
Codes for Channels With Segmented Edits
Mahed Abroshan

University of Cambridge
ma675@cam.ac.uk

Ramji Venkataramanan
University of Cambridge

ramji.v@eng.cam.ac.uk

Albert Guillén i Fàbregas
ICREA & Universitat Pompeu Fabra

University of Cambridge
guillen@ieee.org

Abstract—We consider insertion and deletion channels with
the additional assumption that the channel input sequence is
implicitly divided into segments such that at most one edit can
occur within a segment. We further assume that there are no
segment markers in the received sequence. We propose code
constructions for the segmented deletion, segmented insertion,
and segmented insertion-deletion channels based on subsets of
VT codes chosen with pre-determined prefixes and/or suffixes.
The proposed codes are zero-error, can be decoded segment-by-
segment, and their rate scaling as the segment length increases
is the same as that of the maximal code.

I. INTRODUCTION

We consider the problem of constructing codes for seg-
mented edit channels, where the channel input sequence is
implicitly divided into disjoint segments. Each segment can
undergo at most one edit, which can be either an insertion
or a deletion. There are no segment markers in the received
sequence.

This model, introduced by Liu and Mitzenmacher [1], is
a simplified version of the general edit channel, where the
insertions and deletions can be arbitrarily located in the input
sequence. Constructing codes for general edit channels is well
known to be challenging problem [2]–[8]. The assumption of
segmented edits not only simplifies the coding problem, but is
also likely to hold in many edit channels that arise in practice,
e.g. in data storage.

Let us consider three examples to illustrate the model. For
simplicity, we assume that the segment length, denoted by b,
is 3 in each case.

1) Segmented Deletion Channel: Each segment can undergo
at most one deletion; no insertions occur. Consider the follow-
ing pair of input and output sequences:

X = 011 100 010 −→ Y = 0110010, (1)

with the underlined bits in X being deleted by the channel
to produce the output sequence Y . It is easily verified that
many other input sequences could have produced the same
output sequence, e.g., 010 100 010, 010 101 010, 011 000 100
etc. The receiver has no way of distinguishing between these
candidate input sequences. In particular, despite knowing the
segment length and that deletions occurred, it does not know
in which two segments the deletions occurred.

This work has been funded in part by the European Research Council under
ERC grant agreement 259663 and by the Spanish Ministry of Economy and
Competitiveness under grant TEC2016-78434-C3-1-R.

2) Segmented Insertion Channel: Each segment can undergo
at most one insertion; no deletions occur. The inserted bit
can be placed anywhere within the segment, including before
the first bit or after the last bit of the segment. For example,
consider

X = 011 100 010 −→ Y = 011101000110, (2)

with the underlined bits in Y indicating the insertions. Two
inserted bits can appear between two segments whenever there
is an insertion after the last bit of first segment and before the
first bit of the next segment.

3) Segmented Insertion-Deletion Channel: This is the most
general case, where a segment could undergo either an inser-
tion or a deletion, or remain unaffected. For example, consider

X = 011 100 010 −→ Y = 0101000110, (3)

with the underlined bits on the left indicating deletions, and
the underlined bits on the right indicating insertions. Unlike
the previous two cases, the receiver cannot even infer the exact
number of edits that have occurred. In the example above, an
input sequence 9 bits (three segments) long could result in a
10-bit output sequence in two different ways: either via one
segment with an insertion, or via two segments with insertions
and the other with a deletion.

The above examples demonstrate that one cannot reduce the
problem to one of correcting one edit in a b-bit input sequence.
To see this, consider the example in (1), and suppose that we
used a single-deletion correcting code for each segment. Such
a code would declare the first three bits of Y to be the first
segment of X , which would result in incorrect decoding of
the following segments.

In this paper, we construct zero-error codes for each of the
three segmented edit models above. Our codes can be easily
constructed even for relatively large segment sizes (several
tens), and can be decoded segment-by-segment in linear time.
Moreover, the proposed codes have rate of at least

1− 1

b
log2(b+ 1)− κ

b
, (4)

where the constant κ equals 2 for the segmented deletion
channel, 2.5 for the segmented insertion channel, and 7 for the
segmented insertion-deletion channel. Thus the rate scaling for
the proposed codes is the same as that of the maximal code
[9, Lemma 2], with the rate penalty being at most κ/b.

The starting point for our code constructions is the family of
Varshamov-Tenengolts (VT) codes [2], [10]. Each code in this
family is a single-edit correcting code. In our constructions,
the codewords in each segment are drawn from subsets of
VT codes satisfying certain prefix/suffix conditions, which
are carefully chosen to enable fast segment-by-segment VT
decoding.

A. Comparison with previous work

We highlight some similarities and differences from the
codes proposed by Liu and Mitzenmacher in [1] for the
segmented deletion and segmented insertion channels.

Code construction: The code in [1] is a segment-by-segment
code specified via sufficient conditions [1, Theorems 2.1,
2.2] that ensure that as decoding proceeds, there are at most
two choices for the starting position of the next undecoded
segment. Finding the maximal code that satisfies these con-
ditions corresponds to an independent set problem, which is
challenging for large b. The maximal code satisfying these
conditions was reported in [1] for b = 8, 9. For larger b, a
greedy algorithm was used to find a set of codewords satisfying
the conditions. It was also suggested that one could restrict
the code to a subset of VT codes that satisfy the sufficient
conditions.

In comparison, our codes are directly defined as subsets of
VT codes that satisfy certain simple prefix/suffix conditions;
these conditions are different from those in [1]. Our conditions
ensure that upon decoding each segment, there is no ambiguity
in the starting position of the next segment. These subsets of
VT codes are relatively simple to enumerate, so it is possible
to find the largest code satisfying our conditions for b of the
order of several tens. Table I lists the number of codewords
per segment for the three segmented edit channels for up to
b = 24. Another difference from the code in [1] is that for the
segmented deletion and segmented insertion-deletion channels,
our codebook for each segment is chosen based on the final
bit of the previous segment.

Rate: The VT subsets and sufficient conditions we define
allow us to obtain a lower bound of the form (4) on the rate of
our code for any segment length b. Combined with the simple
upper bound obtained via the rate of the maximal single-edit
correcting code [9, Lemma 2], we conclude that the maximal
code for the segmented edit channel has rate

1− 1

b
log2(b+ 1)−O

(
1

b

)
. (5)

In particular, this affirmatively answers the conjecture in
[1] that the rates of the maximal codes for the segmented
edit channel increases with b. Our results also confirm the
conjecture that the maximal codes satisfying the sufficient
conditions in [1] have rate scaling optimally with b.1

Though the maximal codes satisfying the Liu-Mitzenmacher
conditions have rate very close to the largest possible with

1This can be shown by verifying that our segmented insertion code satisfies
the Liu-Mitzenmacher sufficient conditions, and noting that its rate scales
optimally with b.

TABLE I: Number of codewords per segment of the proposed codes. Lower
bounds computed from (11), (16), and (22) are given in brackets.

b Deletion Insertion Insertion-Deletion

8 8 (8) 6 (6) 1 (1)
9 13 (13) 10 (10) 2 (1)

10 24 (24) 18 (18) 2 (1)
11 44 (43) 33 (32) 2 (2)
12 79 (79) 60 (59) 4 (3)
13 147 (147) 111 (110) 6 (5)
14 276 (274) 208 (205) 12 (9)
15 512 (512) 384 (384) 16 (16)
16 964 (964) 724 (723) 34 (31)
17 1,824 (1,821) 1,368 (1,366) 59 (57)
18 3,450 (3,450) 2,588 (2,587) 114 (108)
19 6,554 (6,554) 4,916 (4,916) 206 (205)
20 12,490 (12,484) 9,369 (9,363) 399 (391)
21 23,832 (23,832) 17,847 (17,874) 746 (745)
22 45,591 (45,591) 34,194 (34,193) 1,435 (1,425)
23 87,392 (87,382) 65,544 (65,536) 2,736 (2,731)
24 167,773 (167,773) 125,831 (125,830) 5,257 (5,243)

segment-by-segment decoding, finding the maximal code sat-
isfying these conditions is computationally hard, so one has to
resort to greedy algorithms to construct codes for larger b. This
is reflected in the rate comparison: for b = 8, 9, the optimal
Liu-Mitzenmacher code for segmented deletions is larger than
our code (12,20 vs. 8,13 codewords). However for b = 16,
the code obtained in [1] using a greedy algorithm has 652
codewords, whereas our code has 964 codewords, as shown
in Table I. For large b, our codes are nearly optimal since the
rate penalty decays as κ/b.

Decoding Complexity: As segment-by-segment decoding is
enforced by design, the decoding complexity grows linearly
with the number of segments for both our codes and those in
[1]. Within each segment, the decoding complexity of our code
is linear in b. In general, for each segment, the maximal Liu-
Mitzenmacher codes have to be decoded via look-up tables, in
which case the complexity is exponential in b. Using subsets
of VT codes was suggested in [1] as a way to reduce the
decoding complexity.

Finally, we remark that codes proposed in this paper are the
first for the segmented insertion-deletion model.

II. CHANNEL MODEL AND PRELIMINARIES

The channel input sequence, denoted by X = x1x2 · · ·xn,
is divided into k segments of b bits each. We denote the
subsequence of X , from index i to index j, with i < j by
X(i : j) = xixi+1 · · ·xj . The i-th segment of X is denoted
by Si = si,1 · · · si,b = X

(
b(i− 1) + 1 : bi

)
for i = 1, . . . , k.

In the segmented deletion channel, the channel output
Y = Y (1:m) = y1 · · · ym, with m ≤ n is obtained by deleting
at most one bit in each segment, i.e., at most one bit in Si,
i = 1, . . . , k, is deleted. Similarly, in the segmented insertion
channel, the channel output Y = y1 . . . ym, with m ≥ n is
obtained by inserting at most one bit per segment. In the seg-
mented insertion-deletion channel, the channel output is such
that each segment Si, i = 1, . . . , k undergoes at most one edit.
In all cases, we assume that the decoder knows k and b, but not
the segment boundaries. We consider coded communication

using a code C = {X(1), . . . , X(M)} ⊆ {0, 1}n of length n,
M codewords and rate R = 1

n logM . The decoder produces
an estimate X̂ of the transmitted sequence. We denote the
corresponding segment estimates by Ŝi = ŝi,1 · · · ŝi,b, for
i = 1, . . . , k. Thus X̂ = (Ŝ1, . . . , Ŝk). We consider zero-error
codes that always ensure the recoverability of the transmitted
sequence, i.e., codes for which X̂ = X . For simplicity, we
consider binary codes, but our constructions naturally extend
to larger alphabets. Levenshtein [9] showed that for any fixed
number of edits e arbitrarily placed in the input sequence, the
rate of the maximal code of length n that corrects e edits is
1− κ1

e log2 n
n + κ2

log2 e!
n for sufficiently large n. Here κ1, κ2

are constants in the interval [1, 2].

A. VT codes

In the case where k = 1, and thus n = b, there is at most
one edit in the entire sequence. For this model, one can use
VT codes which are zero-error single-edit correction codes
[2], [10], i.e., when the transmitted codeword suffers a single
insertion or a deletion, the decoder always corrects the edit.
Moreover, the complexity of the VT decoding algorithm is
linear in the code length b; the details of the algorithm can be
found in [2].

The VT syndrome of a binary sequence S = s1 . . . sb is
defined as

syn(S) =
b∑

j=1

j sj (mod(b+ 1)). (6)

For positive integers b and 0 ≤ a ≤ b, we define the VT code
of length b and syndrome a, denoted by

VTa(b) =
{
S ∈ {0, 1}b : syn(S) = a

}
(7)

i.e., the set of sequences S of length b that satisfy syn(S) = a.
For example,

VT1(3) =
{
s1s2s3 :

3∑
j=1

j sj = 1 mod 4
}
= {100, 011}. (8)

The b+ 1 sets VTa(b) ⊂ {0, 1}b, for 0 ≤ a ≤ b, partition the
set of all sequences of length b. Each of these sets VTa(b) is
a single-edit correcting code. Moreover, for 0 ≤ a ≤ b, the
cardinalities of these sets satisfy [2, Corollary 2.3]

|VT0(b)| ≥ |VTa(b)| ≥ |VT1(b)|.

The largest of the sets VTa(b), 0 ≤ a ≤ b, will have at
least 2b

b+1 sequences out of the 2b possible. This induces a
rate R ≥ 1 − 1

b log2(b + 1) for the largest of these codes.
The code VT0(b) has been shown to be maximal for single-
edit correction for b ≤ 8, and have been conjectured to be
maximal for arbitrary b [2].

III. SEGMENTED DELETION CODES

If the decoder knew the segment boundaries, then simply
using a VT code for each segment would suffice. Since the
segment boundaries are not known, recall from the example
in (1) that this approach is inadequate if segment-by-segment

decoding is to be used. Our construction chooses a subset of
a VT code for each segment, with prefixes determined by the
last bit of the previous segment.

A. Code Construction

For 0 ≤ a ≤ b, define the following sets.

A0
a ≜

{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 00

}
,

A1
a ≜

{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 11

}
.

(9)

For c ∈ {0, 1}, the set Ac
a ⊆ VTa(b) is the set of VT

codewords that start with prefix cc. We now choose the sets
with the largest number of codewords, i.e., we choose A0

a0

and A1
a1

where we define

a0 = argmax
0≤a≤b

|A0
a|, a1 = argmax

0≤a≤b
|A1

a|. (10)

By defining Ms = min{|A0
a0
|, |A1

a1
|}, we can now construct

A0 ⊆ A0
a0

by choosing any Ms sequences from A0
a0

; similarly
construct A1 ⊆ A1

a1
by choosing any Ms sequences from A1

a1
.

Note that A0 and A1 are subsets of the VT codes VTa0(b)
and VTa1(b), containing sequences starting with 00 and 11,
respectively.

Finally, the overall code of length n = kb is constructed by
choosing a codeword for each segment from either A0 or A1.
The codeword for the first segment is chosen from A0. The
codeword for segment i = 2, . . . , k is chosen as follows: if the
last code bit in segment (i − 1) equals 0, then the codeword
for segment i is chosen from A1; otherwise it is chosen from
A0.

B. Rate

The overall code of length n = kb has Mk
s codewords, and

rate R = 1
n logMk

s = 1
b logMs. The rate can be bounded

from below as

R ≥ 1− 1

b
log2(b+ 1)− 2

b
. (11)

Indeed, there are 2b−2 binary sequences of length b whose first
two bits equal 0. Each of these sequences belongs to exactly
one of the sets A0

0, . . . ,A0
b . Therefore, the largest among these

(b+ 1) sets will contain at least 2b−2/(b+ 1) sequences and
thus, |A0

a0
| ≥ 2b−2/(b+1). A similar argument gives the same

lower bound for |A1
a1
|, hence Ms ≥ 2b−2/(b + 1). Taking

logarithms gives (11).
From (11), we see that the rate penalty with respect to VT

codes is at most 2
b due to the prefix of length 2. As an example,

for b = 16 our code has 964 codewords, while the greedy
algorithm described in [1], gives 740; this is reduced to 652
when the search is restricted to VT codes. More examples are
reported in Table I.

C. Decoding

Thanks to the segment-by-segment code construction, de-
coding will also proceed segment by segment. Decoding
proceeds in the following simple steps.

In order to decode segment i, for i = 1, . . . , k, assume that
the first i−1 segments have been decoded correctly. Thus the

decoder knows the correct starting position of segment i in Y ;
we denote it by pi + 1.

By examining the last bit of segment (i − 1), the decoder
learns the correct syndrome for the codeword in segment i,
i.e., either a0 or a1; recall that segment 1 was drawn from
A0. Without loss of generality, assume it is a0; the decoding
for a1 is identical.

1) The decoder computes the VT syndrome

â = syn
(
Y (pi + 1 : pi + b)

)
(12)

and compares it to the correct syndrome (assumed to be
a0). There are two possibilities:

a) â = a0: The decoder concludes that there is no deletion
in segment i and outputs Ŝi = Y

(
pi +1 : pi + b

)
. The

starting position of the next segment in Y is pi+b+1.
b) â ̸= a0: The decoder knows there is a deletion in the

first segment and feeds Y
(
pi+1:pi+b−1

)
to the VT

decoder to recover the codeword. The output of the
VT decoder is the decoded segment Ŝi. The starting
position of the next segment in Y is pi + b.

2) The decoder now checks the last bit of the decoded
segment ŝi,b. If ŝi,b = 0, the decoder knows that segment
(i + 1) has been drawn from A1; otherwise it has been
drawn from A0. Thus the decoder is now ready to decode
segment (i+ 1).

IV. SEGMENTED INSERTION CODES

A. Code Construction

As in the deletion case, we define a subset of VT codewords
such that upon decoding a segment, there is no ambiguity
in the starting position of the next segment. We define the
following set of sequences

Aa ≜
{
S ∈ {0, 1}b : syn(S) = a, S ̸= 011 · · · 1,

s1s2 = 01, s3s4 ̸= 01
} (13)

and
a0 = argmax

0≤a≤b
|Aa|. (14)

Similarly to the previous section, the sets Aa ⊆ VTa(b) are
sets of VT codewords with a prefix of a certain form. Our
code is thus the maximal code in this family, i.e., C = Ak

a0
. In

contrast to the deletion case, the codeword for each segment
is drawn from the same set Aa0 .

In order to find the size of the code, we use similar
arguments to those in the previous section. There are 2b−2

sequences with prefix 01, out of which 2b−4 are removed
because they have prefix 0101; 01 · · · 1 is excluded from Aa

by construction. Each of the 2b−2−2b−4−1 sequences belong
to exactly one of the sets A0, . . . ,Ab. Therefore, the largest
of these b+ 1 sets will have size at least

|Aa0 | ≥
2b−2 − 2b−4 − 1

b+ 1
. (15)

This yields the following lower bound for the rate for b ≥ 6:

R ≥ 1− 1

b
log2(b+ 1)− 2.5

b
. (16)

Hence the rate penalty is at most 2.5
b due to the added

constraints on the prefix.

B. Decoding

Decoding proceeds on a segment-by-segment basis, and as
in the case of deletions, the code structure ensures that before
decoding segment i, the previous (i− 1) segments have been
correctly decoded. Thus the decoder knows the correct starting
position of segment i in Y ; as before, denote it by pi + 1.

1) The decoder computes the VT syndrome

â = syn
(
Y (pi + 1 : pi + b)

)
(17)

and compares it to the correct syndrome a0. There are
two possibilities:

a) â ̸= a0: The decoder knows that there has been an
insertion in this segment and feeds Y

(
pi+1:pi+b+1

)
to the VT decoder to recover the codeword. The output
of the VT decoder is the decoded segment Ŝi. The
decoder proceeds decoding segment i+1, skipping step
2. The starting position in Y for decoding segment i+1
is pi + b+ 2.

b) â = a0: The decoder concludes that there is no inser-
tion in Y

(
pi +1 : pi + b

)
and outputs Ŝi = Y

(
pi +1 :

pi + b
)
.

2) If case 1.b) holds, the decoder has to check whether
ypi+b+1 could be an inserted bit at the very end of the
segment. To this end, the Y (pi + b + 1 : pi + b + 4) is
checked against the prefix conditions for segment i + 1
set in Aa0 .

a) If ypi+b+1ypi+b+2 ̸= 01: the decoder understands that
there is an irregularity caused by either an insertion
in ypi+b+1, or in ypi+b+2 or both. Therefore it deletes
ypi+b+1 and proceeds to decode segment i+1 starting
from ypi+b+2.

b) If ypi+b+1ypi+b+2 = 01, ypi+b+3ypi+b+4 ̸= 01, then
ypi+b+1 is the correct start of segment i+ 1.

c) If ypi+b+1ypi+b+2 = 01, ypi+b+3ypi+b+4 = 01: In this
case, the decoder needs to decide among three alterna-
tives by decoding segment i+ 1:
i) ypi+b+3 = 0 is an inserted bit in segment

i + 1 and no inserted bit in segment i; let
Ỹ1 = ypi+b+1ypi+b+2ypi+b+4 · · · ypi+2b+1 denote
the length b sequence resulting from deleting
ypi+b+3 from the received sequence. If syn(Ỹ1) =
a0 then Ŝi+1 = Ỹ1.

ii) ypi+b+4 = 1 is an inserted bit in segment
i + 1 and no inserted bit in segment i; let
Ỹ2 = ypi+b+1ypi+b+2ypi+b+3ypi+b+5 · · · ypi+2b+1

denote the length b sequence resulting from
deleting ypi+b+4 from the received sequence. If
syn(Ỹ2) = a0 then Ŝi+1 = Ỹ2.

iii) ypi+b+1 = 0, ypi+b+2 = 1 are inserted bits
in segments i and i + 1, respectively; let Ỹ3 =
ypi+b+3ypi+b+4 · · · ypi+2b+2 denote the length b
sequence resulting from deleting ypi+b+1, ypi+b+2

from the received sequence. If syn(Ỹ3) = a0 then
Ŝi+1 = Ỹ3.

When Y (bi+1:bi+4) = 0101, we now show that the three
cases listed in step 2.c) are mutually exclusive, and hence only
one of them will give a matching VT syndrome. What needs
to be checked is that the syndromes of Ỹ1, Ỹ2, Ỹ3 will all be
different. From the very properties of VT codes we know that
syn(Ỹ1) ̸= syn(Ỹ2). Now find that

syn(Ỹ1)− syn(Ỹ3) (mod(b+ 1))

=
b∑

j=1

j ỹ1,j −
b∑

j=1

j ỹ3,j (mod(b+ 1))

= 5 +

pi+2b+1∑
j=pi+b+5

yj − 2− bypi+2b+2 (mod(b+ 1))

= 3 + wH

(
Y (pi + b+ 5 : pi + 2b+ 1)

)
+ ypi+2b+2

(mod(b+ 1))

̸= 0
(18)

where wH(Z) denotes the Hamming weight of sequence Z.
The last step of (18) holds because

3+wH

(
Y (pi + b+5 : pi +2b+1)

)
+ ypi+2b+2 (mod(b+1))

can equal to 0 only if wH

(
Y (pi+b+5:pi+2b+1)

)
= b−3 and

ypi+2b+2 = 1, implying that both Ỹ1 = Ỹ3 = 011 · · · 1. Since
this sequence has been explicitly excluded from the code-
book, we always have strict inequality, and hence syn(Ỹ1) ̸=
syn(Ỹ3). Furthermore, since

syn(Ỹ2)− syn(Ỹ3) = syn(Ỹ1)− syn(Ỹ3)− 1 (19)

is always non-zero, we conclude that there is no ambiguity at
the decoder .

V. SEGMENTED INSERTION-DELETION CODES

A. Code Construction

Since we now have both insertion and deletions, the decoder
must first identify the type of edit in a segment prior to
correcting it. Define the following sets:

A0
a ≜

{
S ∈ {0,1}b : syn(S) = a, s1s2s3s4s5 = 00111,

sb−2 = sb−1 = sb
}

A1
a ≜

{
S ∈ {0,1}b : syn(S) = a, s1s2s3s4s5 = 11000,

sb−2 = sb−1 = sb
}
.

As in previous sections, these are subsets of VT codewords
with certain constraints; in this case, in order to be able to
identify the edit type, both prefix and suffix constraints have
been added. Based on the above sets, we further define

a0 = argmax
0≤a≤b

|A0
a|, a1 = argmax

0≤a≤b
|A1

a| (20)

and Ms = min{a0, a1}. We construct the sets A0,A1 by
choosing Ms sequences from A0

a0
,A1

a1
, respectively. Finally,

the overall code of length n = kb is constructed by choosing
a codeword for each segment from either A0 or A1. The
codeword for the first segment is chosen from A0; if the last
bit of segment i − 1 is 0, then the codeword for segment
i = 2, . . . , k is drawn from A1 and otherwise from A0.

The size and rate are lower-bounded using the same argu-
ments as in the previous sections. For b ≥ 7, we obtain

Ms ≥
2b−7

b+ 1
(21)

which yields a rate lower bound given by

R ≥ 1− 1

b
log(b+ 1)− 7

b
. (22)

Due to the prefix and suffix constraints, our segmented
insertion-deletion codes have a rate penalty of at most 7

b .

B. Decoding

As in the previous two cases, decoding proceeds segment-
by segment. The decoder uses the suffix and prefix conditions
to infer the type of edit in the current segment and ensure the
correct starting position for the next segment. There are several
cases to be considered. Due to space constraints, we refer the
reader to [11] for a detailed description of the decoder.

REFERENCES

[1] Z. Liu and M. Mitzenmacher, “Codes for deletion and insertion channels
with segmented errors,” IEEE Trans on Inf. Theory, vol. 56, no. 1,
pp. 224–232, 2010.

[2] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and
Designs, Ohio State University (Ray-Chaudhuri Festschrift), pp. 273–
291, 2000. Online: https://arxiv.org/abs/math/0207197.

[3] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 687–698, 2001.

[4] E. A. Ratzer, “Marker codes for channels with insertions and deletions,”
Ann. Telecommn., vol. 60, no. 1, pp. 29–44, 2005.

[5] A. S. Helberg and H. C. Ferreira, “On multiple insertion/deletion
correcting codes,” IEEE Trans Inf. Theory, vol. 48, no. 1, pp. 305–308,
2002.

[6] K. A. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A. Clarke,
“On Helberg’s generalization of the Levenshtein code for multiple
deletion/insertion error correction,” IEEE Trans. Inf. Theory, vol. 58,
no. 3, pp. 1804–1808, 2012.

[7] A. A. Kulkarni and N. Kiyavash, “Nonasymptotic upper bounds for
deletion correcting codes,” IEEE Trans. Inf. Theory, vol. 59, no. 8,
pp. 5115–5130, 2013.

[8] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” in Proc. Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1884–1892, 2016.

[9] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4,
pp. 845–848, 1965. (in Russian), English Translation in Soviet Physics
Dokl., (No. 8, 1966), 707-710.

[10] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Automatica i Telemekhanica, vol. 26, no. 2, pp. 288–
292, 1965. (in Russian), English Translation in Automation and Remote
Control, (26, No. 2, 1965), 286-290.

[11] M. Abroshan, R. Venkataramanan, and A. Guillén i Fàbregas, “Codes
for channels with segmented edits,” 2017. (Online) http://arxiv.org/abs/

1701.06341.

