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Abstract—We study the classical communication over quantum
channels when assisted by no-signalling (NS) and PPT-preserving
(PPT) codes. We first show that both the optimal success
probability of a given transmission rate and one-shot ε-error
capacity can be formalized as semidefinite programs (SDPs) when
assisted by NS or NS∩PPT codes. Based on this, we derive SDP
finite blocklength converse bounds for general quantum channels,
which also reduce to the converse bound of Polyanskiy, Poor, and
Verdú for classical channels. Furthermore, we derive an SDP
strong converse bound for the classical capacity of a general
quantum channel: for any code with a rate exceeding this bound,
the optimal success probability vanishes exponentially fast as the
number of channel uses increases. In particular, applying our
efficiently computable bound, we derive improved upper bounds
to the classical capacity of the amplitude damping channels and
also establish the strong converse property for a new class of
quantum channels.

I. INTRODUCTION

The reliable transmission of classical information via noisy
quantum channels is central to quantum information theory.
The classical capacity of a noisy quantum channel is the
highest rate at which it can transmit classical information
reliably over asymptotically many uses of the channel. The
Holevo-Schumacher-Westmoreland (HSW) theorem [1], [2],
[3] gives a full characterization of the classical capacity of
quantum channels:

C(N) ∶= sup
n≥1

1

n
χ(N⊗n

), (1)

where χ(N) is the Holevo capacity of N given by χ(N) ∶=

max{(pi,ρi)}H (∑i piN(ρi))−∑i piH(N(ρi)), {(pi, ρi)}i is
an ensemble of quantum states on A and H(σ) = −Trσ logσ
is the von Neumann entropy of quantum state. For a general
quantum channel, our understanding of the classical capacity
is still limited. The work of Hastings [4] shows that the Holevo
capacity is generally not additive, thus the regularization in Eq.
(1) is necessary in general. Since the complexity of comput-
ing the Holevo capacity is NP-complete [5], the regularized
Holevo capacity of a general quantum channel is notoriously
difficult to calculate. Even for the qubit amplitude damping
channel, the classical capacity remains unknown.

The converse part of the HSW theorem states that if
the communication rate exceeds the capacity, then the error

probability of any coding scheme cannot approach to zero in
the limit of many channel uses. This kind of “weak” converse
suggests the possibility for one to increase communication
rates by allowing an increased error probability. A strong
converse property leaves no such room for the trade-off, i.e.,
the error probability necessarily converges to one in the limit
of many channels uses whenever the rate exceeds the capacity
of the channel. For classical channels, the strong converse
property for classical capacity is established by Wolfowitz
[6]. For quantum channels, the strong converse property for
classical capacity is confirmed for several classes of channels
[7], [8], [9], [10], [11]. Unfortunately, for a general quantum
channel, less is known about the strong converse property of
classical capacity and it remains open whether this property
holds for all quantum channels. A strong converse bound for
the classical capacity is a quantity such that the success proba-
bility of transmitting classical messages vanishes exponentially
fast as the number of channel uses increases if the rate of
communication exceeds this quantity.

Another fundamental problem, of both theoretical and prac-
tical interest, is the trade-off between the channel uses, com-
munication rate and error probability in the non-asymptotic
(or finite blocklength) regime. Note that one only needs to
study one-shot communication over the channel since it can
correspond to a finite blocklength. Also, one can study the
asymptotic capacity via the finite blocklength approach. The
study of finite blocklength regime has recently attracted great
interest in classical information theory (e.g., [12], [13]) as
well as in quantum information theory (see [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25] for a partial
list). For classical channels, Polyanskiy, Poor, and Verdú [12]
derive the finite blocklength converse bound via hypothesis
testing. For classical-quantum channels, the one-shot converse
and achievability bounds are given in [26], [16], [18]. Recently,
the one-shot converse bounds for entanglement-assisted and
unassisted codes were given in [15], which generalizes the
hypothesis testing approach in [12] to quantum channels.

To gain insights into the intractable problem of evaluat-
ing the capacities of quantum channels, a natural approach
is to study the performance of extra free resources in the
coding scheme. This scheme, called a code, is equivalently



a bipartite operation performed jointly by the sender Alice
and the receiver Bob to assist the communication [22], [27].
The PPT-preserving codes, i.e. the PPT-preserving bipartite
operations, include all operations that can be implemented
by local operations and classical communication (LOCC) and
were introduced to study entanglement distillation in an early
paper by Rains [28]. The no-signalling (NS) codes refer to
the bipartite quantum operations with the no-signalling con-
straints, which arise in the research of the relativistic causality
of quantum operations [29], [30], [31]. Recently these general
codes have been used to study the classical communication
over classical channels [32], [33], and zero-error classical
communication [27], [34] and quantum communication [22]
over quantum channels. Our work follows this approach and
focuses on the classical communication over quantum channels
assisted by NS and NS∩PPT codes. We show SDP finite
blocklength converse and strong converse bounds for the
classical communication over any quantum channels.

II. PRELIMINARIES

In the following, we will frequently use symbols such
as A (or A′) and B (or B′) to denote (finite-dimensional)
Hilbert spaces associated with Alice and Bob, respectively.
We use dA to denote the dimension of system A. The set
of linear operators over A is denoted by L(A). Note that
for a linear operator R ∈ L(A), we define ∣R∣ =

√
R†R,

where R† is the adjoint operator of R, and the trace norm
of R is given by ∥R∥1 = Tr ∣R∣. The operator norm ∥R∥∞ is
defined as the maximum eigenvalue of ∣R∣. A deterministic
quantum operation (quantum channel) N from A′ to B is
simply a completely positive (CP) and trace-preserving (TP)
linear map from L(A′) to L(B). The Choi-Jamiołkowski
matrix of N is given by JN = ∑ij ∣iA⟩⟨jA∣ ⊗ N(∣iA′⟩⟨jA′ ∣),
where {∣iA⟩} and {∣iA′⟩} are orthonormal bases on isomorphic
Hilbert spaces A and A′, respectively. A positive semidefinite
operator E ∈ L(A ⊗ B) is said to be a positive partial
transpose operator (or simply PPT) if ETB ≥ 0, where TB
means the partial transpose with respect to the party B, i.e.,
(∣ij⟩⟨kl∣)TB = ∣il⟩⟨kj∣. As shown in [28], a bipartite operation
Π(AiBi → AoBo) is PPT-preserving if and only if its Choi-
Jamiołkowski matrix ZAiBiAoBo is PPT.

The constraints of PPT and NS can be characterized in a
mathematically tractable way. A bipartite operation Π(AiBi →
AoBo) is no-signalling and PPT-preserving if and only if its
Choi-Jamiołkowski matrix ZAiBiAoBo satisfies [22]:

ZAiBiAoBo ≥ 0, (CP)
TrAoBo ZAiBiAoBo = 1AiBi , (TP)

Z
TBiBo

AiBiAoBo
≥ 0, (PPT)

TrAo ZAiBiAoBo =
1Ai

dAi

⊗TrAoAi ZAiBiAoBo , (A /→ B)

TrBo ZAiBiAoBo =
1Bi

dBi

⊗TrBoBi ZAiBiAoBo , (B /→ A)

where the five lines correspond to characterize that Π is
completely positive, trace-preserving, PPT-preserving, no-

signalling from A to B, no-signalling from B to A, respec-
tively. The no-signalling codes is also studied in [27].

Semidefinite programming [35] is a subfield of convex
optimization and is a powerful tool in quantum information
theory with many applications (e.g., [15], [22], [27], [28], [36],
[37], [38], [39]). In this work, we use CVX [40] and QETLAB
[41] to solve the SDPs in this work.

III. COMMUNICATION ASSISTED BY NS AND PPT CODES

A. Semidefinite programs for optimal success probability

Suppose Alice wants to send the classical message labeled
by {1, . . . ,m} to Bob using the composite channel M = Π ○

N , see Fig. 1 for details. Then the input register of M can
be considered to be classical. After the action of E and N ,
the message results in quantum state at Bob’s side. Bob then
performs a POVM with m outcomes on the resulting quantum
state. The POVM is a component of the operation D. Since the
results of the POVM and the input messages are both classical,
we assume that M is with classical registers throughout this
paper. If the outcome k ∈ {1, . . . ,m} happens, he concludes
that the message with label k was sent. Let Ω be some class
of codes. The average success probability of the code Π and
the Ω-class code are defined as follows.

Ai Bo

E D

Ao Bi
N

Π

M

Fig. 1. Bipartite operation Π(AiBi → AoBo) is equivalently the coding
scheme (E ,D) with free extra resources, such entanglement or no-signalling
correlations. The whole operation is to emulate a noiseless classical (or
quantum) channel M(Ai → Bo) using a given noisy quantum channel
N(Ao → Bi) and the bipartite operation Π.

Definition 1 The average success probability ofN to transmit
m messages assisted with the code Π is defined by

f(N ,Π,m) =
1

m

m

∑
k=1

TrM(∣k⟩⟨k∣)∣k⟩⟨k∣, (2)

where M ≡ Π ○ N and {∣k⟩} is the computational basis in
system Ai. Furthermore, the optimal average success proba-
bility of N to transmit m messages assisted with Ω-class code
is defined by

fΩ(N ,m) = sup
Π
f(N ,Π,m), (3)

where the maximum is over the codes in class Ω.

We now define the Ω-assisted classical capacity of a quan-
tum channel as below:

CΩ(N) ∶= sup{r ∶ lim
n→∞

fΩ(N
⊗n,2rn) = 1}. (4)



As described above, one can simulate a channelM with the
channel N and code Π, where Π is a bipartite CPTP operation
from AiBi to AoBo which is no-signalling (NS) and PPT-
preserving (PPT). In this work, we shall also consider other
classes of codes, such as entanglement-assisted (EA) code,
unassisted (UA) code, and we use Ω to denote the specific class
of codes in this paper. Let M(Ai → Bo) denote the resulting
composition channel of Π and N , written M= Π ○N . Based
on the results in [42], the Choi-Jamiołkowski matrix of M
[22] is given by JM = TrAoBi(J

T
N ⊗ 1AiBo)ZAiAoBiBo .

We are now able to derive the one-shot characterization
of classical communication over general quantum channels
assisted by NS (or NS∩PPT) codes.

Theorem 2 For a given quantum channel N , the optimal
success probability of N to transmit m messages assisted by
NS∩PPT codes is given by

fNS∩PPT(N ,m) = max TrJNFAB

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B ,

TrρA = 1,TrA FAB = 1B/m,

0 ≤ FTB

AB ≤ ρA ⊗ 1B (PPT).

(5)

Similarly, when assisted by NS codes, one can remove the PPT
constraint to obtain the optimal success probability.

Proof Sketch. (The full proof can be found in [43].) We
first use the Choi-Jamiołkowski representations of quantum
channels to refine the average success probability. Without loss
of generality, we assume that Ai and Bo are classical registers
with size m, i.e., the inputs and outputs are {∣k⟩Ai}

m
k=1

and {∣k′⟩Bi}
m
k′=1, respectively. For some NS∩PPT code Π,

the Choi-Jamiołkowski matrix of M = Π ○ N is given by
JM = ∑ij ∣i⟩⟨j∣Ai ⊗M(∣i⟩⟨j∣A′i), where A′

i is isometric to Ai.
Then, we can refine f(N ,Π,m) to

f(N ,Π,m) =
1

m

m

∑
k=1

Tr[∣k⟩⟨k∣Ai ⊗M(∣k⟩⟨k∣A′i)∣k⟩⟨k∣Bo]

=
1

m
TrJM

m

∑
k=1

∣kk⟩⟨kk∣AiBo .

Then, denoting DAiBo = ∑
m
k=1 ∣kk⟩⟨kk∣AiBo , we have

fNS∩PPT(N ,m) = max
M=Π○N

1

m
Tr(JMDAiBo),

where M = Π ○ N and Π is any feasible NS∩PPT bipartite
operation . (See FIG. 1 for the implementation ofM.) Noting
that JM = TrAoBi(J

T
N ⊗ 1AiBo)ZAiAoBiBo , we can further

simplify f(N ,m). Then, we exploit symmetry to simplify
the optimization of f(N ,m) over all possible codes, i.e.,
ZAiAoBiBo can be rewritten as

ZAiAoBiBo = FAoBi ⊗DAiBo +EAoBi ⊗ (1 −DAiBo),

for some operators EAoBi and FAoBi . Thus, the objective
function can be simplified to TrJTNF .

Finally, we impose the no-signalling and PPT-preserving
constraints to obtain the optimal average success probability

as showed in Eq. (5). It is worthing noting that fNS(N ,m) can
be obtained by removing the PPT constraint and it corresponds
with the optimal NS-assisted channel fidelity in [22].

B. One-shot ε-error capacity

For given 0 ≤ ε < 1, the one-shot ε-error classical capacity
assisted by Ω-class codes is defined as

C
(1)
Ω (N , ε) ∶= sup{logλ ∶ 1 − fΩ(N , λ) ≤ ε}. (6)

We derive the one-shot ε-error capacity as follows.

Theorem 3 For given channel N and error threshold ε, the
one-shot ε-error NS∩PPT-assisted capacity is given by

C
(1)
NS∩PPT(N , ε) = − log minη

s.t. 0 ≤ FAB ≤ ρA ⊗ 1B ,

TrρA = 1,TrA FAB = η1B ,

TrJNFAB ≥ 1 − ε,

0 ≤ FTB

AB ≤ ρA ⊗ 1B (PPT),

(7)

Similarly, when assisted by NS codes, one can remove the
PPT constraint to obtain the optimal success probability.

Proof omitted (see [43]).
Since no-signalling-assisted codes are potentially stronger

than the entanglement-assisted codes, C
(1)
NS (N , ε) and

C
(1)
NS∩PPT(N , ε) can provide the converse bounds of classi-

cal communication for entanglement-assisted and unassisted
codes, respectively. We further compare our one-shot ε-error
capacities with the previous SDP converse bounds derived
by the quantum hypothesis testing technique in [15]. To be
specific, for a given channel N(A→ B) and error thresold ε,
Matthews and Wehner [15] establish that

C
(1)
E (N , ε) ≤ IAll

ε (N) and C(1)(N , ε) ≤ IPPT
ε (N),

with IAll
ε (N) = maxρA minσB

Dε
H((idA′ ⊗ N)(ρA′A)∣∣ρA′ ⊗

σB) and IPPT
ε (N) = maxρA minσB

Dε
H,PPT ((idA′ ⊗

N)(ρA′A)∣∣ρA′ ⊗ σB). Here, ρA′A = (1A′ ⊗ ρ
1
2

A)ΦA′A(1A′ ⊗

ρ
1
2

A) is a purification of ρA and ρA′ = TrA ρA′A. Moreover,
Dε
H(ρ0∣∣ρ1) is the hypothesis testing relative entropy [16],

[15] and Dε
H,PPT (ρ0∣∣ρ1) is the similar quantity with a PPT

constraint on the POVM.
Interestingly, even when we allow stronger assistances (NS

or NS ∩ PPT codes), the one-shot ε-error capacities are still
smaller than or equal to the SDP converse bounds in [15].
(Note that EA ⊂ NS). And the inequalities can be strict.

Proposition 4 For a given channel N and error threshold ε,

C
(1)
NS (N , ε) ≤ IAll

ε (N), (8)

C
(1)
NS∩PPT(N , ε) ≤ IPPT

ε (N). (9)

In particular, both inequalities can be strict for some quantum
channels such as the amplitude damping channels.



Proof and examples can be found in [43]. This means that
we can use C(1)NS∩PPT(N , ε) and C(1)NS (N , ε) to provide better
SDP converse bounds for entanglement-assisted and unassisted
codes, respectively.

IV. STRONG CONVERSE BOUND FOR CLASSICAL CAPACITY

A. An SDP strong converse bound

It is well known that evaluating the classical capacity of
a general channel is extremely difficult. To the best of our
knowledge, the only known nontrivial strong converse bound
is the entanglement-assisted capacity [44] and there is also
computable upper bound derived from entanglement measures
[45]. In this section, we derive an SDP strong converse bound
for the classical capacity of a general quantum channel. Our
bounds are efficiently computable and do not depend on any
special properties of the channel. We further show that for
some quantum channels, our bound is strictly smaller than the
entanglement-assisted capacity and the previous bound in [45].

Theorem 5 For any quantum channel N ,

C(N) ≤ CNS∩PPT(N) ≤ Cβ(N) = logβ(N),

where

β(N) = min TrSB s.t. −RAB ≤ JTB

N
≤ RAB ,

− 1A ⊗ SB ≤ RTB

AB ≤ 1A ⊗ SB .
(10)

In particular, when the communication rate exceeds Cβ(N),
the error probability goes to one exponentially fast as the
number of channel uses increases.

We outline the proof sketch here. The first step is to introduce
a subadditive upper bound f+(N ,m) on fNS∩PPT(N ,m).
Then, the n-shot error probability satisfies that εn = 1 −

fNS∩PPT(N
⊗n,2rn) ≤ 1 − f+(N ,2r)n. Finally, we show that

for any 2r > β(N), it holds that f+(N ,2r) < 1, which means
εn will go to one exponentially fast as n increases. The detailed
proof can be found in [43].

B. Amplitude damping channel

For the amplitude damping channel NAD
γ = ∑

1
i=0Ei ⋅ E

†
i

(0 ≤ γ ≤ 1) with E0 = ∣0⟩⟨0∣ +
√

1 − γ∣1⟩⟨1∣ and E1 =
√
γ∣0⟩⟨1∣,

the Holevo capacity is solved in [46]. However, its classical
capacity remains unknown. The only known nontrivial upper
bound was established in [45]. As an application of Theorem
5, we show a simple strong converse bound for the classical
capacity of the amplitude damping channel, which improves
the previously best upper bound in [45].

Theorem 6 For amplitude damping channel NAD
γ ,

C(N
AD
γ ) ≤ Cβ(N

AD
γ ) = log(1 +

√
1 − γ).

The idea is to apply the bound Cβ to the amplitude damping
channel. Full proof can be found in [43]. We compare our
bound with the previous upper bound [45] and lower bound
[46] in FIG. 2. It is clear that our bound provides a tighter
bound to the classical capacity than the previous bound [45].

0 0.1 0.2 0.3 0.4 0.5

γ from 0 to 0.5

0.5

0.6

0.7

0.8

0.9

1

Cβ(N
AD
γ )

previous upper bound
C1(N

AD
γ )

Fig. 2. The solid line depicts Cβ(NADγ ), the dashed line depicts the previous
bound of C(NADγ ) [45], and the dotted line depicts the lower bound [46].
Our bound is tighter than the previous bound in [45].

C. Strong converse property for new channels

In [47], a class of qutrit-to-qutrit channels was intro-
duced to show the gap between quantum Lovász number and
entanglement-assisted zero-error classical capacity. It turns out
that this class of channels also has strong converse property
for classical capacity. To be specific, the channel from register
A to B is given by Nα(ρ) = E0ρE

†
0 +E1ρE

†
1 (0 < α ≤ π/4)

with E0 = sinα∣0⟩⟨1∣ + ∣1⟩⟨2∣ and E1 = cosα∣2⟩⟨1∣ + ∣1⟩⟨0∣.

Proposition 7 For Nα (0 < α ≤ π/4), we have that

C(Nα) = CNS∩PPT(Nα) = Cβ(Nα) = 1.

Proof omitted (see [43]).

V. CONCLUSIONS AND DISCUSSIONS

In summary, we have obtained the optimal success prob-
abilities of transmitting classical information assisted by NS
or NS∩PPT codes. Based on this, we have also derived the
one-shot ε-error NS-assisted and NS∩PPT-assisted capacities.
In particular, all of these one-shot characterizations are in
the form of SDPs. Remarkably, the one-shot NS-assisted and
NS∩PPT-assisted) ε-error capacities provide an improved finite
blocklength estimation of the classical communication than the
previous quantum hypothesis testing converse bounds in [15].

Furthermore, in the asymptotic regime, we have derived an
SDP strong converse bound for the classical capacity of a
general quantum channel, which can be strictly smaller than
the entanglement-assisted capacity. As an example, we have
shown an improved upper bound of the classical capacity
of the qubit amplitude damping channel. Moreover, we have
proved that the strong converse property holds for the classical
capacity of a new class of quantum channels.

It would also be interesting to study how to implement
the NS and PPT-preserving codes. It is also interesting to
improve the strong converse bound based on the optimal
success probability assisted by NS∩PPT codes.
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