, Pℓ, Vℓ),

where Vℓ is the random variable

Vℓ = gp(Pℓ,W
p, γ1ℓ, α1ℓ), (90)

and gp(·) is the function

gp(p, w
p, γ1, α1) := C1(α1) [fp(p, w

p, γ1)− α1p] . (91)

Similarly, we have the limit

lim
N→∞

{(wq
n, qℓn, uℓn)}

PL(2)
= (W q, Qℓ, Uℓ),

where Uℓ is the random variable,

Uℓ = gq(Qℓ,W
q, γ2ℓ, α2ℓ) (92)

and gq(·) is the function

gq(q, w
q, γ2, α2) := C2(α1) [fq(q, w

q , γ2)− α2q] . (93)

We next introduce the notation

Uk := [u0 · · ·uk] ∈ R
N×(k+1),

to represent the first k+1 values of the vector uℓ. We define

the matrices Vk, Qk and Pk similarly. Using this notation,

let Gk be the tuple of random matrices,

Gk := {Uk,Pk,Vk,Qk−1} . (94)

With some abuse of notation, we will also use Gk to denote

the sigma-algebra generated by these variables. The set (94)
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contains all the outputs of the algorithm (79) immediately

before (79d) in iteration k.

Now, the actions of the matrix V in the recursions (79)

are through the matrix-vector multiplications (79a) and (79d).

Hence, if we define the matrices

Ak := [Pk Vk−1] , Bk := [Uk Qk−1] , (95)

the output of the recursions in the set Gk will be unchanged

for all matrices V satisfying the linear constraints

Ak = VBk. (96)

Hence, the conditional distribution of V given Gk is precisely

the uniform distribution on the set of orthogonal matrices

satisfying (96). The matrices Ak and Bk are of dimensions

N × s where s = 2k + 1. From Lemma 4, this conditional

distribution is given by

V|Gk

d
= Ak(A

T
kAk)

−1BT
k +UA⊥

k
ṼUT

B⊥

k

, (97)

where U
A⊥

k
and U

B⊥

k
are N × (N − s) matrices whose

columns are an orthonormal basis for Range(Ak)
⊥ and

Range(Bk)
⊥. The matrix Ṽ is Haar distributed on the set

of (N − s)× (N − s) orthogonal matrices and independent of

Gk.

Using (97) we can write qk in (79d) as a sum of two terms

qk = VTvk = qdet
k + qran

k , (98)

where qdet
k is what we will call the deterministic part:

qdet
k = Bk(A

T
kAk)

−1AT
kvk, (99)

and qran
k is what we will call the random part:

qran
k = UB⊥

k
ṼTUT

A⊥

k

vk. (100)

The next few lemmas will evaluate the asymptotic distributions

of the two terms in (98).

Lemma 6. Under the induction hypothesis Hk,k−1, there exist

constants βk,0, . . . , βk,k−1 such that the components of qdet
k

along with (q0, . . . ,qk−1) converge empirically as

lim
N→∞

{
wq

n, q0n, . . . , qk−1,n, q
det
kn )
}

PL(2)
= (W q, Q0, . . . , Qk−1, Q

det
k ), (101)

where Qℓ, ℓ = 0, . . . , k−1 are the Gaussian random variables

in induction hypothesis (88) and Qdet
k is a linear combination,

Qdet
k = βk0Q0 + · · ·+ βk,k−1Qk−1. (102)

Proof. We evaluate the asymptotic values of various terms in

(99). Using the definition of Ak in (95),

AT
kAk =

[
PT

kPk PT
kVk−1

VT
k−1Pk VT

k−1Vk−1

]

We can then easily evaluate the asymptotic value of these terms

as follows. For example, the asymptotic value of the (i, j)
component of the matrix PT

kPk is given by

lim
N→∞

1

N

[
PT

kPk

]
ij

(a)
=

1

N
pT
i pj

=
1

N

N∑

n=1

pinpjn
(b)
= E(PiPj)

(c)
= [Qp

k]ij ,

where (a) follows since the i-th column of Pk is precisely

the vector pi; (b) follows due to convergence assumption in

(86); and in (c), we use Q
p
k to denote the covariance matrix

of (P0, . . . , Pk). Similarly

lim
N→∞

1

N
VT

k−1Vk−1 = Qv
k−1,

where Qv
k−1 has the components,

[
Qv

k−1

]
ij
= E [ViVj ] ,

where Vi is the random variable in (90). Finally, the expecta-

tion for the cross-terms are given by

E[ViXj ]
(a)
= E[gp(Pi,W

p, γ1i, α1i)Xj ]

(b)
= E

[
g′p(Pi,W

p, γ1i, α1i)
]
E[XiXj ]

(c)
= E[XiXj ]C1(α1i)

(
E
[
f ′
p(Pi,W

p, γ1i)
]
− α1i

)

(d)
= 0,

where (a) follows from (90); (b) follows from Stein’s Lemma;

and (c) follows from the definition of gp(·) in (91); and (d)

follows from (84a). The above calculations show that

lim
N→∞

1

N
AT

kAk
a.s.
=

[
Q

p
k 0

0 Qv
k−1

]
, (103)

A similar calculation shows that

lim
N→∞

1

N
AT

ksk =

[
0

bs
k

]
, (104)

where bv
k is the vector of correlations

bv
k =

[
E[V0Vk] E[V1Vk] · · · E[Vk−1Vk]

]T
. (105)

Combining (103) and (104) shows that

lim
N→∞

(AT
kAk)

−1AT
kvk

a.s.
=

[
0

βk

]
, (106)

where

βk :=
[
Qv

k−1

]−1
bv
k.

Therefore,

qdet
k = Bk(A

T
kAk)

−1AT
kvk

= [Uk Qk−1]

[
0

βk

]
+ ξ

=
k−1∑

ℓ=0

βkℓqℓ + ξ, (107)

where ξ ∈ R
N is the error,

ξ = Bks, s := (AT
kAk)

−1AT
kvk −

[
0

βk

]
. (108)

We next need to bound the norm of the error term ξ. Since

ξ = Bks, the definition of Bk in (95) shows that

ξ =

k∑

i=0

siui +

k−1∑

j=0

sk+j+1qj , (109)



18

where we have indexed the components of s in (108) as s =
(s0, . . . , s2k). From (106), the components sj → 0 almost

surely, and therefore

lim
N→∞

max
j=0,...,2k

|sj | a.s.= 0.

Also, by the induction hypothesis,

lim
N→∞

1

N
‖ui‖2 a.s.

= E(U2
i ), lim

N→∞

1

N
‖qj‖2 a.s.

= E(Q2
j).

Therefore, from (109),

lim
N→∞

1

N
‖ξ‖2 ≤ lim

N→∞

[
max

j=0,...,2k
|sj |2

]

× 1

N


∑

i

‖ui‖2 +
∑

j

‖qj‖2

 a.s.

= 0. (110)

Therefore, if f(q1, · · · , qk) is pseudo-Lipschitz continuous of

order 2,

lim
N→∞

1

N

N∑

n=1

f(q0n, · · · , qk−1,n, qdetk )

(a)
= lim

N→∞

1

N

N∑

n=1

f

(
q0n, · · · , qk−1,n,

k−1∑

ℓ=0

βkℓqℓn

)

(b)
= E

[
f

(
Q0, · · · , Qk−1,

k−1∑

ℓ=0

βkℓQℓn

)]
,

where (a) follows from the (107), the bound (110), and the

pseudo-Lipschitz continuity of f(·); and (b) follows from the

fact that f(·) is pseudo-Lipschitz continuous and the induction

hypothesis that

lim
N→∞

{q0n, · · · , qk−1,n}
PL(2)
= (Q0, . . . , Qk−1).

This proves (101).

�

Lemma 7. Under the induction hypothesis Hk,k−1, the follow-

ing limit holds almost surely

lim
N→∞

1

N
‖UT

A⊥

k

sk‖2 = ρk, (111)

for some constant ρk ≥ 0.

Proof. From (95), the matrix Ak has s = 2k + 1 columns.

From Lemma 4, UA⊥

k
is an orthonormal basis of N − s in

the Range(Ak)
⊥. Hence, the energy ‖UA⊥

k
sk‖2 is precisely

‖U
A⊥

k
sk‖2 = sT

ksk − sT
kAk(A

T
kAk)

−1AT
ksk.

Using similar calculations as the previous lemma, we have

lim
N→∞

1

N
‖UAk

sk‖2 = E[S2
k]− (bs

k)
T [Qs

k]
−1

bs
k.

Hence, the lemma is proven if we define ρk as the right hand

side of this equation. �

Lemma 8. Under the induction hypothesis Hk,k−1, the com-

ponents of the “random” part qran
k along with the components

of (wq ,q0, . . . ,qk−1) almost surely converge empirically as

lim
N→∞

{(wq
n, q0n, . . . , qk−1,n, q

ran
kn )}

PL(2)
= (W q, Q0, . . . , Qk−1, Uk), (112)

where Uk ∼ N (0, ρk) is a Gaussian random variable in-

dependent of (W q, Q0, . . . , Qk−1) and ρk is the constant in

Lemma 7.

Proof. This is a direct application of Lemma 5. Let x =
ṼTUT

A⊥

k

sk so that

qdet
k = UB⊥

k
xk.

For each N , UB⊥

k
∈ R

N×(N−s) is a matrix with orthonormal

columns spanning Range(Bk)
⊥. Also, since Ṽ is uniformly

distributed on the set of (N−s)×(N−s) orthogonal matrices,

and independent of Gk, the conditional distribution xk given

Gk is orthogonally invariant in that

Uxk|Gk

d
= xk|Gk

,

for any orthogonal matrix U. Lemma 7 also shows that

lim
N→∞

1

N
‖xk‖2 = ρk,

almost surely. The limit (112) now follows from Lemma 5.

�

Using the partition (98) and Lemmas 6 and 8, the compo-

nents of (wq,q0, . . . ,qk) almost surely converge empirically

as

lim
N→∞

{(wq
n, q0n, . . . , qkn)}

PL(2)
= lim

N→∞
{(wq

n, q0n, . . . , q
det
kn + qrankn )}

PL(2)
= (W q, Q0, . . . , Qk),

where Qk is the random variable

Qk = βk0Q0 + · · ·+ βk,k−1Qk−1 + Uk.

Since (Q0, . . . , Qk−1) is jointly Gaussian and Uk is Gaussian

independent of (Q0, . . . , Qk−1) we have that (Q0, . . . , Qk) is

Gaussian. This proves (88).

Now the function Γ1(γ1, α1) is assumed to be continuous at

(γ1k, α1k). Also, the induction hypothesis assumes that α1k →
α1k and γ1k → γ1k almost surely. Hence,

lim
N→∞

γ2k = lim
N→∞

Γ1(γ1k, α1k) = γ2k. (113)

In addition, since we have assumed that f ′q(q,w
q, γ1) is

Lipschitz continuous in (q,wq) and continuous in γ1,

lim
N→∞

α2k = lim
N→∞

〈f ′q(qk,w
q, γ1k)〉

= E
[
f ′
q(Qk,W

q, γ1k)
]
= α1k. (114)

The limits (113) and (114) prove (89).
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Finally, we need to show that E[Q2
k] = τ2k is the variance

from the SE equations.

E[Q2
k]

(a)
= lim

N→∞

1

N
‖qk‖2

(b)
= lim

N→∞

1

N
‖vk‖2

(c)
= E [gp(Pk,W

p, γ1k, α1k)]

(d)
= C2

1 (α1k)E
[
(fp(Pk,W

p, γ1k)− α1kPk)
2
]

= C2
1 (α1k)

{
E
[
f2
p (Pk,W

p, γ1k)
]

− 2α1kE [Pkfp(Pk,W
p, γ1k)] + α2

1kE
[
P 2
k

]}

(e)
= C2

1 (α1k)
{
E
[
f2
p (Pk,W

p, γ1k)
]

− 2α1kτ1kE
[
f ′
p(Pk,W

p, γ1k)
]
+ α2

1kτ1k

}

(f)
= C2

1 (α1k)
{
E
[
f2
p (Pk,W

p, γ1k)
]
− α2

1kτ1k
}

(g)
= τ2k, (115)

where (a) follows from the fact that the components of qk

converge empirically to Qk; (b) follows from (79d) and the

fact that V is orthogonal; (c) follows from the limit (90); and

(d) follows from (91); (e) follows from Stein’s Lemma and

the fact that E[P 2
k ] = τ1k; (f) follows from the definition of

α1k in (84a); and (g) follows from (84b). Thus, E[Q2
k] = τ2k,

and we have proven the implication Hk,k−1 ⇒ Hk,k .

APPENDIX G

PROOF OF THEOREM 1

Theorem 1 is essentially a special case of Theorem 4. We

need to simply rewrite the recursions in Algorithm 3 in the

form (79). To this end, define the error terms

pk := r1k − x0, vk := r2k − x0, (116)

and their transforms,

uk := VTpk, qk := VTvk. (117)

Also, define the disturbance terms

wq := (ξ, s), wp := x0, ξ := UTw, (118)

and the componentwise update functions

fq(q, (ξ, s), γ2) :=
γwsξ + γ2q

γws2 + γ2
, (119a)

fp(p, x
0, γ1) = g1(p+ x0, γ1)− x0. (119b)

With these definitions, we claim that the outputs satisfy the

recursions:

pk = Vuk (120a)

α1k = 〈f ′p(pk,x
0, γ1k)〉, γ2k =

(1− α1k)γ1k
α1k

(120b)

vk =
1

1− α1k

[
fp(pk,x

0, γ1k)− α1kpk

]
(120c)

qk = VTvk (120d)

α2k = 〈f ′q(qk,w
q, γ2k)〉, γ1,k+1 =

(1− α2k)γ2k
α2k

(120e)

uk+1 =
1

1− α2k
[fq(qk,w

q, γ2k)− α2kqk] (120f)

Before we prove (120), we can see that (120) is a special case

of the general recursions in (79) if we define

Ci(αi) =
1

1− αi
, Γi(γi, αi) = γi

[
1

αi
− 1

]
.

It is also straightforward to verify the continuity assumptions

in Theorem 4. The assumption of Theorem 1 states that

αik ∈ (0, 1). Since γ10 > 0, γik > 0 for all k and

i. Therefore, Ci(αi) and Γi(γi, αi) are continuous at all

points (γi, αi) = (γik, αik). Also, since s ∈ [0, Smax] and

γ2k > 0 for all k, the function fq(q, (ξ, s), γ2) in (119) is

uniformly Lipschitz continuous in (q, ξ, s) at all γ2 = γ2k.

Similarly, since the denoiser function g1(r1, γ1) is assumed be

to uniformly Lipschitz continuous in r1 at all γ1 = γ1k, so is

the function fp(r1, x
0, γ1) in (119b). Hence all the conditions

of Theorem 4 are satisfied. The SE equations (50) immediately

from the general SE equations (84). In addition, the limits (45)

and and (48) are special cases of the limits (86) and (88). This

proves Theorem 1.

So, it remains only to show that the updates in (120) indeed

hold. Equations (120a) and (120d) follow immediately from

the definitions (116) and (117). Next, observe that we can

rewrite the LMMSE estimation function (24) as

g2(r2k, γ2k)

(a)
=
(
γwA

TA+ γ2kI
)−1 (

γwA
TAx0 + γwA

Tw + γ2kr2k

)

(b)
= x0 +

(
γwA

TA+ γ2kI
)−1 (

γ2k(r2k − x0) + γwA
Tw
)

(d)
= x0 +V

(
γwS

2 + γ2kI
)−1

(γ2kqk + Sξ) ,

(d)
= x0 +Vfq(qk,w

q, γ2k), (121)

where (a) follows by substituting (28) into (24); (b) is a simple

algebraic manipulation; (c) follows from the SVD definition

(29) and the definitions ξ in (118) and qk in (117); and (d)

follows from the definition of componentwise function fq(·)
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in (119a). Therefore, the divergence α2k satisfies

α2k
(a)
=

1

N
Tr

[
∂g2(r2k, γ2k)

∂r2k

]

(b)
=

1

N
Tr

[
VDiag(f ′q(qk,w

q, γ2k))
∂qk

∂r2k

]

(c)
=

1

N
Tr
[
VDiag(f ′q(qk,w

q, γ2k))V
T
]

(d)
= 〈f ′q(qk,w

q, γ2k)〉, (122)

where (a) follows from line 12 of Algorithm 3 and (6)–

(7); (b) follows from (121); (c) follows from (117); and (d)

follows from VTV = I and (6)–(7). Also, from lines 13-14

of Algorithm 3,

γ1,k+1 = η2k − γ2k = γ2k

[
1

α2k
− 1

]
. (123)

Equations (122) and (123) prove (120e). In addition,

pk+1
(a)
= r1,k+1 − x0

(b)
=

1

1− α2k
[g2(r2k, γ2k)− α2kr2k]− x0

(c)
=

1

1− α2k

[
x0 +Vfq(qk,w

q, γ2k)− α2k(x
0 + vk)

]
− x0

(d)
=

1

1− α2k
[Vfq(qk,w

q, γ2k)− α2kvk]

(e)
= V

[
1

1− α2k
[fq(qk,w

q, γ2k)− α2kqk]

]
, (124)

where (a) follows from (116); (b) follows from lines 11-15 of

Algorithm 3; (c) follows from (121) and the definition of vk in

(116); (d) follows from collecting the terms with x0; and (e)

follows from the definition qk = VTvk in (117). Combining

(124) with uk+1 = VTpk+1 proves (120f).

The derivation for the updates for vk are similar. First,

α1k
(a)
= 〈g′

1(r1k, γ1k)〉
(b)
= 〈f ′p(pk,x

0)〉, (125)

where (a) follows from line 5 of Algorithm 3 and (b) follows

from the vectorization of fp(·) in (119b) and the fact that pk =
r1k + x0. Also, from lines 6-7 of Algorithm 3,

γ2k = η1k − γ1k = γ1k

[
1

α1k
− 1

]
. (126)

Equations (125) and (126) prove (120b). Also,

vk
(a)
= r2k − x0

(b)
=

1

1− α1k
[g1(r1k, γ1k)− α1kr1k]− x0

(c)
=

1

1− α1k

[
fp(pk,x

0, γ1k) + x0 − α1k(pk + x0)
]
− x0

(d)
=

1

1− α1k

[
fp(pk,x

0, γ1k)− α1kpk

]
(127)

where (a) is the definition of vk in (116); (b) follows from

lines 4-8 of Algorithm 3; (c) follows from the vectorization

of fp(·) in (119b) and the definition of pk in (116); and (d)

follows from collecting the terms with x0. This proves (120c).

All together, we have proven (120) and the proof is complete.

APPENDIX H

PROOF OF THEOREM 2

We use induction. Suppose that, for some k, γ1k = τ−1
1k .

From (50a), (44) and (36),

α1k = γ1kE1(γ1k). (128)

Hence, from (50b), η−1
1k = E1(γ1k) and γ2k = η1k − γ1k.

Also,

τ2k
(a)
=

1

(1− α1k)2
[
E1(γ1k, τ1k)− α2

1kτ1k
]

(b)
=

1

(1 − γ1kE1(γ1k))
2

[
E1(γ1k, τ1k)− γ1kE21 (γ1k)

]

(c)
=
E1(γ1k, τ1k)

1− γ1kE1(γ1k)
(d)
=

1

η1k − γ1k

,

where (a) follows from (50c); (b) follows from (128) and the

matched condition γ1k = τ−1
1k ; (c) follows from canceling

terms in the fraction and (d) follows from the fact that η−1
1k =

E1(γ1k) and γ1k = η1k/α1k. This proves (56a). A similar

argument shows that (56b) holds if γ2k = τ−1
2k . Finally, (56c)

follows from (56) and (55).
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