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Abstract—In this paper, the analysis of the performance of the is carried out by introducing concatenated ensembles and by
concatenation of a short polar code with an outer binary linar deriving average weight enumerating function (AWEF) by
block code is addressed from a distance spectrum viewpointhe following the well-known uniform interleaver approach [18

analysis targets the case where an outer cyclic code is empéal . . .
together with an inner systematic polar code. A concatenatk In the analysis, the knowledge of the input output weight

code ensemble is introduced placing an interleaver at the put €numerating function (IOWEF) of the inner polar code is
of the polar encoder. The introduced ensemble allows deriig required. However, the polar code IOWEF calculation thioug

bounds on the achievable error rates under maximum likelihed  analytical methods is still an unsolved problem. Hence, we
decoding, by applying the union bound to the (expurgated) ragtrict our attention to short, high-rate polar codes faick
average weight enumerators. The analysis suggests the neefl th bl b ived th h fi h. M
careful optimization of the outer code, to attain low error floors. € probiem can be solved through a pragmatic approach. More
precisely, we consider the dual code of the selected polar
code and then we find its IOWEF by listing the codewords.
| InTRODUCTION Subsequently, by using the generalized MacWilliams idgnti
Polar codes [1], [2] provably achieves the capacity qfi9], we obtain the IOWEF of the original polar code. The
binary-input discrete memoryless symmetric (BI-DMS) chamweight enumerating function (WEF) of the outer cyclic code,
nels by using the (low complexity) successive cancellatidnstead, is computed by following the method presented in
(SC) decoding algorithm, in the limit of infinite block legt [20].
At sho_rt.block lengths polar codes un_der SC decoding tendBy adopting the uniform interleaver approach, we subsume
to exhibit a poor performance. In [3] it was suggested thgie existence of an interleaver between the inner and ther out
such a behavior might be due, on one hand, to an intring§de, and obtain the average performance of an ensemble
weakness of polar codes and, on the other hand, to the SgBmposed by the codes obtained by selecting all possible
optimality of SC decoding w.r.t. maximum likelihood (ML)interleavers. Our analysis shows that the performance ef th
decoding. An improved decoding algorithms were proposgdncatenated scheme with and without interleaver (as jsezbo
in [3]-{5], while the structural properties of polar cod@sd(., i [3]) may differ substantially. Similarly, by considering both
their distance properties) were studied, among others}in [ cRC and Bose-Chaudhuri-Hocquenghem (BCH) outer codes,

[11]. The minimum distance properties of polar codes cqfe show that the choice of the outer code plays an important
be improved by resorting to concatenated schemes like th§e in the short block length regime.

one of [3], where the concatenation of polar codes with an

outer cyclic redundancy check (CRC) code is considereds Trgr;?rirgzzi;éisir?rgggtlizoendl la ?Lﬂlz\iﬁér’::c:ztlgc]:t?l?g i?;rt;r'[;?ns
solution, together with the use of the list decoding aldwnit ) P

o . the concatenated scheme is discussed in Section Ill. Noateri
of [3], allows short polar codes to become competitive agfain . . . '

. results are reported in Section IV. Finally, Section V coels
other families of codes [12]-[16].

A theoretical characterization of the performance of cort1rJe Paper.

catenated CRC-polar codes is still an open problem. Further
more, for a fixed code length, a concatenated scheme can be
realized with several combinations of the component codes
parameters (e.g., one may choose various CRC polynomials
and polar codes designed forfiérent target signal-to-noise Let wy(-) be the Hamming weight of a vector. We denote
rat|os)._ _ _ as N and K the outer cyclic code length and dimension,
In this paper, we provide an analysis of the concatenatiggspectively, whilen and k identify the same parameters for
of polar codes with binary cyclic outer codes. The analysiie inner polar code. Therefore, the code rates of the outer
N . o ) o ) and inner code ar®o = % andR, = X, respectively. The two
The on-going 3GPP standardization group is consideringatiuption of d b iall “d diti Rhat k
short polar codes with an outer CRC for the uplink controlrecte of the codes can be serially concatenated on condition a{ '
upcoming 5th generation mobile standard [17]. thus the overall code rate of the concatenated codfe=|§f—].

Il. NotarioN AND DEFINITIONS
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Given a binary linear codé(n,k), its WEF is defined as [19] (BEC) with erasure probabilit¢ can be upper bounded as

. [23]
— Syl
Ac(X) = ;A.X 1) E[Pg(C.€)] < PO (n.k €)
Kk e o
where A; is the number of codewords with wy(c) =i. In +Z(n)ee(1—e)”‘emin LZ(e)& @)
this work we focus on systematic polar codes (the reason of = \€ a\n (2)

this choice will be discussed later) so the fikstoits of a _ _ o
codewordc coincide with the information vectau, yielding WhereA, =E[A, (C)] is }ge average multiplicity of codewords
c = (ulp) with p being the parity vector. The IOWEF of a codaVith wx(c) = w and Py’ represents the BEP of an ideal

c(n,k) is maximum distance separable (MDS) code, with parameters
k n . n andk. The union bound (UB) in (7) is applicable to every
AD(X,Y) = ZZA}SJX'Y‘“ (2) code ensemble whose expected WEF is known. In order to
i=0 w=0 use (7), the AWEF of the concatenated code ensemble must
be known.

10 j ilic i -
yvhereALw IS_ the multiplicity of_codewords: with Wi (U) - When dealing with concatenated codes, it is commonplace
i andwy(c) = w. The enumeration of the codeword We|ght?

X . . . consider a general setting including an interleaver betw
entails a large complexity even for small code dmensmn:ﬁ 9 9 9 be

In order to overcome this problem and obtain the IOWEF &e inner and the outer codes. The concatenated code emsembl

the considered polar codes, we focus on short, high-rater dethelnce glve_lr_lhby the _cc|>des obt?hnedt by S?'fcﬁ'ng alr!dg::sml
codes and we exploit the generalized MacWilliams identitlé/1 erieavers. 1he special case without any interieave

[19]. This approach was followed also for cyclic codes, fore modeled as an identity interleaver. From [18], the AWEF

example, in [20] to compute the WEF of several CRCs. Deno%a concatenation formed by an inner polar code and an outer

by C* the dual code of. Given the dual code WERG: (X), tcg/cllc |C°de ((j:anlcl;)\(/avé)'l:)tamed from the cyclic code WEF and
we can express the original code WEBE(X) as [19] € polar code as
10,in

L @ex) . (1-X _ AMA
a0 = S5 m (15 © TR et ®

where |CL| is the cardinality of the dual code. When th‘:\‘NhereA]?“‘t is the weight enumerator of the outer code and
IOWEF is of interest, a significant reduction of the compuzi0in ig the input-output weight enumerator of the inner code
tational cost can b_e achleved by considering systematiesco W‘é’ remind that the average multiplicities resulting fro@) (
For such reason, in this work we have used only system

. lar cod H ; . o fe, in general, real numbers).
INner pofar codes. I_n the case of a systema}tlc aofek), it The ensemble&’(n,k) contains the codes generated by all
is convenient to derive the IOWEF from the input redundan

. : i IR _ %’ossible interleavers. Thus, also bad codes (i.e., claiaet]
weight enumerating function (IRWER):'(x X.y.Y) defined by bad error rate performance) belong to the ensemble. It is

as Koo clear that the bad codes adversefieat the AWEF obtained
IR _ IR k=i yeiy f— through (8) causing a too pessimistic estimate of the error
A (xXy.) ;;JA"D Y ) probability obtained through (7), with respect to that awkd

by properly designed codes. A simple way to overcome this
where AR is the multiplicity of codewords with wy(u) =i issue is to divides'(n,k) into the bad and good code subsets,
ande(p§= p, with wy(c) =i+ p andn=k+r. Hence, starting and then derive the AWEF only of good codes through the
from the IRWEF of the dual cod&'? (x,X,y,Y), we have [21], expurgateds(n,K) [24]. In fact, A, = £AY + (1-£)AD, where

[22] A and AP denote the good and the bad codes ensemble,
respectively. In this work we have assunied 0.99, hence at
|R(X X Y) —
Acl LAY, Y) = least one code belongs to the good codes ensemble. Therefore
_LAICBL(XJFX’X_X’yJFY,y_Y). (5) when the expurgation method is adopta.\blle.(l.e., the firsh ter
ICH] of the AWEF has a codewords multiplicity less tha
Then, the IOWEF is obtained as through (7) and (8) the average performance of the good codes
subset is derived.
AR(XY) = AR(LXY.1Y). (6) Studying the dual codes and exploiting MacWilliams identi-

ties allow considerable reductions in complexity of exhiaeas
[1l. Union Bounp oF THE AVERAGE BLock ERROR PROBABILITY OF analysis as long as the original code rate ifiisiently large.
THE CONCATENATED SCHEME This will be the case for the component codes considered next
Given an ensemble of binary linear codegn,k), the Wwhich are characterized B0, R, > 3. Therefore, in our case
expected block error probability (BEPg of a random code (3) and (6) can fectively be exploited to calculat®" and
C e %(n,k) under ML decoding over a binary erasure chann&l>" in (8).



IV. Cobe ExamPLES 10 ; B 5.

In this section we consider several examples of polar-cyc -
concatenated codes and assess their performance thraagt
approach described in the previous sections. Our focus is
short, high rate component codes, which allow to perforb10 3
exhaustive analysis of their duals in a reasonable timer&ur
sults are obtained considering a BEC with erasure proh),abilg 107
€. As known, in the polar code construction a fixed value of tt &
error transition probability is considered. Thereforeuasal
in literature, in each of the following examples the poladeo
is designed by using= 0.3. All performance curves provided
next are obtained through (7). We consider codes with64
bits and a CRC or a BCH outer code, withaccording to the 1
polar code dimension. In this work, we have used a EBRC & O Noimerieaver I
and a CRG16 with the following generator polynomiadgx) O s o1 o5 0z o5 o3 0% o4

10"

Block Ef

10°F

—%— Polar code U
—A— Uniform interleaver

[20]: £
« CRC-8: g(X) =X+ %2+ 1, Fig. 1. Estimated performance of concatenated codes with veithout
o CRC-16-CCITT: g(X) = X6+ x124+ x5+ 1. interleaver composed by a (64,48) polar code and a €R€bde over the

. BEC under ML decoding. Performance of the (64,48) polar aidee is also
Instead, regarding the BCH code, we study two BCH cod@gorted.

that have the same redundancy as the CRC-8 and CRC-16
codes. Thus, for the sanfievalue, a performance comparison TABLE |

of the results achieved by using a CRC or a BCH outer COGNMBER OF CONCATENATED CODES WITH RANDOM INTERLEAVER FOR A GIVEN MINIMUM
is feasible and fair. In order to keep the selected polar €ode DISTANCE VALUE

unchanged, we have considered shortened BCH codes. |

Concatenated scheme | dmin=4 [ dmin=6 | dmin=8 |

For the case without interleaver considered in [3], _the holar(64.48)r CRC-8 51 2 -
generator matriXG of the concatenated code can be obtained [olar(64,48)+ BCH(48,40) 23 2 N
from the cyclic and polar code generator matriGgsandGp, polar(64,48)+ CRC-16 1 8 16
respectively, as polar(64,48)+ BCH(48,32) - - 25

polar(64,56)+ CRC-16 16 9 -

G =GCGc-Gp. ©)]
When we instead cons!der the more general case with &hcatenated schemes is not completely fair at least becdus
interleaver between the inner and outer codes, we have ; ] ! .
the diferent code rates; however, in this way, the performance
gain achieved through concatenation can be pointed out.

Figures 1 and 2 show the UB of the concatenated scheme,
where | is an N x N permutation matrix representing thewith and without random interleaver, formed by a polar code
interleaver. Considering all codes #i(n,k), (8) leads to their with R, = 0.75 and an outer cyclic code witRo = 0.83
AWEF and hence to the average performance in terms of UBge., R = 0.625) in terms of BEP. In Fig. 1 and Fig. 2
according to the uniform interleaver approach. In order @ CRC-8 and a (48, 40) BCH outer code is considered,
have an idea of the gap between this average performanespectively, the latter obtained by shortening the (255))2
and those of single codes in the ensemble, in each of the fBIEH code. In both the examples, the result obtained through
lowing figures we include the performance of codes randontlye AWEF corresponds to an average behavior, while some
picked in%’(n, k). Without changing the outer and inner codeinterleaver configurations achieve a smaller BEP. Thisdtren
this can be easily done by introducing a random interleavisr due to the dferent minimum distancéi, of the codes.
between the cyclic code and the polar code in the concatnaiée results in Figs. 1 and 2 are very similar, showing that,
scheme. Hence, in this case, the matrix (10) is a random for this particular case, there is no substantidfedence in
permutation matrix. For readability reasons, in additioriite  performance arising from theftirent type of outer code. This
solution without interleaver, in each of the following exales, conclusion is also supported by the results in Tab. I, where
we have considered only 25 random interleavers; howewver, the number of concatenated schemes with random interleaver
obtained results allow to address some general conclusioo@responding to a minimum distance value is reported. From
Moreover, when the results of the expurgat#th,k) differs these figures we can observe the performance gain introduced
from that achieved by the AWEF, its performance in terms dfy the concatenated scheme with respect to the (64,48) polar
UB is also considered. The UB of the considered polar codede used alone, that hdg,, = 4. In both the examples the
alone is also included as a reference. Clearly, the compariAWEF and the concatenated code without interleaver have
between the performance of the polar code and those of thg, = 4 anddmin = 6, respectively.

G=Gc-1-Gp (10)
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Fig. 2. Estimated performance of concatenated codes withvethout Fig. 3. Estimated performance of concatenated codes with veithout

interleaver composed by a (64,48) polar code and a (48,4f}ested BCH
code over the BEC under ML decoding. Performance of the &4pblar
code alone is also reported.

interleaver composed by a (64,48) polar code and a -€RBCcode over the
BEC under ML decoding. Performance of the (64,48) polar aidee is also
reported.

10
In Fig. 3 and Fig. 4 the UB of the concatenated code

with and without interleaver, composed by a polar code wi' 1¢*
R = 0.75 and an outer code witRp = 0.66 (i.e.,R=0.5)
in terms of BEP is plotted. In Figs. 3 and 4 a CRC-1
and a (48, 32) BCH outer code is considered, respective2
the latter obtained by shortening the (255, 239) BCH cod§
Differently from the previous figures, the UB obtained Wit\%_
the expurgated AWEF is now available. As in Figs. 1 ané
2, the curve obtained through the AWEF well describes ttg
ensemble average performance, while we see that the cu 5]
corresponding to the expurgated AWEF belongs to the gro
of best codes. Also in these cases the performance gap bretw
the (64,48) polar code alone and the concatenated code:
remarkable. In both the examples the AWEF ltag, = 6,
while the expurgated AWEF and the concatenated sche
without interleaver havedmin = 8. However, from Fig. 4,
we can observe that, on the contrary to Fig. 3, all Curvggg. 4. Estimated performance of concatenated codes with vathout

terleaver composed by a (64,48) polar code and a (48,3%}ested BCH
of concatenated codes are very close. In fact, for the Cé%%e over the BEC under ML decoding. Performance of the &4pblar

in Fig. 4 only the AWEF results imdmin = 6 but with a code alone is also reported.
codewords multiplicity equal to 0.0336, instead the redions
of concatenated codes hadg,, = 8, as shown in Tab. I.
Therefore, diterently from the CRC, in this case the use obbserve that, in this case, the introduction of a randonr-inte
a BCH code is able to increase the minimum distance of theaver can improve the scheme without interleaving. Also fo
concatenated code (also for the solution without inted€gv this example, Tab. | summarizes the number of concatenated
thus, for this specific case, the BCH code should be preferregshemes with interleaver for each value of the code minimum
to the CRC code. distance. In this case the polar code kag, = 2, while both

In all the previous figures the curve of the concatenatéde AWEF and the concatenated scheme without interleaver
scheme without interleaver proposed in [3] falls within thbavedqmiy = 4. Instead, the expurgated AWEF belongs to the
group of best performing codes. This may lead to the conclgroup of good codes witkdmin = 6. We have found a similar
sion that this configuration always produces a good result; iesult also by using the CRC-8 code in place of the CRC-
reality this trend is not preserved for any choice of the codé but it is omitted for the sake of brevity. So, these counter
parameters. An example of the latter kind is shown in Fig. Bxamples (others can be found) clearly demonstrate that the
where a polar code witR, = 0.875 and a CRC-16 code (i.e.,use of a selected interleaver may be beneficial from the error
Ro =0.71 andR = 0.625) are considered. From the figure weate viewpoint.
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BEC under ML decoding. Performance of the (64,56) polar aidee is also
reported.
[17]
(18]

V. CONCLUSION

In this paper, the analysis of the performance of the copg
catenation of a short polar code with an outer binary linear
block code is addressed from a distance spectrum viewpoiﬁ?.
The analysis is carried out for the case where an outer
cyclic code is employed together with an inner systematic
polar code. By introducing an interleaver at the input of thié1]
polar encoder, we show that remarkabléfatences on the
block error probability at low erasure probabilities can bi2]
observed for various permutations. The variations are due t
the change in the overall concatenated code minimum distang
(and minimum distance multiplicity) induced by the choide o
the interleaver. Bounds on the achievable error rates un?ﬁrj
maximum likelihood decoding are obtained by applying the
union bound to the (expurgated) average weight enumerators
The results point to the need of careful optimization of the
outer code, at least in the short block length regime, tdratta
low error floors.
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