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Successive Refinement of Abstract Sources
Victoria Kostina, Ertem Tuncel

Abstract—In successive refinement of information, the decoder
refines its representation of the source progressively as it receives
more encoded bits. The rate-distortion region of successive
refinement describes the minimum rates required to attain the
target distortions at each decoding stage. In this paper, we derive
a parametric characterization of the rate-distortion region for
successive refinement of abstract sources. Our characterization
extends Csiszár’s result [2] to successive refinement, and general-
izes a result by Tuncel and Rose [3], applicable for finite alphabet
sources, to abstract sources. This characterization spawns a fam-
ily of outer bounds to the rate-distortion region. It also enables
an iterative algorithm for computing the rate-distortion region,
which generalizes Blahut’s algorithm to successive refinement.
Finally, it leads a new nonasymptotic converse bound. In all the
scenarios where the dispersion is known, this bound is second-
order optimal.

In our proof technique, we avoid Karush-Kuhn-Tucker condi-
tions of optimality, and we use basic tools of probability theory.
We leverage the Donsker-Varadhan lemma for the minimization
of relative entropy on abstract probability spaces.

Index Terms—Successive refinement, rate-distortion theory,
single-shot analysis, d-tilted information, Blahut algorithm, con-
verse, dispersion.

I. INTRODUCTION

For a source random variable X ∈ X and a distortion

measure d : X × Y 7→ [0,+∞), where X and Y are abstract

sets (source and reproduction alphabets), the classical infor-

mational rate-distortion function is defined as the following

minimal mutual information quantity:

R(d) , inf
PY |X : X 7→Y

E[d(X,Y )]≤d

I(X ;Y ) (1)

This convex optimization problem rarely has an explicit solu-

tion. The following result provides a parametric representation:

Theorem 1 (Parametric representation of R(d) [2]). Assume

that the following conditions are met.

(A) dmin < d < dmax, where

dmin , inf {d : R(d) < ∞} (2)

dmax , inf {d : R(d) is constant on (dmax,∞)} (3)

(B) There exists a transition probability kernel PY ⋆|X that

attains the infimum in (1).

Then, it holds that

R(d) = max
α(x),λ

{−E [logα(X)]− λd} (4)

V. Kostina (e-mail: vkostina@caltech.edu) is with California Institute of
Technology. E. Tuncel (e-mail: ertem.tuncel@ucr.edu) is with University of
California, Riverside. This work was supported in part by the National Science
Foundation (NSF) under Grant CCF-1566567. It was presented in part at
ISIT 2017 [1].

where the maximization is over α(x) ≥ 0 and λ ≥ 0 satisfying

the constraint

E

[

exp (−λd(X, y))

α(X)

]

≤ 1 ∀y ∈ Y. (5)

Furthermore, in order for PY ⋆|X to achieve the infimum in (1),

it is necessary and sufficient that

dPX|Y ⋆=y

dPX

(x) =
exp(−λ⋆d(x, y))

α(x)
, (6)

where1

λ⋆ = −R′(d), (7)

and 0 ≤ α(x) ≤ 1 satisfies (5). Finally, the choice

α⋆(x) = E [exp(−λ⋆d(x, Y ⋆))] , (8)

satisfies both (5) and (6); thus (α⋆(x), λ⋆) is the maximizer

of (4).
In (6), dP

dQ
denotes the Radon-Nykodym derivative; if P

and Q are both discrete / continuous probability distributions,
dP
dQ

is simply the ratio of corresponding probability mass /

density functions. Theorem 1 applies to the much more general

setting of abstract probability spaces. It was Csiszár [2] who

formulated and proved Theorem 1 in this generality.2 For

finite alphabet sources, the parametric representation of R(d)
is contained in Shannon’s paper [4]; Gallager’s [5, Th. 9.4.1]

and Berger’s [6] texts include the parametric representation of

R(d) for discrete and continuous sources. Csiszár and Körner’s

book [7, Th. 8.7] presents a derivation of the parametric repre-

sentation of the discrete rate-distortion function that employs

variational principles.

The parametric representation of R(d) plays a key role in

the Blahut algorithm [8] for computing the rate-distortion func-

tion. For difference distortion measures, d(x, y) = d(x − y),
a certain choice of (α(x), λ) in (4) leads to the Shannon

lower bound [4], a particularly simple, explicit lower bound

to the rate-distortion function, which offers nice intuitions and

which is known to be tight in the limit d ↓ 0. Leveraging

Theorem 1, a generalization of Shannon’s lower bound to

abstract probability spaces was recently proposed [9], [10].

1The differentiability of R(d) is assured by the assumptions that the
distortion measure d cannot take the value +∞ and that there exists a PY ⋆|X
attaining the infimum in (1) [2, p. 69]. If we allow d to take the value +∞,
then it is possible that R(d) is not differentiable at some d. In that case,
Theorem 1 will hold verbatim replacing λ⋆ by the negative slope of any
tangent to R(d) at d. With this easy extension in mind, we choose to limit
our attention to finite-valued distortion measures to ensure differentiability.
Note also that while PY ⋆|X need not be unique, α⋆(x) is (and therefore,

through (6), so is PX⋆|Y ); this is a consequence of differentiability of R(d)
[2, p. 69].

2Even more generally, Csiszár [2] showed that (4) continues to hold even if
the infimum in (1) is not attained by any conditional probability distribution.
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Furthermore, given (PX , d), the d-tilted information, defined

for each realization x ∈ X through the solution to (4) as

d(x, d) , − logα⋆(x)− λ⋆d, (9)

governs the nonasymptotic fundamental limits of lossy com-

pression [11], where the subscript d emphasizes the distortion

measure used.

In this paper, we state and prove a generalization of Theo-

rem 1 to successive refinement of abstract alphabet sources. If

the source is successively refinable, that is, if optimal succes-

sive coding achieves the respective rate-distortion functions at

each decoding stage, our result recovers the representation in

Theorem 1. Our characterization refines a prior finite alphabet

result by Tuncel and Rose [3, Theorem 4] and extends it to

abstract probability spaces. Our general setting necessitates

the use of the mathematical tools fundamentally different

from the standard convex optimization tools (Karush-Kuhn-

Tucker conditions) that can be used to solve the finite alphabet

case, as carried out in [3]. We leverage the Donsker-Varadhan

characterization of the minimum relative entropy, and, to show

the necessary optimality conditions, we compare a tentative

solution to a perturbation by a carefully selected auxiliary

distribution.

The new characterization of rate-distortion function for

successive refinement on abstract alphabets allows us to iden-

tify the key random variable describing the nonasymptotic

fundamental limits of successive refinement, and to show a

new nonasymptotic converse bound. In all the scenarios where

the dispersion of successive refinement is known [12], [13],

this bound is second-order optimal.

The new characterization also enables an iterative algorithm,

which can be used to compute an accurate approximation

to the rate-distortion function of successive refinement, even

if the source and reproduction alphabets are not discrete.

We prove that when initialized appropriately, the algorithm

converges to the true value of rate-distortion function with

speed O
(

1
k

)

, where k is the iteration number. The algorithm

can be viewed as a generalization of Blahut’s algorithm [8]

and its extension to successive refinement by Tuncel and Rose

[3] for discrete alphabets. Methods to compute the capacity

and rate-distortion functions for continuous alphabets were

proposed in [14] and [15].

The rest of the paper is organized as follows. The main

result of the paper characterizing the abstract rate-distortion

function (Theorem 2) is presented in Section II. The main

nonasymptotic converse result, Theorem 3, is shown in Sec-

tion III. A proof of Theorem 1, which streamlines Csiszár’s

argument [2], is presented in Section IV. The proof of Theo-

rem 2, which leverages the ideas presented in Section IV and

in [3], is presented in Section V. Section VI discusses the

iterative algorithm for computation of rate-distortion function

of successive refinement.

Throughout the paper, R+ = [0,+∞) is the positive real

line; PX -a.e. x stands for ‘almost every x’, i.e. ’except on a

set with total PX measure 0’; PX → PY |X → PY signifies

that PY is the distribution observed at the output of random

transformation PY |X when the input is distributed according

to PX , i.e. PY is the marginal of PXPY |X . When we say that a

random variable X takes values in a set X , we understand that

X comes together with its σ-algebra X, forming a measurable

space (X ,X). Throughout the paper, we assume that all σ-

algebras contain singletons (this is true for any countably

separated σ-algebra). For two measurable spaces (X ,X) and

(Y,Y), a transition probability kernel from (X ,X) into (Y,Y)
is a mapping κ : X × Y 7→ [0, 1] such that (i) the mapping

x 7→ κ(x,B) is X-measurable for every B ∈ Y, and (ii) the

mapping B 7→ κ(x,B) is a probability measure on (Y,Y) for

every x ∈ X .

II. CHARACTERIZATION OF RATE-DISTORTION FUNCTION

Consider the source random variable X ∈ X and two

(possibly different) distortion measures d1 : X×Y1 7→ [0,+∞)
and d2 : X ×Y2 7→ [0,+∞), quantifying the accuracy of lossy

compression at the first and the second stages, respectively. An

(M1,M2, d1, d2) average distortion code for (PX , d1, d2) is a

pair of encoders

f1 : X 7→ {1, . . . ,M1} (10)

f2 : X 7→ {1, . . . , ⌊M2/M1⌋} (11)

and decoders

g1 : {1, . . . ,M1} 7→ Y1 (12)

g2 : {1, . . . ,M1} × {1, . . . , ⌊M2/M1⌋} 7→ Y2 (13)

such that

E [d1(X, g1(f1(X)))] ≤ d1, (14)

E [d2(X, g2(f1(X), f2(X)))] ≤ d2. (15)

For the successive refinement of n i.i.d. copies of X with sep-

arable distortion measures d
(n)
1 (xn, yn) = 1

n

∑n
i=1 d1(xi, yi),

d
(n)
2 (xn, yn) = 1

n

∑n
i=1 d2(xi, yi), we say that the distor-

tions (d1, d2) are asymptotically attainable with rates (R1, R2)
at first and second stages if there exists a sequence of

(M1,M2, d1, d2) average distortion codes for (PXn , d
(n)
1 , d

(n)
2 )

with

lim sup
n→∞

1

n
logM1 ≤ R1, (16)

lim sup
n→∞

1

n
logM2 ≤ R2. (17)

Rimoldi [16] showed that for the discrete memoryless source,

the distortions (d1, d2) are asymptotically attainable with rates

(R1, R2) at first and second stages if and only if

I(X ;Y1) ≤ R1 E [d1(X,Y1)] ≤ d1

I(X ;Y1, Y2) ≤ R2 E [d2(X,Y2)] ≤ d2,
(18)

where here and in the sequel, R2 refers to the total rate at

both stages (see Effros [17] for a generalization to continuous

alphabets and stationary sources). It is convenient to consider

the following equivalent representation of the boundary of the

set in (18):

R2(d1, d2, R1) , inf {R2 : (d1, d2, R1, R2) satisfy (18)} .
(19)

Henceforth, we refer to the function R2(d1, d2, R1) : R
3
+ 7→

R+ as the second stage rate-distortion function. It represents



3

the minimum asymptotically achievable total rate compatible

with rate R1 at the first stage and at-stage distortions d1, d2.

For any achievable (R1, R2, d1, d2), the following bound in

terms of the standard rate-distortion function in (1) clearly

holds:

R1 ≥ Rd1(d1) (20)

R2 ≥ Rd2(d2) (21)

where Rd1(·) and Rd2(·) denote the rate-distortion functions

for distortion measures d1 and d2, respectively. In Fig. 1,

(d1, d2) are fixed, and the region of achievable (R1, R2) is

greyed out; R2(d1, d2, R1) is its boundary drawn in red. If

the point (Rd1(d1), Rd2(d2)) is attainable, the source is said

to be successively refinable [18] at (d1, d2).

Rd1
(d1)

Rd2
(d2)

R1

R2

achievable (R1, R2)

Fig. 1. The rate-distortion region for successive refinement, for fixed d1, d2.
Note that if d1 = d2, and d2 < d1, then R2(d1, d2, R1) = R(d2) is
attained at some R1 < ∞.

Throughout the paper, we assume that the following condi-

tions are met.

(a) R2(d1, d2, R1) is finite in some nonempty region ⊆ R
3
+.

(b) There exist transition probability kernels PY ⋆
1
|X and

PY ⋆
2
|XY ⋆

1
that attain the infimum in (19).

The mild assumption (b) is always satisfied, for example, if

Y1,Y2 are finite; if X is Polish, Y1,Y2 are compact metric,

and distortion measures d1, d2 are jointly continuous; and if

X = Y1 = Y2 are Euclidean spaces with d1(x, y) → ∞,

d2(x, y) → ∞ as ‖x− y‖ → ∞ [2].

The second stage rate-distortion function R2(d1, d2, R1)
is nondecreasing and jointly convex in (d1, d2, R1) (see

Lemma 3 in Section V below). The region of (d1, d2, R1)
where the constraints are satisfied with equality is defined as

follows.

Ω , {(d1, d2, R1) ∈ R
3
+ : ∀(ǫ1, ǫ2, ǫ3) > 0: (22)

R2(d1 + ǫ1, d2 + ǫ2, R1 + ǫ3) < R2(d1, d2, R1) < ∞}.
In the important special case of d1 = d2,

Ω = {(d1, d2, R1) : R(d1) < R1 < R(d2), d1 ≤ dmax} , (23)

where dmax is the smallest positive scalar such that R(d) is

constant on (dmax,∞).

Since R2(d1, d2, R1) is convex in its input, each point

(d1, d2, R1) ∈ R
3
+ on the curve can be parametrized via the

supporting hyperplane h−λ⋆
1d1−λ⋆

2d2−ν⋆1R1 = 0. Here h is

the is the distance of the hyperplane from the origin, and the

triple (λ⋆
1, λ

⋆
2, ν

⋆
1 ) defines the normal vector to the hyperplane.

Thus, to each (d1, d2, R1) ∈ R
3
+ there corresponds a triplet

(λ⋆
1, λ

⋆
2, ν

⋆
1 ) ∈ R

3
+ such that for some h ∈ R+, the hyperplane

h− λ⋆
1d1 − λ⋆

2d2 − ν⋆1R1 = 0 is tangent to R2(d1, d2, R1) at

(d1, d2, R1).

Before we state our main result, we present the following

notation. For measurable functions β1 : X 7→ R+, β2 : X ×
Y1 7→ R+ and nonnegative numbers λ1, λ2, ν1, denote

Σ2(y1, y2) , E





exp
(

− λ1

1+ν1
d1(X, y1)− λ2d2(X, y2)

)

β1(X)β2(X |y1)
ν1

1+ν1





(24)

Σ1(y1) , E





exp
(

− λ1

1+ν1
d1(X, y1)

)

β1(X)β2(X |y1)−
1

1+ν1



 . (25)

The quantities Σ1(y1) and Σ2(y1, y2) generalize the expecta-

tion on the left side of (5) to successive refinement.

The main result of the paper can now be stated as follows.

Theorem 2 (Parametric representation). Assume that

(d1, d2, R1) ∈ Ω. The boundary of the rate-distortion region

of successive refinement can be represented as

R2(d1, d2, R1)

= max

{

E

[

log
1

β1(X)1+ν1

]

− λ1d1 − λ2d2 − ν1R1

}

,

(26)

where the maximization is over (β1(x), ν1, λ1, λ2) ≥ 0 satis-

fying, for some β2(x|y1) ≥ 0, the constraints

Σ2(y1, y2) ≤ 1, (27)

Σ1(y1) ≤ 1 (28)

for all (y1, y2) ∈ Y1 × Y2.

Furthermore, in order for (PY ∗
1
|X , PY ∗

2
|XY ∗

1
) to achieve the

infimum in (19), it is necessary and sufficient that

dPX|Y ⋆
1
=y1

dPX

(x) =
exp

(

− λ⋆
1

1+ν⋆
1

d1(x, y1)
)

β1(x)β2(x|y1)
− 1

1+ν⋆
1

, (29)

dPX|Y ⋆
1
=y1,Y

⋆
2
=y2

dPX|Y ⋆
1
=y1

(x) =
exp(−λ⋆

2d2(x, y2))

β2(x|y1)
, (30)

where

(λ⋆
1, λ

⋆
2, ν

⋆
1 ) = −∇R2(d1, d2, R1), (31)

and 0 ≤ β1(x) ≤ 1, 0 ≤ β2(x|y1) ≤ 1 satisfy

Σ2(y1, y2) ≤ Σ1(y1) (32)

≤ 1. (33)



4

for all (y1, y2) ∈ Y1 × Y2. Finally, the choice

β⋆
1 (x) = E

[

β2(x|Y ⋆
1 )

1

1+ν⋆
1 exp

(

− λ⋆
1

1 + ν⋆1
d1(x, Y

⋆
1 )

)]

,

(34)

β⋆
2 (x|y1) = E [exp(−λ⋆

2d2(x, Y
⋆
2 ))|Y ⋆

1 = y1] . (35)

satisfies (29), (30), (32), (33) and thus achieves the maximum

in (26). Equality in (33) is attained for PY ⋆
1

-a.e. y1, and

equality in (32) is attained for PY ⋆
2
|Y ⋆

1
=y1

-a.e. y2.3

If the source is successively refinable at (d1, d2), then the

optimal choice is

β1(x) = α⋆
1(x)

ν1
1+ν1 α⋆

2(x)
1

1+ν1 , (36)

β2(x|y1) = exp

(

−λ1

ν1
d1(x, y1)

)

α⋆−1
1 (x)α⋆

2(x), (37)

λ1 = −ν1R
′
d1
(d1), (38)

λ2 = −R′
d2
(d2). (39)

for an arbitrary ν1 > 0, where α⋆
1(·), α⋆

2(·) achieve the

maximum of (4) for {d1, d1} and {d2, d2}, respectively. It

is easy to verify that in this case, (27) and (28) are satisfied,

and the function in (26) equals Rd2(d2) when R1 = Rd1(d1).
Plugging (36), (37) into (29), (30) yields the optimal kernels

dPX|Y ⋆
1
=y1

(x) =
exp

(

−λ1

ν1
d1(x, y1)

)

α⋆
1(x)

dPX(x), (40)

dPX|Y ⋆
1
=y1,Y

⋆
2
=y2

=
exp(−λ2d2(x, y2))

α⋆
2(x)

α⋆
1(x) dPX|Y ⋆

1
=y1

exp
(

−λ1

ν1
d1(x, y1)

)

(41)

=
exp(−λ2d2(x, y2))

α⋆
2(x)

dPX(x), (42)

which coincide with the kernels that achieve the single-stage

rate-distortion function (6), indicating successive refinability.

The intuition is as follows. After the first stage of successive

refinement is complete, the effective source distribution to be

compressed is PX|Y ⋆
1

. Due to (42), the Markov chain condition

PX|Y ⋆
1
,Y ⋆

2
= PX|Y ⋆

2
holds, where PX|Y ⋆

2
is the backward

transition probability kernel that achieves the rate-distortion

function at d2 for PX . Thus after the second stage the

effective source distribution coincides with that of the optimal

single-stage rate-distortion code, PX|Y ⋆
2

. The calculation (42)

also recovers the Markovian characterization of successive

refinability due to Equitz and Cover [18, Th. 2].

Theorem 2 refines a prior finite alphabet result by Tuncel

and Rose [3, Th. 4] and extends it to abstract probability

spaces. In the finite alphabet case, the optimality conditions

(34), (35) and (32), (33) were stated in [3, eq. (47), eq. (46)

and eq. (50)], respectively. The dual representation of the

rate-distortion region as a maximum over functions in (26)

is new. One reason why such a representation is useful is that

by choosing β1 and β2 appropriately, one can generate outer

bounds to the rate-distortion region. For example, choosing β1

3By the definition of a transition probability kernel, the transition probability
kernels PY ⋆

2
|X,Y1=y1

and PY ⋆
2
|Y ⋆

1
=y1

are well defined at every y1 (and not

only at PY ⋆
1

-a.e. y1).

and β2 as in (36) and (37) leads to an outer bound to the rate-

distortion region in (18), even if the source is not successively

refinable. This particular choice also leads to a nonasymptotic

converse bound in Corollary 1 in Section III below.

III. NONASYMPTOTIC CONVERSE BOUND

We focus on excess distortion codes for successive

refinement, that we formally define as follows. An

(M1,M2, d1, d2, ǫ1, ǫ2) code for (PX , d1, d2) is a pair of

encoders (f1, f2) (10), (11) and decoders (g1, g2) (12), (13)

such that

P [Ac
1] ≤ ǫ1, (43)

P [Ac
2] ≤ ǫ2, (44)

where A1 and A2 denote the successful decoding events at

first and second stages, respectively:

A1 , {d1(X,Y1) ≤ d1} , (45)

A2 , A1 ∩ {d2(X,Y2) ≤ d2} , (46)

where Y1 = g1(f1(X)) and Y2 = g2(f1(X), f2(X))). We allow

randomized encoders and decoders, in which case f1, f2, g1, g2
are transition probability kernels rather than deterministic

mappings.

It was shown in [11] that for single stage compression, the

random variable called tilted information, defined in (9), plays

the key role in the corresponding nonasymptotic fundamental

limits. Leveraging the result of Theorem 2, we can define the

tilted information for successive refinement as follows.

Definition 1. Fix PX , d1, d2. Tilted information for successive

refinement of x at (d1, d2, R1) ∈ Ω is defined as

(x, d1, d2, R1) , (1 + ν⋆1 ) log
1

β⋆
1(x)

− λ⋆
1d1 − λ⋆

2d2 − ν⋆1R1

(47)

where (β⋆
1(·), λ⋆

1, λ
⋆
2, ν

⋆
1 ) achieve the maximum in (26).

If the source is successively refinable at d1, d2, then the

tilted information for successive refinement coincides with the

tilted information for single stage compression:

(x, d1, d2, Rd1(d1)) = d2(x, d2). (48)

Fixing (β1(·), λ1, λ2, ν1) ≥ 0 that satisfy (27) and (28),

for some β2(·|·) ≥ 0, the notion of tilted information can be

generalized by defining

F , (1 + ν1) log
1

β1(x)
− λ1d1 − λ2d2 − ν1 logM1. (49)

Choosing (β1(·), λ1, λ2, ν1) = (β⋆
1 (·), λ⋆

1, λ
⋆
2, ν

⋆
1 ) as in

Definition 1 would result in F = (X, d1, d2, logM1). For

a given (M1,M2, d1, d2, ǫ1, ǫ2) code (f1, f2, g1, g2) with Y1 =
g1(f1(X)), it is instructive to split (49) into two terms (corre-

sponding to both stages of successive refinement):

F = ν1(F1 − logM1) + F2, (50)
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where

F1 , log
β2(X |Y1)

1
1+ν1

β1(X)
− λ1

1 + ν1
d1, (51)

F2 , log
β2(X |Y1)

−
ν1

1+ν1

β1(X)
− λ1

1 + ν1
d1 − λ2d2. (52)

Roughly speaking, F1 and F2 represent the estimates of the

number of bits about X that need be conveyed at the end

of first and second stages in order to satisfy the constraints

d1(X,Y1) ≤ d1 and d1(X,Y2) ≤ d2, respectively, i.e. the in-

formation content of X relevant to satisfying these constraints.

Since we are looking at a fixed rate scenario, and F1 and F2

are random variables, we expect the excess distortion event to

occur once the information contents F1 and F2 exceed those

chosen fixed rates. This intuition is made rigorous in the next

result, which states that the probability that F1, F2 are too high

for the chosen rates yet the decoding is performed correctly

is low.

Theorem 3. For an (M1,M2, d1, d2, ǫ1, ǫ2) code to exist, it

is necessary that for all (γ1, γ2) > 0,

P [{F1 ≥ logM1 + γ1} ∩ A1] ≤ exp(−γ1), (53)

P [{F2 ≥ logM2 + γ2} ∩ A2] ≤ exp(−γ2), (54)

where A1,A2 are the successful decoding events (45), (46).

Proof of Theorem 3. We employ Theorem 2 similar to how

Theorem 1 was employed in the proof of [11, Th. 7].

Let the two-stage encoder and decoder be the random

transformations (PW1|X , PW2|X,W1
) and (PY1|W1

, PY2|W1,W2
),

where W1 takes values in {1, . . . ,M1}, and W2 takes values

in {1, . . . , ⌊M2/M1⌋}.

Furthermore, introduce the auxiliary distribution QW1W2
,

equiprobable on {1, . . . ,M1} × {1, . . . , ⌊M2/M1⌋}, and let

QY1Y2
be the distribution on Y1×Y2 that arises after QW1W2

is passed through the random transformation PY1Y2|W1,W2

defined by our code, i.e. QW1W2
→ PY1Y2|W1,W2

→ QY1Y2
.

To show (65), write, for any γ1 ≥ 0

P [{F1 ≥ logM1 + γ1} ∩ A1]

≤
∫

x∈X

dPX(x)

M1
∑

w=1

PW1|X=x(w)

∫

dPY1|W1=w(y)

· 1 {M1 ≤ exp (F1 − γ1)} 1 {d1(x, y1) ≤ d1} (55)

≤ exp (−γ1)EPX×QY1
[exp (F1) 1 {d1(X,Y1) ≤ d1}] (56)

≤ exp (−γ1)EQY1
[Σ1(Y1)] (57)

≤ exp (−γ1) (58)

where

• (56) follows by upper-bounding PW1|X=x(w) ≤ 1, and

1 {M1 ≤ exp (F1 − γ1)} ≤ exp (−γ1)

M1
exp (F1) ; (59)

• (58) is due to (28).

We proceed to show (66). We have, for any γ2 ≥ 0

P [{F2 ≥ logM2 + γ2} ∩ A2]

≤
∫

x∈X

dPX(x)
∑

w1,w2

PW1,W2|X=x(w1, w2)

· E
[

1 {M2 ≤ exp (F2 − γ2)}
· 1 {A2} |X = x,W1 = w1,W2 = w2

]

(60)

≤ exp (−γ2)EPX×QY1Y2
[exp (F2) 1 {A2}] (61)

≤ exp (−γ2)EQY1Y2
[Σ2(Y1, Y2)] (62)

≤ exp (−γ2) , (63)

where

• (61) follows by upper-bounding PW1,W2|X=x(w1, w2) ≤
1, and

1 {M2 ≤ exp (F2 − γ2)} ≤ exp (−γ2)

M2
exp (F2) ; (64)

• (63) is due to (27).

Theorem 3 immediately leads to the following converse: for

an (M1,M2, d1, d2, ǫ1, ǫ2) code to exist, it is necessary that

for all (γ1, γ2) > 0,

ǫ1 ≥ P [F1 ≥ logM1 + γ1]− exp(−γ1), (65)

ǫ2 ≥ P [F2 ≥ logM2 + γ2]− exp(−γ2). (66)

In general, F1 and F2 are functions of a given code, which

limits the computability of the basic converse in Theorem 3 or

that in (65), (66). Fortunately, via elementary probability rules,

Theorem 3 immediately leads to a series of corollaries that

are computable and useful in several applications as explained

below.

The following corollary to Theorem 3 is immediate from

the observation that (36)–(39) satisfy (27) and (28), and thus

F1 = d1(X, d1) and F2 = d2(X, d2) is a valid choice for

these functions.

Corollary 1. Fix an (M1,M2, d1, d2, ǫ1, ǫ2) code. Then, for

all (γ1, γ2) > 0, it holds that

ǫ1 ≥ P

[

d1(X, d1) ≥ logM1 + γ1

]

− exp(−γ1) (67)

ǫ2 ≥ P

[

d2(X, d2) ≥ logM2 + γ2

]

− exp(−γ2). (68)

where d1 and d2 are the d1- and d2-tilted informations

(defined in (9)), respectively.

Corollary 1 applies whether or not the source is successively

refinable.

The next corollary recombines the F1 and F2 events in

Theorem 3 to yield a bound on the joint error probability ǫ2
in terms of F and F1. This is useful when F1 is a function of

X only; for example when F1 = d1(X, d1).

Corollary 2. Fix an (M1,M2, d1, d2, ǫ1, ǫ2) code. For all

(γ1, γ2) > 0, both (65) and

ǫ2 ≥ P

[

{F ≥ logM2 + ν1γ1 + γ2} ∪ {F1 ≥ logM1 + γ1}
]

− exp(−γ1)− exp(−γ2) (69)
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must hold.

Proof. Consider the event

B , {F ≥ logM2 + ν1γ1 + γ2} ∪ {F1 ≥ logM1 + γ1} .
(70)

Using elementary probability laws and Theorem 3, write

P [B] = P [B ∩ Ac
2] + P [B ∩ A2] (71)

≤ ǫ+ P [B ∩A2 ∩ {F1 ≥ logM1 + γ1}]
+ P [B ∩A2 ∩ {F1 < logM1 + γ1}] (72)

≤ ǫ+ exp (−γ1) + P [A2 ∩ {F2 ≥ logM2 + γ2}]
(73)

≤ ǫ+ exp(−γ1) + exp(−γ2). (74)

In general, F1 is a function of a given code, which limits

the computability of the converse in Corollary 2. However,

when operating at first stage rate close to Rd1(d1), which

corresponds to the vertical asymptote in Fig. 1, F1 becomes

a function of X only, and (69) gives a computable bound

that is tighter than (75). Indeed, letting (β1(·), λ1, λ2, ν1)
to achieve the maximum in (26) at (d1, d2, Rd1(d1)), we

obtain F1 = d1(X, d1), which is a function of X only, and

F = (X, d1, d2, Rd1(d1)) + ν1Rd1(d1)− ν1 logM1.

Omitting the F1 event from the probability in (69) and

choosing (β1(·), λ1, λ2, ν1) as in Definition 1 so that F =
(X, d1, d2, logM1), we obtain a bound on the joint error

probability ǫ2 in terms of tilted information only, stated in

Corollary 3 below. This is nice because it generalizes the

corresponding result for one stage compression [11, Th. 7],

and because it leads to a tight second-order result, as explained

at the end of this section.

Corollary 3. For any (M1,M2, d1, d2, ǫ1, ǫ2) code and for all

(γ1, γ2) > 0, it holds that

ǫ2 ≥ P

[

(X, d1, d2, logM1) ≥ logM2 + ν⋆1γ1 + γ2

]

− exp(−γ1)− exp(−γ2) (75)

In a typical application of the bound in Corollary 3, γ1
and γ2 will be chosen so that the terms ν⋆1γ1 + γ2 inside the

probability and exp(−γ1) + exp(−γ2) outside are both negli-

gible. Thus, Corollary 3 establishes that the excess-distortion

probability is roughly bounded below by the complementary

cdf of tilted information.

For successively refinable finite alphabet sources, No et

al. [12] found the dispersion of successive refinement. The

dispersion of non-successively refinable finite alphabet sources

was recently computed in [13]. A straightforward second-order

analysis (along the lines of [11, (103)–(106)]) of the bound

in Corollary 1 recovers the converse parts of the dispersion

results in [12] and [13], respectively, and extends them to ab-

stract stationary memoryless sources. Specifically, let Q−1 (ǫ)
be the inverse of the standard Gaussian complementary cdf and

let Q−1(ǫ,Σ) be the K-dimensional analogue of that function

for a Gaussian random vector with zero mean and covariance

matrix Σ, i.e. Q−1(ǫ,Σ) is the boundary of the set
{

z ∈ R
K : P [N (0,Σ) ≤ z] ≥ 1− ǫ

}

. (76)

Consider some (R⋆
1, R

⋆
2) on the boundary of the set in (18)

and some (L⋆
1, L

⋆
2) on the boundary of the set

{

(L1, L2) ∈ R
2 :

ν⋆1L1 + L2 ≤
√

Var [(X, d1, d2, R⋆
1)]Q

−1 (ǫ2)
}

, (77)

where ν⋆1 is the negative of the derivative of R2(d1, d2, R1)
with respect to R1 at R1 = R⋆

1. An asymptotic analysis of

Corollary 3 yields an extension of the converse part of [13,

Th. 11 (i)] to abstract alphabets: if an (M1,M2, d1, d2, ǫ1, ǫ2)
code exists for n i.i.d. copies of X , then

logM1 ≥ nR⋆
1 +

√
nL⋆

1 +O (logn) , (78)

logM2 ≥ nR⋆
2 +

√
nL⋆

2 +O (logn) . (79)

When the asymptotic rate at first stage is the vertical

asymptote in Fig. 1, i.e. R⋆
1 = Rd1(d1), then Corollary 2

leads to the following strengthening of (78), (79): if an

(M1,M2, d1, d2, ǫ1, ǫ2) code exists for n i.i.d. copies of X ,

then (78), (79) hold with (L⋆
1, ν

⋆L⋆
1 + L⋆

2) ∈ Q−1(ǫ2,Σ) for

Σ being the covariance matrix of the two-dimensional random

vector (d1(X, d1), (X, d1, d2, R
⋆
1)). The finite alphabet case

of this result is the converse part of [13, Th. 11 (iii)]. The

converse result (78), (79) also holds with R⋆
1 = Rd1(d1),

R⋆
2 = Rd2(d2), and Σ the covariance matrix of the two-

dimensional random vector (d1(X, d1), d2(X, d1)), which is

tight if the source is successively refinable [13, Cor. 13 (iii)].

Unlike [13] who focused on the joint probability of error

ǫ2 without placing any further constraint on ǫ1 apart from the

trivial ǫ1 ≤ ǫ2, No et al. [12] considered a formulation that

places separate upper bounds on each of the probabilities that

the source is not reproduced within distortion levels d1 and

d2, i.e. (43) and P [d2(X,Y2) > d2] ≤ ǫ′2. It is easy to show

that Corollary 1 continues to hold with ǫ2 replaced by ǫ′2. The

converse part of [12, Cor. 6] then extend it to abstract alphabets

as follows: if an (M1,M2, d1, d2, ǫ1, ǫ
′
2) code under separate

error probability formalism exists for n i.i.d. copies of X , then

logM1 ≥ nRd1(d1) +
√

nVar [d1(X, d1)]Q
−1 (ǫ1)

+O (logn) , (80)

logM2 ≥ nRd2(d2) +
√

nVar [d2(X, d2)]Q
−1 (ǫ′2)

+O (logn) . (81)

IV. PROOF OF THEOREM 1

In this section, we revisit the beautiful proof of Theorem 1

by Csiszár [2]. We streamline Csiszár’s argument by using

the the Donsker-Varadhan characterization of the minimum

relative entropy, stated below, which will be also instrumental

in the proof of Theorem 2.

Lemma 1 (Donsker-Varadhan, [19, Lemma 2.1], [20, Th. 3.5]

). Let ρ : X 7→ [−∞,+∞] and let X̄ be a random variable

on X such that E
[

exp
(

−ρ(X̄)
)]

< ∞. Then,

D(X‖X̄) + E [ρ(X)] ≥ log
1

E
[

exp
(

−ρ(X̄)
)] (82)
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with equality if and only if X has distribution PX⋆ such that

dPX⋆(x) =
exp (−ρ(x))

E
[

exp
(

−ρ(X̄)
)]dPX̄(x) (83)

We now recall some useful general properties of R(d).
Fix source distribution PX . For some transition probability

kernel P = PY |X , put

I(P ) , I(X ;Y ) (84)

ρ(P ) , E [d(X,Y )] . (85)

Lemma 2 ( [2, Lemma 1.1]). R(d) is non-increasing, convex

and

R(d) = inf
P : ρ(P )=d

I(P ) dmin < d ≤ dmax. (86)

Let F (λ) denote the maximum of the vertical axis intercepts

of the straight lines of slope −λ which have no point above

the R(d) curve, i.e. using (86) for λ > 0 (see Fig. 2) 4

F (λ) , inf
P

I(P ) + λρ(P ). (87)

Furthermore, since R(d) is convex and nonincreasing, to each

d

R

feasible I(P )

R(d)

F (λ)− λd

Fig. 2. Lagrange duality for the rate-distortion problem.

d ≥ dmin, there exists λ ≥ 0 such that the straight line of slope

−λ through (d,R(d)) is tangent to the R(d) curve, and

R(d) , max
λ≥0

(F (λ) − λd) . (88)

Theorem 1 will follow from (88) and Theorem 4 below.

Theorem 4 (Necessary and sufficient conditions for an opti-

mizer [2]). In order for PY ∗|X to achieve the infimum in (87),

it is necessary and sufficient that

dPX|Y ⋆=y

dPX

(x) =
exp(−λd(x, y))

α(x)
(89)

where 0 ≤ α(x) ≤ 1 satisfies (5). Furthermore, the choice

α∗(x) = E [exp(−λd(x, Y ∗))] (90)

4The optimization problem in (87) is known as the Lagrangian dual
problem, and the function F (λ) as the Lagrange dual.

satisfies (89) and (5), and for any α(x) ≥ 0 satisfying (5) we

have for all P̃

I(P̃ ) + λρ(P̃ ) ≥ E

[

log
1

α(X)

]

(91)

with equality if and only if P̃ can be represented as in (89),

with the given α(x).

Proof of Theorem 4. Consider the function

L(PY |X , PȲ ) = D(PY |X‖PȲ |PX) + λE [d(X,Y )] (92)

= I(X ;Y ) +D(Y ‖Ȳ ) + λE [d(X,Y )] (93)

≥ I(X,Y ) + λE [d(X,Y )] (94)

Since equality in (94) holds if and only if PY = PȲ , F (λ)
can be expressed as

F (λ) = inf
PȲ

inf
PY |X

L(PY |X , PȲ ). (95)

Denote

ΣȲ (x) , E
[

exp(−λd(x, Ȳ ))
]

. (96)

Since d(x, y) ≥ 0, we have 0 ≤ ΣȲ (x) ≤ 1 , and Lemma 1

applies to conclude that equality in

D(PY |X=x‖PȲ ) + λE [d(x, Y )|X = x] ≥ log
1

ΣȲ (x)
, (97)

is achieved if and only if PY |X=x = PȲ ∗|X=x, where

PȲ ∗|X=x is determined from

log
dPȲ ∗|X=x(y)

dPȲ (y)
+ λd(x, y) = log

1

ΣȲ (x)
. (98)

Applying (97) to solve for the inner minimizer in (95), we

obtain

F (λ) = inf
PȲ

E

[

log
1

ΣȲ (X)

]

(99)

= E

[

log
1

ΣY ∗(X)

]

(100)

where (100) holds by the assumption (B).

Although for a fixed PȲ we can always define the tilted

distribution PȲ ∗|X via (98), in general we cannot claim that

the marginal distribution PȲ ⋆ that results after applying the

random transformation PȲ ∗|X to PX coincides with PȲ . This

happens if and only if PȲ is such that for PȲ -a.e. y,

E

[

exp (−λd(X, y))

ΣȲ (X)

]

= 1. (101)

Since by the assumption (B), these exists PY ∗|X that achieves

(100), condition (101) must hold for PȲ = PY ∗ . Using this

observation together with (100), we conclude that PY ∗|X in

(89) with α(x) = α∗(x), where α∗(x) is defined in (90),

is necessary and sufficient to achieve the minimum of F (λ)
in (87). In particular, (89) is a necessary condition for the

minimizer.

We now show that α∗(x) satisfies (5), which implies that

both (89) and (5) are necessary. Since PX → PY ∗|X → PY ∗ ,

equality in (101) particularized to PY ∗ holds for PY ∗ -a.s. y,
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which is equivalent to equality in (5). To show (5) for all y,

note using (99) that for any PȲ ,

E

[

log
1

ΣY ∗(X)

]

≤ E

[

log
1

ΣȲ (X)

]

(102)

For an arbitrary ȳ ∈ Y and 0 ≤ ǫ ≤ 1, let

PȲ = (1 − ǫ)PY ∗ + ǫδȳ (103)

for which

ΣȲ (x) = (1− ǫ)ΣY ∗(x) + ǫ exp (−λ∗d(x, ȳ)) (104)

Substituting (104) in (102), we obtain

0 ≥ E

[

log
ΣȲ (X)

ΣY ∗(X)

]

(105)

= E

[

log

[

1− ǫ+ ǫ
exp (−λd(X, ȳ))

ΣY ∗(X)

]]

(106)

= log (1− ǫ) + E

[

log

[

1 +
ǫ

1− ǫ

exp (−λd(X, ȳ))

ΣY ∗(X)

]]

(107)

Since the difference quotient of the second term satisfies 0 ≤
1
ǫ
log

(

1 + ǫx
1−ǫ

)

≤ x log e
1−δ

for all x ≥ 0 and 0 ≤ ǫ ≤ δ ≤ 1,

by the dominated convergence theorem, the right derivative of

(107) with respect to ǫ evaluated at ǫ = 0 is

E

[

−1 +
exp (−λd(X, ȳ))

ΣY ∗(X)

]

log e ≤ 0 (108)

where the inequality holds because otherwise (105) would be

violated for sufficiently small ǫ. This concludes the proof that

α∗(x) in (90) satisfies condition (5), so both (89) and (5) in

Theorem 4 are necessary.

The sufficiency of (89) and (5) for PY ∗|X to achieve the

minimum in (87) follows from (91). To show (91), fix any

α(x) satisfying (5) and use the concavity of the logarithm to

show that

I(P̃ ) + λρ(P̃ )

≥ E

[

log
1

ΣY ∗(X)

]

(109)

= E

[

log
1

α(X)

]

− E

[

log
ΣY ∗(X)

α(X)

]

(110)

≥ E

[

log
1

α(X)

]

− logE PX×PY ∗

exp(−λd(X,Y ∗))

α(X)
(111)

≥ E

[

log
1

α(X)

]

. (112)

For the equality condition, observe that strict concavity of

logarithm implies that equality in (111) holds if and only if

the ratio
ΣY ∗ (X)
α(X) is constant, while equality in (112) holds if

and only if that constant is 1.

V. PROOF OF THEOREM 2

Fix the source distribution PX . For a transition probability

kernel P = PY1Y2|X , put

I1(P ) , I(X ;Y1) (113)

I2(P ) , I(X ;Y1, Y2) (114)

ρ1(P ) , E [d1(X,Y1)] (115)

ρ2(P ) , E [d2(X,Y2)] (116)

Lemma 3. The function R2(d1, d2, R1) is non-increasing as

a function of each argument when the others are kept fixed,

jointly convex, and

R2(d1, d2, R1) = inf
P :

I1(P )=R1

ρ1(P )=d1

ρ2(P )=d2

I2(P ), (d1, d2, R1) ∈ Ω,

(117)

where the set Ω is defined in (22).

Proof. That R2(d1, d2, R1) is non-increasing is obvious by

definition. To show convexity, note first that since u log u
v

is

a convex function of (u, v), D(P‖Q) is a convex function of

(P,Q), and so I2(P ) is a convex function of P . Therefore,

I1(P ) is convex as a composition of a convex function I2(P )
with an affine mapping P 7→ PY1|X .

Let the probability kernel Pa attain R2(d
a
1 , d

a
2 , R

a
1) and Pb

attain R2(d
b
1, d

b
2, R

b
1). Let P = ǫPa + (1 − ǫ)Pb, d1 = ǫda1 +

(1− ǫ)db1, d2 = ǫda2 +(1− ǫ)db2, R1 = ǫRa
1 +(1− ǫ)Rb

1. Since

I1(P ) is convex and ρ1(P ), ρ2(P ) are affine,

I1(P ) ≤ R1 (118)

ρ1(P ) ≤ d1 (119)

ρ2(P ) ≤ d2. (120)

Furthermore, by convexity of I2(P ),

I2(P ) ≤ ǫI2(Pa) + (1− ǫ)I2(Pb) (121)

= ǫR2(d
a
1 , d

a
2 , R

a
1) (122)

+ (1− ǫ)R2(d
b
1, d

b
2, R

b
1).

Convexity of R2(d1, d2, R1) follows by minimizing the left

side of (122) over P satisfying the constraints (118)–(120).

To show (117), rewrite R2(d1, d2, R1) as

R2(d1, d2, R1) = inf
R̃1≤R

d̃1≤d1

d̃2≤d2

R̃2(d̃1, d̃2, R̃1), (123)

where R̃2(·, ·, ·) denotes the function in the right side of (117).

Since for (d1, d2, R1) ∈ Ω, the function R2(d1, d2, R1) is

strictly decreasing in all arguments, the infimum (123) is

achieved at the boundary, and (117) follows.

Put

F (ν1, λ1, λ2) , max{h ≥ 0: ∀(d1, d2, R2)

h− λ1d1 − λ2d2 − ν1R1 ≤ R2(d1, d2, R2)}, (124)

i.e. F (ν1, λ1, λ2) is the maximum of the R2 axis intercepts

of the hyperplanes h − λ1d1 − λ2d2 − ν1R1 which have
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no point inside of the rate-distortion region in (18), i.e. for

(λ1, λ2, ν1) ≥ 0

F (ν1, λ1, λ2) , inf
PY1|X ,PY2|XY1

L
(

PY1|X , PY2|XY1

)

, (125)

where

L
(

PY1|X , PY2|XY1

)

, I(X ;Y1, Y2) + ν1I(X ;Y1)

+λ1E [d1(X,Y1)] + λ2E [d2(X,Y2)] .

In other words, L
(

PY1|X , PY2|XY1

)

is the Lagrangian and

(125) is the Lagrangian dual problem.

Since R2(d1, d2, R1) is convex and nonincreasing, to each

(d1, d2, R1) such that R2(d1, d2, R1) < ∞, there exists

(ν1, λ1, λ2) ≥ 0 such that the hyperplane h− λ1d1 − λ2d2 −
ν1R1 that passes through (d1, d2, R1) is tangent to the surface

R2(d1, d2, R1), and

R2(d1, d2, R1)

= max
(ν1,λ1,λ2)≥0

(F (ν1, λ1, λ2)− ν1R1 − λ1d1 − λ2d2).

(126)

Theorem 2 is an immediate consequence of (126) and Theo-

rem 5 below.

Theorem 5 (Necessary and sufficient conditions for an opti-

mizer). In order for (PY ∗
1
|X , PY ∗

2
|XY ∗

1
) to achieve the infimum

in (125), it is necessary and sufficient that

dPX|Y ∗
1
=y1

dPX

(x) =
exp

(

− λ1

1+ν1
d1(x, y1)

)

β1(x)β2(x|y1)−
1

1+ν1

(127)

dPX|Y ∗
1
=y1,Y

∗
2
=y2

dPX|Y ∗
1
=y1

=
exp(−λ2d2(x, y2))

β2(x|y1)
, (128)

where 0 ≤ β1(x) ≤ 1, 0 ≤ β2(x|y1) ≤ 1 satisfy (32), (33).

Furthermore, the choice

β∗
1(x) = E

[

β∗
2(x|Y ∗

1 )
1

1+ν1 exp

(

− λ1

1 + ν1
d1(x, Y

∗
1 )

)]

(129)

β∗
2(x|y1) = E [exp(−λ2d2(x, Y

∗
2 ))|Y ∗

1 = y1] (130)

satisfies (32), (33), (127), (128).

Finally, for any β1(x) ≥ 0, β2(x|y1) ≥ 0 satisfying (27),

(28), we have for all PY1Y2|X

L
(

PY1|X , PY2|XY1

)

≥ (1 + ν1)E

[

log
1

β1(X)

]

(131)

with equality if and only if (PY1|X , PY2|XY1
) can be repre-

sented as in (127), (128), with the given (β1, β2).

Proof of Theorem 5. The proof builds on the groundwork laid

out in our proof of Theorem 4. In the first part of the proof, we

will use the Donsker-Varadhan lemma and the assumption of

the existence of optimizing kernels to characterize the optimal

β∗
1 (x), β∗

2(x|y1) as well as PY ∗
1
|X and PY ∗

2
|XY ∗

1
. We will

apply the Donsker-Varadhan lemma twice, first for the second

stage and then, thinking of the optimized rate at second stage

as modifying the distortion measure at first stage, for the first

stage. This reasoning, concluding at (141) below, will also

ensure that equalities in (32) and (33) hold for PY ∗
1
Y ∗
2

-a.e.

(y1, y2).
The second part of the proof, (142)–(166), shows the neces-

sity of (32) and (33) for all (y1, y2). This involves perturbing

PY ∗
1
Y ∗
2

by a delicately chosen auxiliary distribution and using

the optimality of PY ∗
1
Y ∗
2

to claim (32) and (33).

Having established these necessary conditions, we will

proceed to show their sufficiency in the third and final part

of the proof, (160)–(165).

First, we show that

inf
PY1|X , PY2|XY1

L
(

PY1|X , PY2|XY1

)

= E

[

log
1

β∗
1 (X)1+ν1

]

.

(132)

For fixed probability kernels PȲ1
and PȲ2|Ȳ1

, consider the

function

L̄
(

PY1|X , PY2|XY1
, PȲ1

, PȲ2|Ȳ1

)

(133)

, D(PY2|XY1
‖PȲ2|Ȳ1

|PXY1
) + (1 + ν1)D(PY1|X‖PȲ1

|PX)

+λ1E [d1(X,Y1)] + λ2E [d2(X,Y2)] .

Since

L
(

PY ∗
1
|X , PY ∗

2
|XY ∗

1

)

= inf
PY1|X , PY2|XY1

, PȲ1
, PȲ2|Ȳ1

L̄
(

PY1|X , PY2|XY1
, PȲ1

, PȲ2|Ȳ1

)

(134)

= L̄
(

PY ∗
1
|X , PY ∗

2
|XY ∗

1
, PY ∗

1
, PY ∗

2
|Y ∗

1

)

(135)

we have

L̄
(

PY1|X , PY2|XY1
, PȲ1

, PȲ2|Ȳ1

)

≥ L
(

PY ∗
1
|X , PY ∗

2
|XY ∗

1

)

,
(136)

with equality if and only if (PY1|X , PY2|XY1
, PȲ1

, PȲ2|Ȳ1
) =

(PY ∗
1
|X , PY ∗

2
|XY ∗

1
, PY ∗

1
, PY ∗

2
|Y ∗

1
). Applying Lemma 1 twice,

we compute the minimum of the left side of (136) particu-

larized to PȲ1
= PY ∗

1
and PȲ2|Ȳ1

= PY ∗
2
|Y ∗

1
:

L̄
(

PY1|X , PY2|XY1
, PY ∗

1
, PY ∗

2
|Y ∗

1

)

(137)

≥ inf
PY1|X

{

(1 + ν1)D(PY1|X‖PY ∗
1
|PX) + λ1E [d1(X,Y1)]

+ inf
PY2|XY1

{

D(PY2|XY1
‖PY ∗

2
|Y ∗

1
|PXY1

) + λ2E [d2(X,Y2)]
}

}

= inf
PY1|X

{

(1 + ν1)D(PY1|X |PY ∗
1
|PX) + λ1E [d1(X,Y1)]

+ E

[

log
1

β∗
2(X |Y1)

]}

(138)

= (1 + ν1)E

[

log
1

β∗
1 (X)

]

(139)

where β∗
1(x) and β∗

2(x|y1) are given in (129) and (130),

respectively, and the optimizing PY ∗
1
|X and PY ∗

2
|XY ∗

1
are

specified in (127) and (128), letting β1(x) = β∗
1(x) and

β2(x|y1) = β∗
2(x|y1) therein.

We proceed to show that β∗
1 (x) and β∗

2(x|y1) satisfy (32)

and (33). For PY ∗
1

-a.e. y1, we take expectations with respect

to PX of both sides of (29) to conclude that

Σ1(y1) = 1 . (140)
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Likewise, for PY ∗
1
Y ∗
2

-a.e. (y1, y2), we take expectations with

respect to PXY ∗
1

of both sides of (30) to conclude that

Σ2(y1, y2) = 1 . (141)

We next proceed to show that

Σ2(y1, y2) ≤ 1 PY ∗
1

-a.e. y1, ∀y2 ∈ Y2 (142)

Particularizing the left side of (136) to PY1|X = PY ∗
1
|X ,

PȲ1
= PY ∗

1
, PȲ2|Ȳ1

= PY ∗
2
|Y ∗

1
we apply Lemma 1 to

characterize the minimum of the left side of (136) as

L̄
(

PY ∗
1
|X , PY2|XY ∗

1
, PY ∗

1
, PY ∗

2
|Y ∗

1

)

(143)

≥ (1 + ν1)I(X ;Y ∗
1 ) + λ1E [d1(X,Y ∗

1 )]

+ inf
PY2|XY ∗

1

{

D(PY2|XY ∗
1
‖PY ∗

2
|Y ∗

1
|PXY ∗

1
)

+λ2E [d2(X,Y2)]

}

To evaluate the infimum in (143), we apply Theorem 1 to

conclude that for PY ∗
1

-a.e. y1, it holds that

D(PY2|X,Y ∗
1
=y1

‖PY ∗
2
|Y ∗

1
=y1

|PX|Y ∗
1
=y1

)

+ λ2E [d2(X,Y2)|Y ∗
1 = y1]

≥ E

[

log
1

β∗
2(X |y1)

∣

∣

∣

∣

Y ∗
1 = y1

]

(144)

with

E

[

exp(−λ2d2(X, y2))

β∗
2 (X |y1)

|Y ∗
1 = y1

]

≤ 1 PY ∗
1

-a.e. y1, ∀y2
(145)

which, using (29), is equivalent to (142).

To finish the proof of (32) and (33), it remains to show that

for all y1, y2 outside of the support of PY ∗
1
Y ∗
2

, (32) and (33)

hold. Consider

L̄
(

PY1|X , PY2|XY1
, PȲ1

, PȲ2|Ȳ1

)

≥ inf
PY1|X

{

(1 + ν1)D(PY1|X‖PȲ1
|PX) + λ1E [d1(X,Y1)]

+ inf
PY2|XY1

{

D(PY2|XY1
‖PȲ2|Ȳ1

|PXY1
) + λ2E [d2(X,Y2)]

}

}

(146)

= inf
PY1|X

{

(1 + ν1)D(PY1|X‖PȲ1
|PX) + λ1E [d1(X,Y1)]

+ E

[

log
1

β̄2(X |Y1)

]}

(147)

= (1 + ν1)E

[

log
1

β̄1(X)

]

(148)

where

β̄1(x) = E

[

β̄2(x|Ȳ1)
1

1+ν1 exp

(

− λ1

1 + ν1
d1(x, Ȳ1)

)]

β̄2(x|y1) = E
[

exp(−λ2d2(x, Ȳ2))|Ȳ1 = y1
]

. (149)

Due to (136),

inf
PȲ1

,PȲ2|Ȳ1

E

[

log
1

β̄1(X)

]

= E

[

log
1

β∗
1(X)

]

(150)

Now, we choose PȲ1
and PȲ2|Ȳ1

(not independently of each

other!) as

PȲ1Ȳ2
(y1, y2) =

{

(1− ǫ)PY ∗
1
Y ∗
2
(y1, y2) for PY ∗

1
-a.e. y1

ǫδy1
PȲ2|Ȳ1=y1

(y2) otherwise

(151)

for some 0 ≤ ǫ ≤ 1, where PȲ2|Ȳ1
is an arbitrary transition

probability kernel.

With this choice,

β̄1(x) =(1− ǫ)β∗
1 (x) (152)

+ ǫβ̄2(x|y1)
1

1+ν1 exp

(

− λ1

1 + ν1
d1(x, y1)

)

β̄′
1(x)|ǫ=0 =− β∗

1 (x) (153)

+ β̄2(x|y1)
1

1+ν1 exp

(

− λ1

1 + ν1
d1(x, y1)

)

Due to (150), the minimum of (148) is attained at ǫ = 0, so

its right derivative with respect to ǫ evaluated at ǫ = 0 must

be nonnegative:

∂

∂ǫ
E

[

log
1

β̄1(X)

]
∣

∣

∣

∣

ǫ=0

(154)

= 1− E





β̄2(X |y1)
1

1+ν1 exp
(

− λ1

1+ν1
d1(X, y1)

)

β∗
1 (X)





≥ 0, (155)

and (33) follows by substituting PȲ2|Ȳ1
= PY ∗

2
|Y ∗

1
in (155).

Bringing the differentiation inside of the expectation is per-

mitted by the dominated convergence theorem: the negative

of the integrand in (154) is log((1 − ǫ)a + ǫb) = log(1 −
ǫ) + log a + log

(

1 + ǫ
1−ǫ

b
a

)

, for some a > 0, b > 0,

and the difference quotient of the last term is bounded as

0 ≤ 1
ǫ
log

(

1 + ǫ
1−ǫ

b
a

)

≤ b
a
log e
1−δ

, for all 0 ≤ ǫ ≤ δ < 1.

To show (32), notice that (155) implies that the necessary

condition for PY ∗
1
|X , PY ∗

2
|XY ∗

1
to achieve the minimum is that

(155) holds for all choices of the auxiliary kernel PȲ2|Ȳ1
, and

so

sup
PȲ2|Ȳ1

E





β̄2(X |y1)
1

1+ν1 exp
(

− λ1

1+ν1
d1(X, y1)

)

β∗
1(X)



 ≤ 1 .

(156)

To simplify (156), we will find the conditions under which

PY ∗
2
|Y ∗

1
=y1

attains the supremum in the left side of (156). Put

PȲ2|Ȳ1
= (1 − ǫ)PY ∗

2
|Y ∗

1
+ ǫδy2

. (157)

With this choice,

β̄2(x|y1) = (1− ǫ)β∗
2(x|y1) + ǫ exp(−λ2d2(x, y2))

(158)

∂

∂ǫ
log β̄2(x|y1)

∣

∣

ǫ=0
= −1 +

exp(−λ2d2(x, y2))

β∗
2(x|y1)

(159)

The right derivative of the expression in the left side of

(156) with respect to ǫ evaluated at ǫ = 0 is displayed in

(166) below and is equivalent to (32). Note that bringing
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the differentiation inside of the expectation is allowed by the

dominated convergence theorem: the difference quotient of the

integrand in (156) is proportional to
((1−ǫ)a+ǫb)ν2−aν2

ǫ
, for

a ≥ 0, b ≥ 0, which is bounded below by 0 and above by a

constant times aν2−1b in the range ǫ ≤ δ < 1, for some δ.

We proceed to show (131), which will imply the sufficiency

part. We apply Theorem 1 twice to write

L
(

PY1|X , PY2|XY1

)

≥ (1 + ν1)I(X ;Y1) + λ1E [d1(X,Y1)]

+ I(X ;Y2|Y1) + λ2E [d2(X,Y2)] (160)

≥ (1 + ν1)I(X ;Y1) + λ1E [d1(X,Y1)] + E

[

log
1

β2(X |Y1)

]

(161)

≥ (1 + ν1)E

[

log
1

β1(X)

]

(162)

where (161) holds for all β2(x|y1) ≥ 0 satisfying

E

[

exp(−λ2d2(X, y2))

β2(X |y1)
|Y1 = y1

]

≤ 1 ∀(y1, y2) ∈ Y1 × Y2

(163)

with equality if and only if (PY2|X,Y1=y1
, β2) =

(PY ∗
2
|,X,Y ∗

1
=y1

, β∗
2 ) for PY1

-a.e. y1.

Likewise, (162) holds for all β1(x) ≥ 0 satisfying (28), with

equality if and only if

dPX|Y1=y1

dPX

(x) =
β2(x|y1)

1
1+ν1 exp

(

− λ1

1+ν1
d1(x, y1)

)

β1(x)
(164)

β1(x) = E

[

β2(x|Y1)
1

1+ν1 exp

(

− λ1

1 + ν1
d1(x, Y1)

)]

.

(165)

Substituting (164) into (163), we obtain (27), and (131)

follows, together with condition for equality.

E





β∗
2(X |y1)

1
1+ν1 exp

(

− λ1

1+ν1
d1(X, y1)

)

β∗
1(X)

(

1− exp (−λ2d2(X, y2))

β∗
2(X |y1)

)



 ≥ 0, (166)

VI. ITERATIVE ALGORITHM

A. Computation of single stage rate-distortion function

In the context of finite source and reproduction alphabets,

an algorithm for computation of rate-distortion functions was

proposed by Blahut [8]. Below, we state it for general alpha-

bets in Algorithm 1 and provide its convergence analysis in

Theorem 6. In Section VI-B below, we generalize these results

to successive refinement.

Algorithm 1: The generalized Blahut algorithm.

input : λ > 0; maximum number of iterations K .

output : An estimate FK(λ) of F (λ), the Lagrange dual

of R(d), defined in (87).

Fix PY0
.

for k = 1, 2, . . . ,K do

Compute, using (96), ΣYk−1
(x);

Compute, using (98), the transition probability kernel

PYk|X that achieves the minimum in

Fk(λ) = min
PY |X

L(PY |X , PYk−1
), (167)

and L is defined in (92);

Record the corresponding output distribution PYk
,

PX → PYk|X → PYk
;

Theorem 6. Suppose Y ∗ attains the minimum in (87), and let

Y0 be such that D(Y ∗‖Y0) < ∞. Consider Algorithm 1. The

sequence Fk(λ) is monotonically decreasing to F (λ), and the

convergence speed is bounded as

Fk(λ) − F (λ) ≤ D(Y ∗‖Y0)

k
. (168)

Proof. The analysis below is inspired by Csiszár [21]. From

(93), we have

Fk−1(λ) = L(PYk|X , PYk
) +D(Yk‖Yk−1) (169)

≥ Fk(λ) +D(Yk‖Yk−1), (170)

and

Fk(λ) ≤ Fk−1(λ), (171)

with equality if and only if Yk = Yk−1, which implies that

Fk−1(λ) = Fk(λ) = F (λ).

Taking an expectation of (98) (particularized to Ȳ = Yk−1)

with respect to PXY ∗ , we conclude

Fk(λ) = F (λ) +D(Y ∗‖Yk−1)−D(PY ∗|X‖PYk|X |PX)
(172)

≤ F (λ) +D(Y ∗‖Yk−1)−D(Y ∗‖Yk) (173)

where (173) holds by the data processing inequality for relative

entropy.
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To show (168), we apply (171) and (173) as follows.

KFK(λ) −KF (λ) ≤
K
∑

k=1

Fk(λ)−KF (λ) (174)

≤
K
∑

k=1

(D(Y ∗‖Yk−1)−D(Y ∗‖Yk))

(175)

= D(Y ∗‖Y0)−D(Y ∗‖YK). (176)

Note that D(Y ∗‖Y0) < ∞ is a sufficient condition for con-

vergence of Algorithm 1. This condition is trivially satisfied

if the reproduction alphabet is finite and PY0
is supported

everywhere.

An alternative convergence guarantee can be obtained as

follows. Considering (173) and noting that

D(Y ∗‖Yk−1)−D(Y ∗‖Yk) ≤ sup
y∈Y

log
dPYk

dPYk−1

(y), (177)

we can employ the following stopping criterion for the

Blahut algorithm to guarantee estimation accuracy δ: if

supy∈Y log
dPYk

dPYk−1

(y) ≤ δ, then stop and output F̃ (λ) =

Fk(λ). If the same stopping rule is applied for all λ ≥ 0,

using (88), we find that the corresponding estimate of the rate-

distortion function R̃(d) satisfies the same accuracy guarantee:

R(d) ≤ R̃(d) ≤ R(d) + δ. (178)

B. Computation of the rate-distortion function for successive

refinement

A generalization of discrete Blahut’s algorithm to successive

refinement is proposed in [3]. Algorithm 2 presents a general-

ization of the algorithm to abstract alphabets, and Theorem 7

presents its convergence analysis.

Theorem 7. Suppose (P ∗
Y1
, PY ∗

2
|Y ∗

1
) attain the minimum in

(125), and let P 0
Y1

and P 0
Y2|Y1

be such that D(PY ∗
1
‖P 0

Y1
) <

∞ and D(PY ∗
2
|Y ∗

1
‖P 0

Y2|Y1
|PY ∗

1
) < ∞. Consider Algorithm 2.

The sequence Fk(ν1, λ1, λ2) is monotonically decreasing to

F (ν1, λ1, λ2), and the convergence speed is bounded as

Fk(ν1, λ1, λ2)− F (ν1, λ1, λ2) (185)

≤ 1

k

(

(1 + ν1)D(PY ∗
1
‖P 0

Y1
) +D(PY ∗

2
|Y ∗

1
‖P 0

Y2|Y1
|PY ∗

1
)
)

.

Proof. We build upon the ideas in the proof of Theorem 6.

From the definition of L̄ and P k
Y1|X

, P k
Y2|XY1

, we have

Fk−1 = L̄(P k
Y1|X

, P k
Y2|XY1

, P k−1
Y1

, P k−1
Y2|Y1

) (186)

+D(P k
Y2|Y1

‖P k−1
Y2|Y1

‖P k
Y1
) + (1 + ν1)D(P k

Y1
‖P k−1

Y1
)

≥ Fk (187)

+D(P k
Y2|Y1

‖P k−1
Y2|Y1

‖P k
Y1
) + (1 + ν1)D(P k

Y1
‖P k−1

Y1
),

where we suppressed the dependence of Fk on (ν1, λ1, λ2) for

brevity, i.e. Fk = Fk(ν1, λ1, λ2). It follows that

Fk ≤ Fk−1, (188)

Algorithm 2: The generalized Blahut algorithm for suc-

cessive refinement.

input : (ν1, λ1, λ2) > 0; maximum number of iterations

K .

output : An estimate FK(ν1, λ1, λ2) of F (ν1, λ1, λ2),
the Lagrange dual of R2(d1, d2, R1), defined in

(125).

Fix P 0
Y1

and P 0
Y2|Y1

;

for k = 1, 2, . . . ,K do
Compute

βk−1
2 (x|y1) (179)

=E
P

k−1

Y2|Y1=y1

[exp(−λ2d2(x, Y2))|Y1 = y1] ,

βk−1
1 (x) (180)

=E
P

k−1

Y1

[

βk−1
2 (x|Y1)

1
1+ν1 exp

(

− λ1

1 + ν1
d1(x, Y1)

)]

;

Using

dP k
Y1|X=x

(y1)

dP k−1
Y1

(y1)
=

exp
(

− λ1

1+ν1
d1(x, y1)

)

βk−1
1 (x)βk−1

2 (x|y1)−
1

1+ν1

,

(181)

dP k
Y2|X=x,Y1=y1

(y2)

dP k−1
Y2|Y1=y1

(y2)
=

exp(−λ2d2(x, y2))

βk−1
2 (x|y1)

,

(182)

compute the transition probability kernels P k
Y1|X

and P k
Y2|XY1

that achieve the minimum in

Fk(ν1, λ1, λ2) (183)

= min
PY1|X , PY2|XY1

L̄
(

PY1|X , PY2|XY1
, P k−1

Y1
, P k−1

Y2|Y1

)

= (1 + ν1)E

[

log
1

βk−1
1 (X)

]

; (184)

where L̄ is defined in (133), and the minimum is

computed in (148). Compute the corresponding P k
Y1

and P k
Y2|Y1

;

with equality if and only if P k−1
Y2|Y1

P k−1
Y1

= P k
Y2|Y1

P k
Y1

, which

implies that Fk−1 = Fk = F .

Taking expectations of the logarithms of (181) and (182)

with respect to PXY ∗
1
Y ∗
2

and using (148), we deduce that

Fk

= F + (1 + ν1)
(

D(PY ∗
1
‖P k−1

Y1
)−D(PY ∗

1
|X‖PY k

1
|X‖PX)

)

+D(PY ∗
2
|Y ∗

1
‖P k−1

Y2|Y1
|PY ∗

1
)

−D(PY ∗
2
|X1Y

∗
1
‖P k

Y2|X1Y1
|PX1Y

∗
1
) (189)

≤ F + (1 + ν1)
(

D(PY ∗
1
‖P k−1

Y1
)−D(PY ∗

1
‖P k

Y1
)
)

(190)

+D(PY ∗
2
|Y ∗

1
‖P k−1

Y2|Y1
|PY ∗

1
)−D(PY ∗

2
|Y ∗

1
‖P k

Y2|Y1
|PY ∗

1
)

where (190) holds by the data processing inequality for relative

entropy.
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To show (185), we apply (188) and (190) as follows.

KFK −KF

≤
K
∑

k=1

Fk −KF (191)

≤
K
∑

k=1

[

(1 + ν1)
(

D(PY ∗
1
‖P k−1

Y1
)−D(PY ∗

1
|X‖P k

Y1
)
)

(192)

+D(PY ∗
2
|Y ∗

1
‖P k−1

Y2|Y1
|PY ∗

1
)−D(PY ∗

2
|Y ∗

1
‖P k

Y2|Y1
|PY ∗

1
)
]

= (1 + ν1)(D(PY ∗
1
‖P 0

Y1
)−D(PY ∗

1
‖PK

Y1
)) (193)

+D(PY ∗
2
|Y ∗

1
‖P 0

Y2|Y1
|PY ∗

1
)−D(PY ∗

2
|Y ∗

1
‖PK

Y2|Y1
|PY ∗

1
)

Using (190), we can obtain the following analog of the stop-

ping criterion in (177): to achieve accuracy Fk(ν1, λ1, λ2) −
F (ν1, λ1, λ2) ≤ δ, stop as soon as

sup
(y1,y2)∈Y1×Y2

(1 + ν1) log
dP k

Y1

dP k−1
Y1

(y) +
dP k

Y2|Y1

dP k−1
Y2|Y1

(y) ≤ δ.

(194)

For finite alphabet sources, a counterpart of (194) was pro-

posed by Tuncel and Rose [3].

C. Numerical example

Consider successive refinement of X ∼ N (0, 1) under

squared error distortion. As is well known, Gaussian source

under squared distortion is successively refinable [18], so at

any 0 < d2 ≤ d1 ≤ 1 and R(d1) ≤ R1, R2(d1, d2, R1) =
R(d2) =

1
2 log

1
d2

.

In this experiment, we ran Algorithm 2 to verify that it

computes an estimate of R2(d1, d2, R1) that closely matches

R(d2).
We fixed λ1 = 5/9, which corresponds to d1 = 0.9. We

also fixed ν1 = 1 (for this example, the choice of ν1 > 0
is immaterial and can be chosen arbitrarily, as per discussion

after (39)). We set starting densities P 0
Y1

and P 0
Y2|Y1=y1

to

be N (0, 1) and N (y1, 1), respectively, ensuring that all the

densities in Algorithm 2 are Gaussian, and all the integrals

can be computed in closed form. We chose 31 exponentially

spaced slope samples λ2 > 0, and we ran the algorithm

for the maximum of K = 20 iterations at each choice of

λ2. In Fig. 1, 31 straight lines of slopes −λ2 correspond

to FK − λ2d2 − λ1d1 − ν1R1. Their upper convex envelope

is the numerical estimate of R2(d1, d2, R1) according to the

algorithm. In Fig. 3, it is undistinguishable from the the thick

curve, which represents the theoretical minimum total rate,
1
2 log

1
d2

.

Computing the expectations in Algorithms 1 and 2 is

easy to do if the output alphabets are finite, even if PX is

continuous, a case also not previously addressed in literature.

For infinite output alphabets, computing these expectations can

be a computational bottleneck. Still, one could use Algorithms

1 and 2 to look for the best approximation within a certain

family of distributions parametrized by a finite number of

parameters. The quality of the approximation will depend on

how appropriately the parametric family is chosen. To choose a

good family, one could look for a separate theoretical argument

that would ensure that the infimum is attained within some

class of distributions. Theorems 6 and 7 would then ensure

convergence when running the algorithm within that class.
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Fig. 3. The minimum total rate at stage 2 for Gaussian successive refinement,
for fixed λ1 = 5/9 (corresponding to d1 = 0.9, R1 = −.5 log .9 ≈ .05).

VII. CONCLUSION

In this paper, we revisited the parametric representation of

rate-distortion function of abstract sources (Theorem 1, proof

in Section IV). We showed its generalization to the successive

refinement problem (Theorem 2, proof in Section V). That

representation leads to a tight nonasymptotic converse bound

for successive refinement, presented in Section III. It also

helps to formulate and prove the convergence of an iterative

algorithm that can be applied to compute the rate-distortion

function on abstract alphabets, presented in Section VI.

It will be interesting to see whether the approach presented

in this paper can be applied to study rate-distortion regions

of other important multiterminal information theory problems,

such as lossy compression with side information available

at decoder (the Wyner-Ziv problem [22]), the multiple de-

scriptions problem [23] and lossy compression with possibly

absent side information (the Kaspi problem [24]). It also paves

the way to a refined nonasymptotic analysis of successive

refinement for abstract sources.
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