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Abstract—In this paper, the analysis of the performance of the
concatenation of a short polar code with an outer binary linear
block code is addressed from a distance spectrum viewpoint.The
analysis targets the case where an outer cyclic code is employed
together with an inner systematic polar code. A concatenated
code ensemble is introduced placing an interleaver at the input
of the polar encoder. The introduced ensemble allows deriving
bounds on the achievable error rates under maximum likelihood
decoding, by applying the union bound to the (expurgated)
average weight enumerators. The analysis suggests the needof
careful optimization of the outer code, to attain low error floors.

I. Introduction

Polar codes [1], [2] provably achieves the capacity of
binary-input discrete memoryless symmetric (BI-DMS) chan-
nels by using the (low complexity) successive cancellation
(SC) decoding algorithm, in the limit of infinite block length.
At short block lengths polar codes under SC decoding tend
to exhibit a poor performance. In [3] it was suggested that
such a behavior might be due, on one hand, to an intrinsic
weakness of polar codes and, on the other hand, to the sub-
optimality of SC decoding w.r.t. maximum likelihood (ML)
decoding. An improved decoding algorithms were proposed
in [3]–[5], while the structural properties of polar codes (e.g.,
their distance properties) were studied, among others, in [6]–
[11]. The minimum distance properties of polar codes can
be improved by resorting to concatenated schemes like the
one of [3], where the concatenation of polar codes with an
outer cyclic redundancy check (CRC) code is considered. This
solution, together with the use of the list decoding algorithm
of [3], allows short polar codes to become competitive against
other families of codes [12]–[16].1

A theoretical characterization of the performance of con-
catenated CRC-polar codes is still an open problem. Further-
more, for a fixed code length, a concatenated scheme can be
realized with several combinations of the component codes
parameters (e.g., one may choose various CRC polynomials
and polar codes designed for different target signal-to-noise
ratios).

In this paper, we provide an analysis of the concatenation
of polar codes with binary cyclic outer codes. The analysis

1The on-going 3GPP standardization group is considering theadoption of
short polar codes with an outer CRC for the uplink control channel of the
upcoming 5th generation mobile standard [17].

is carried out by introducing concatenated ensembles and by
deriving average weight enumerating function (AWEF) by
following the well-known uniform interleaver approach [18].
In the analysis, the knowledge of the input output weight
enumerating function (IOWEF) of the inner polar code is
required. However, the polar code IOWEF calculation through
analytical methods is still an unsolved problem. Hence, we
restrict our attention to short, high-rate polar codes for which
the problem can be solved through a pragmatic approach. More
precisely, we consider the dual code of the selected polar
code and then we find its IOWEF by listing the codewords.
Subsequently, by using the generalized MacWilliams identity
[19], we obtain the IOWEF of the original polar code. The
weight enumerating function (WEF) of the outer cyclic code,
instead, is computed by following the method presented in
[20].

By adopting the uniform interleaver approach, we subsume
the existence of an interleaver between the inner and the outer
code, and obtain the average performance of an ensemble
composed by the codes obtained by selecting all possible
interleavers. Our analysis shows that the performance of the
concatenated scheme with and without interleaver (as proposed
in [3]) may differ substantially. Similarly, by considering both
CRC and Bose-Chaudhuri-Hocquenghem (BCH) outer codes,
we show that the choice of the outer code plays an important
role in the short block length regime.

The paper is organized as follows. Notation and definitions
are introduced in Section II. The distance spectrum analysis of
the concatenated scheme is discussed in Section III. Numerical
results are reported in Section IV. Finally, Section V concludes
the paper.

II. Notation and Definitions

Let wH(·) be the Hamming weight of a vector. We denote
as N and K the outer cyclic code length and dimension,
respectively, whilen and k identify the same parameters for
the inner polar code. Therefore, the code rates of the outer
and inner code areRO =

K
N andRI =

k
n , respectively. The two

codes can be serially concatenated on condition thatN = k,
thus the overall code rate of the concatenated code isR = K

n .
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Given a binary linear codeC(n,k), its WEF is defined as [19]

AC(X) =
N

∑

i=0

AiX
i (1)

where Ai is the number of codewordsc with wH(c) = i. In
this work we focus on systematic polar codes (the reason of
this choice will be discussed later) so the firstk bits of a
codewordc coincide with the information vectoru, yielding
c= (u|p) with p being the parity vector. The IOWEF of a code
C(n,k) is

AIO
C

(X,Y) =
k

∑

i=0

n
∑

ω=0

AIO
i,ωXiYω (2)

where AIO
i,ω is the multiplicity of codewordsc with wH(u) =

i and wH(c) = ω. The enumeration of the codeword weights
entails a large complexity even for small code dimensions.
In order to overcome this problem and obtain the IOWEF of
the considered polar codes, we focus on short, high-rate polar
codes and we exploit the generalized MacWilliams identity
[19]. This approach was followed also for cyclic codes, for
example, in [20] to compute the WEF of several CRCs. Denote
by C⊥ the dual code ofC. Given the dual code WEFAC⊥ (X),
we can express the original code WEFAC(X) as [19]

AC(X) =
(1+X)n

|C⊥|
AC⊥

(

1−X
1+X

)

(3)

where
∣

∣

∣C⊥
∣

∣

∣ is the cardinality of the dual code. When the
IOWEF is of interest, a significant reduction of the compu-
tational cost can be achieved by considering systematic codes.
For such reason, in this work we have used only systematic
inner polar codes. In the case of a systematic codeC(n,k), it
is convenient to derive the IOWEF from the input redundancy
weight enumerating function (IRWEF)AIR

C
(x,X,y,Y) defined

as

AIR
C (x,X,y,Y) =

k
∑

i=0

r
∑

p=0

AIR
i,pxk−iXiyr−pY p (4)

whereAIR
i,p is the multiplicity of codewordsc with wH(u) = i

andwH(p)= p, with wH(c)= i+ p andn= k+r. Hence, starting
from the IRWEF of the dual codeAIR

C⊥
(x,X,y,Y), we have [21],

[22]

AIR
C

(x,X,y,Y) =
1
|C⊥|

AIR
C⊥

(x+X, x−X,y+Y,y−Y). (5)

Then, the IOWEF is obtained as

AIO
C

(X,Y) = AIR
C

(1,XY,1,Y). (6)

III. Union Bound of the Average Block Error Probability of
the Concatenated Scheme

Given an ensemble of binary linear codesC (n,k), the
expected block error probability (BEP)PB of a random code
C ∈ C (n,k) under ML decoding over a binary erasure channel

(BEC) with erasure probabilityǫ can be upper bounded as
[23]

E [PB (C, ǫ)] ≤ P(s)
B (n,k, ǫ)

+

k
∑

e=1

(

n
e

)

ǫe(1− ǫ)n−e min



















1,
e

∑

ω=1

(

e
n

)

Āω
(

n
ω

)



















(7)

whereĀω =E [Aω (C)] is the average multiplicity of codewords
with wH(c) = ω and P(s)

B represents the BEP of an ideal
maximum distance separable (MDS) code, with parameters
n and k. The union bound (UB) in (7) is applicable to every
code ensemble whose expected WEF is known. In order to
use (7), the AWEF of the concatenated code ensemble must
be known.

When dealing with concatenated codes, it is commonplace
to consider a general setting including an interleaver between
the inner and the outer codes. The concatenated code ensemble
is hence given by the codes obtained by selecting all possible
interleavers. The special case without any interleaver canthen
be modeled as an identity interleaver. From [18], the AWEF
of a concatenation formed by an inner polar code and an outer
cyclic code can be obtained from the cyclic code WEF and
the polar code IOWEF as

Āω =
N

∑

i=0

Aout
i ·A

IO,in
i,ω

(

N
i

) (8)

where Aout
i is the weight enumerator of the outer code and

AIO,in
i,ω is the input-output weight enumerator of the inner code

(we remind that the average multiplicities resulting from (8)
are, in general, real numbers).

The ensembleC (n,k) contains the codes generated by all
possible interleavers. Thus, also bad codes (i.e., characterized
by bad error rate performance) belong to the ensemble. It is
clear that the bad codes adversely affect the AWEF obtained
through (8) causing a too pessimistic estimate of the error
probability obtained through (7), with respect to that achieved
by properly designed codes. A simple way to overcome this
issue is to divideC (n,k) into the bad and good code subsets,
and then derive the AWEF only of good codes through the
expurgatedC (n,k) [24]. In fact, Āω = ξĀ

g
ω + (1− ξ)Āb

ω, where
Āg
ω and Āb

ω denote the good and the bad codes ensemble,
respectively. In this work we have assumedξ = 0.99, hence at
least one code belongs to the good codes ensemble. Therefore,
when the expurgation method is adoptable (i.e., the first term
of the AWEF has a codewords multiplicity less thanξ),
through (7) and (8) the average performance of the good codes
subset is derived.

Studying the dual codes and exploiting MacWilliams identi-
ties allow considerable reductions in complexity of exhaustive
analysis as long as the original code rate is sufficiently large.
This will be the case for the component codes considered next,
which are characterized byRO,RI >

1
2. Therefore, in our case

(3) and (6) can effectively be exploited to calculateAout
i and

AIO,in
i,ω in (8).



IV. Code Examples

In this section we consider several examples of polar-cyclic
concatenated codes and assess their performance through the
approach described in the previous sections. Our focus is on
short, high rate component codes, which allow to perform
exhaustive analysis of their duals in a reasonable time. Ourre-
sults are obtained considering a BEC with erasure probability
ǫ. As known, in the polar code construction a fixed value of the
error transition probability is considered. Therefore, asusual
in literature, in each of the following examples the polar code
is designed by usingǫ = 0.3. All performance curves provided
next are obtained through (7). We consider codes withn = 64
bits and a CRC or a BCH outer code, withN according to the
polar code dimension. In this work, we have used a CRC−8
and a CRC−16 with the following generator polynomialsg(x)
[20]:

• CRC−8: g(x) = x8+ x2+1;
• CRC−16−CCITT: g(x) = x16+ x12+ x5+1.

Instead, regarding the BCH code, we study two BCH codes
that have the same redundancy as the CRC-8 and CRC-16
codes. Thus, for the sameR value, a performance comparison
of the results achieved by using a CRC or a BCH outer code
is feasible and fair. In order to keep the selected polar codes
unchanged, we have considered shortened BCH codes.

For the case without interleaver considered in [3], the
generator matrixG of the concatenated code can be obtained
from the cyclic and polar code generator matricesGC andGP,
respectively, as

G =GC ·GP. (9)

When we instead consider the more general case with an
interleaver between the inner and outer codes, we have

G =GC · I ·GP (10)

where I is an N × N permutation matrix representing the
interleaver. Considering all codes inC (n,k), (8) leads to their
AWEF and hence to the average performance in terms of UB,
according to the uniform interleaver approach. In order to
have an idea of the gap between this average performance
and those of single codes in the ensemble, in each of the fol-
lowing figures we include the performance of codes randomly
picked inC (n,k). Without changing the outer and inner code,
this can be easily done by introducing a random interleaver
between the cyclic code and the polar code in the concatenated
scheme. Hence, in this case, the matrixI in (10) is a random
permutation matrix. For readability reasons, in addition to the
solution without interleaver, in each of the following examples,
we have considered only 25 random interleavers; however, the
obtained results allow to address some general conclusions.
Moreover, when the results of the expurgatedC (n,k) differs
from that achieved by the AWEF, its performance in terms of
UB is also considered. The UB of the considered polar code
alone is also included as a reference. Clearly, the comparison
between the performance of the polar code and those of the
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Fig. 1. Estimated performance of concatenated codes with and without
interleaver composed by a (64,48) polar code and a CRC−8 code over the
BEC under ML decoding. Performance of the (64,48) polar codealone is also
reported.

TABLE I
Number of concatenated codes with random interleaver for a given minimum

distance value

Concatenated scheme dmin = 4 dmin = 6 dmin = 8

polar(64,48)+ CRC-8 21 4 -
polar(64,48)+ BCH(48,40) 23 2 -

polar(64,48)+ CRC-16 1 8 16
polar(64,48)+ BCH(48,32) - - 25

polar(64,56)+ CRC-16 16 9 -

concatenated schemes is not completely fair at least because of
the different code rates; however, in this way, the performance
gain achieved through concatenation can be pointed out.

Figures 1 and 2 show the UB of the concatenated scheme,
with and without random interleaver, formed by a polar code
with RI = 0.75 and an outer cyclic code withRO = 0.83
(i.e., R = 0.625) in terms of BEP. In Fig. 1 and Fig. 2
a CRC-8 and a (48, 40) BCH outer code is considered,
respectively, the latter obtained by shortening the (255, 247)
BCH code. In both the examples, the result obtained through
the AWEF corresponds to an average behavior, while some
interleaver configurations achieve a smaller BEP. This trend
is due to the different minimum distancedmin of the codes.
The results in Figs. 1 and 2 are very similar, showing that,
for this particular case, there is no substantial difference in
performance arising from the different type of outer code. This
conclusion is also supported by the results in Tab. I, where
the number of concatenated schemes with random interleaver
corresponding to a minimum distance value is reported. From
these figures we can observe the performance gain introduced
by the concatenated scheme with respect to the (64,48) polar
code used alone, that hasdmin = 4. In both the examples the
AWEF and the concatenated code without interleaver have
dmin = 4 anddmin = 6, respectively.
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Fig. 2. Estimated performance of concatenated codes with and without
interleaver composed by a (64,48) polar code and a (48,40) shortened BCH
code over the BEC under ML decoding. Performance of the (64,48) polar
code alone is also reported.

In Fig. 3 and Fig. 4 the UB of the concatenated codes,
with and without interleaver, composed by a polar code with
RI = 0.75 and an outer code withRO = 0.66 (i.e., R = 0.5)
in terms of BEP is plotted. In Figs. 3 and 4 a CRC-16
and a (48, 32) BCH outer code is considered, respectively,
the latter obtained by shortening the (255, 239) BCH code.
Differently from the previous figures, the UB obtained with
the expurgated AWEF is now available. As in Figs. 1 and
2, the curve obtained through the AWEF well describes the
ensemble average performance, while we see that the curve
corresponding to the expurgated AWEF belongs to the group
of best codes. Also in these cases the performance gap between
the (64,48) polar code alone and the concatenated codes is
remarkable. In both the examples the AWEF hasdmin = 6,
while the expurgated AWEF and the concatenated scheme
without interleaver havedmin = 8. However, from Fig. 4,
we can observe that, on the contrary to Fig. 3, all curves
of concatenated codes are very close. In fact, for the case
in Fig. 4 only the AWEF results indmin = 6 but with a
codewords multiplicity equal to 0.0336, instead the realizations
of concatenated codes havedmin = 8, as shown in Tab. I.
Therefore, differently from the CRC, in this case the use of
a BCH code is able to increase the minimum distance of the
concatenated code (also for the solution without interleaver);
thus, for this specific case, the BCH code should be preferred
to the CRC code.

In all the previous figures the curve of the concatenated
scheme without interleaver proposed in [3] falls within the
group of best performing codes. This may lead to the conclu-
sion that this configuration always produces a good result; in
reality this trend is not preserved for any choice of the code
parameters. An example of the latter kind is shown in Fig. 5,
where a polar code withRI = 0.875 and a CRC-16 code (i.e.,
RO = 0.71 andR = 0.625) are considered. From the figure we
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Polar code
Uniform interleaver
Uniform interleaver (Exp. AWEF)
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Random interleavers

Fig. 3. Estimated performance of concatenated codes with and without
interleaver composed by a (64,48) polar code and a CRC−16 code over the
BEC under ML decoding. Performance of the (64,48) polar codealone is also
reported.
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Fig. 4. Estimated performance of concatenated codes with and without
interleaver composed by a (64,48) polar code and a (48,32) shortened BCH
code over the BEC under ML decoding. Performance of the (64,48) polar
code alone is also reported.

observe that, in this case, the introduction of a random inter-
leaver can improve the scheme without interleaving. Also for
this example, Tab. I summarizes the number of concatenated
schemes with interleaver for each value of the code minimum
distance. In this case the polar code hasdmin = 2, while both
the AWEF and the concatenated scheme without interleaver
havedmin = 4. Instead, the expurgated AWEF belongs to the
group of good codes withdmin = 6. We have found a similar
result also by using the CRC-8 code in place of the CRC-
16 but it is omitted for the sake of brevity. So, these counter
examples (others can be found) clearly demonstrate that the
use of a selected interleaver may be beneficial from the error
rate viewpoint.
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Fig. 5. Estimated performance of concatenated codes with and without
interleaver composed by a (64,56) polar code and a CRC−16 code over the
BEC under ML decoding. Performance of the (64,56) polar codealone is also
reported.

V. Conclusion

In this paper, the analysis of the performance of the con-
catenation of a short polar code with an outer binary linear
block code is addressed from a distance spectrum viewpoint.
The analysis is carried out for the case where an outer
cyclic code is employed together with an inner systematic
polar code. By introducing an interleaver at the input of the
polar encoder, we show that remarkable differences on the
block error probability at low erasure probabilities can be
observed for various permutations. The variations are due to
the change in the overall concatenated code minimum distance
(and minimum distance multiplicity) induced by the choice of
the interleaver. Bounds on the achievable error rates under
maximum likelihood decoding are obtained by applying the
union bound to the (expurgated) average weight enumerators.
The results point to the need of careful optimization of the
outer code, at least in the short block length regime, to attain
low error floors.
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