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Abstract

In this paper, we consider estimators for an additive functional of φ, which is defined as
θ(P ;φ) =

∑k
i=1 φ(pi), from n i.i.d. random samples drawn from a discrete distribution

P = (p1, ..., pk) with alphabet size k. We propose a minimax optimal estimator for the
estimation problem of the additive functional. We reveal that the minimax optimal rate
is characterized by the divergence speed of the fourth derivative of φ if the divergence
speed is high. As a result, we show there is no consistent estimator if the divergence
speed of the fourth derivative of φ is larger than p−4. Furthermore, if the divergence
speed of the fourth derivative of φ is p4−α for α ∈ (0, 1), the minimax optimal rate is

obtained within a universal multiplicative constant as k2

(n lnn)2α
+ k2−2α

n
.

1 Introduction

Let P be a probability measure with alphabet size k, and X be a discrete random variable
drawn from P . Without loss of generality, we can assume that the domain of P is [k], where
we denote [m] = {1, ...,m} for a positive integer m. We use a vector representation of P ;
P = (p1, ..., pk) where pi = P{X = i}. Let φ be a mapping from [0, 1] to R+. Given a set of
i.i.d. samples Sn = {X1, ..., Xn} from P , we deal with the problem of estimating an additive
functional of φ. The additive functional θ of φ is defined as

θ(P ;φ) =

k∑
i=1

φ(pi).

We simplify this notation to θ(P ;φ) = θ(P ). Most entropy-like criteria can be formed in
terms of θ. For instance, when φ(p) = −p ln p, θ is Shannon entropy. For a positive real α,
letting φ(p) = pα, ln(θ(P ))/(1 − α) becomes Rényi entropy. More generally, letting φ = f
where f is a concave function, θ becomes f -entropies (Akaike, 1998).

Techniques for the estimation of the entropy-like criteria have been considered in various
fields, including physics (Lake and Moorman, 2011), neuroscience (Nemenman et al., 2004),
and security (Gu et al., 2005). In machine learning, methods that involve entropy estimation
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were introduced for decision-trees (Quinlan, 1986), feature selection (Peng et al., 2005), and
clustering (Dhillon et al., 2003). For example, the decision-tree learning algorithms, i.e.,
ID3, C4.5, and C5.0 construct a decision tree in which the criteria for the tree splitting are
defined based on Shannon entropy (Quinlan, 1986). Similarly, information theoretic feature
selection algorithms evaluate the relevance between the features and the target using the
entropy (Peng et al., 2005).

The goal of this study is to derive the minimax optimal estimator of θ given a function
φ. For the precise definition of the minimax optimality, we introduce the minimax risk.
A sufficient statistic of P is a histogram N = (N1, ..., Nk), where Nj =

∑n
i=1 1{Xi=j} and

N ∼ Multinomial(n, P ). The estimator of θ is defined as a function θ̂ : [n]k → R. Then, the
quadratic minimax risk is defined as

R∗(n, k;φ) = inf
θ̂

sup
P∈Mk

E

[(
θ̂(N)− θ(P )

)2
]
,

where Mk is the set of all probability measures on [k], and the infimum is taken over

all estimators θ̂. With this definition of the minimax risk, an estimator θ̂ is minimax
(rate-)optimal if there exists a positive constant C such that

sup
P∈Mk

E

[(
θ̂(N)− θ(P )

)2
]
≤ CR∗(n, k;φ).

A natural estimator of θ is the plugin or the maximum likelihood estimator, in which the
estimated value is obtained by substituting the empirical mean of the probabilities P into
θ. However, the estimator has a large bias for large k. Indeed, the plugin estimators for
φ(p) = −p ln p and φ(p) = pα have been shown to be suboptimal in the large-k regime in
recent studies (Wu and Yang, 2016; Jiao et al., 2015; Acharya et al., 2015).

Recent studies investigated the minimax optimal estimators for φ(p) = −p ln p and φ(p) = pα

in the large-k regime (Wu and Yang, 2016; Jiao et al., 2015; Acharya et al., 2015). However,
the results of these studies were only derived for these φ. Jiao et al. (2015) suggested that
the estimator is easily extendable to the general additive functional, although they did not
prove the minimax optimality.

In this paper, we propose a minimax optimal estimator for the estimation problem of the
additive functional θ for general φ under certain conditions on the smoothness. Our esti-
mator achieves the minimax optimal rate even in the large-k regime for φ ∈ C4[0, 1] such
that

∣∣φ(4)(p)
∣∣ is finite for p ∈ (0, 1], where C4[0, 1] denotes a class of four times differentiable

functions from [0, 1] to R. For such φ, we reveal a property of φ which can substantially
influence the minimax optimal rate.

Related work. The simplest way to estimate θ is to use the so-called plugin estimator or
the maximum likelihood estimator, in which the empirical probabilities are substituted into
θ as P . Letting P̃ = (p̂1, ..., p̂k) and p̂i = Ni/n, the plugin estimator is defined as

θplugin(N) = θ(P̃ ).

The plugin estimator is asymptotically consistent under weak assumptions for fixed k (Antos
and Kontoyiannis, 2001). However, this is not true for the large-k regime. Indeed, Jiao et al.
(2015) and Wu and Yang (2016) derived a lower bound for the quadratic risk for the plugin
estimator of φ(p) = p ln(1/p) and φ(p) = pα. In the case of Shannon entropy, the lower
bound is given as

sup
P∈Mk

E
[
(θplugin(N)− θ(P ))

2
]
≥ C

(
k2

n2
+

ln2 k

n

)
,
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where C denotes a universal constant. The first term k2/n2 comes from the bias and it indi-
cates that if k grows linearly with respect to n, the plugin estimator becomes inconsistent.
This means the plugin estimator is suboptimal in the large-k regime. Bias-correction meth-
ods, such as (Miller, 1955; Grassberger, 1988; Zahl, 1977), can be applied to the plugin esti-
mator of φ(p) = −p ln p to reduce the bias whereas these bias-corrected estimators are still
suboptimal. The estimators based on Bayesian approaches in (Schürmann and Grassberger,
1996; Schober, 2013; Holste et al., 1998) are also suboptimal (Han et al., 2015).

Many researchers have studied estimators that can consistently estimate the additive func-
tional with sublinear samples with respect to the alphabet size k to derive the optimal
estimator in the large-k regime. The existence of consistent estimators even with sublinear
samples were first revealed in Paninski (2004), but an explicit estimator was not provided.
Valiant and Valiant (2011a) introduced an estimator based on linear programming that
consistently estimates φ(p) = −p ln p with sublinear samples. However, the estimator of
(Valiant and Valiant, 2011a) has not been shown to achieve the minimax rate even in a
more detailed analysis in (Valiant and Valiant, 2011b). Recently, Acharya et al. (2015)
showed that the bias-corrected estimator of Rényi entropy achieves the minimax optimal
rate in regard to the sample complexity if α > 1 and α ∈ N, but they did not show the
minimax optimality for other α. Jiao et al. (2015) introduced a minimax optimal estimator
for φ(p) = −p ln p for any α ∈ (0, 3/2) in the large-k regime. Wu and Yang (2015) derived
a minimax optimal estimator for φ(p) = 1p>0. For φ(p) = −p ln p, Jiao et al. (2015); Wu
and Yang (2016) independently introduced the minimax optimal estimators in the large-k
regime. In the case of Shannon entropy, the optimal rate was obtained as

k2

(n lnn)2
+

ln2 k

n
.

The first term indicates that the introduced estimator can consistently estimate Shannon
entropy if n ≥ Ck/ ln k.

The estimators introduced by Wu and Yang (2016); Jiao et al. (2015); Acharya et al. (2015)
are composed of two estimators: the bias-corrected plugin estimator and the best polyno-
mial estimator. The bias-corrected plugin estimator is composed of the sum of the plugin
estimator and a bias-correction term which offsets the second-order approximation of the
bias as in (Miller, 1955). The best polynomial estimator is an unbiased estimator of the
polynomial that best approximates φ in terms of the uniform error. Specifically, the best
approximation for the polynomial of φ in an interval I ⊆ [0, 1] is the polynomial g that min-
imizes supx∈I |φ(x)− g(x)|. Jiao et al. (2015) suggested that this estimator can be extended
for the general additive functional θ. However, the minimax optimality of the estimator was
only proved for specific cases of φ, including φ(p) = −p ln p and φ(p) = pα. Thus, to prove
the minimax optimality for other φ, we need to individually analyze the minimax optimal-
ity for specific φ. Here, we aim to clarify which property of φ substantially influences the
minimax optimal rate when estimating the additive functional.

Besides, the optimal estimators for divergences with large alphabet size have been investi-
gated in (Bu et al., 2016; Han et al., 2016; Jiao et al., 2016). The estimation problems of
divergences are much complicated than the additive function, while the similar techniques
were applied to derive the minimax optimality.

Our contributions. In this paper, we propose the minimax optimal estimator for θ(P ;φ).
We reveal that the divergence speed of the fourth derivative of φ plays an important role
in characterizing the minimax optimal rate. Informally, for β > 0, the meaning of “the
divergence speed of a function f(p) is p−β” is that |f(p)| goes to infinity at the same speed
as p−β when p approaches 0. When the divergence speed of the fourth derivative of φ(p) is
p−β , the fourth derivative of φ diverges faster as β increases.

Our results are summarized in Figure 1. Figure 1 illustrates the relationship between the
divergence speed of the fourth derivative of φ and the minimax optimality of the estimation

3



Figure 1: Relationship between the divergence speed of the fourth derivative of φ and the
minimax optimality of the estimation problem of θ(P ;φ).

problem of θ(P ;φ). In Figure 1, the outermost rectangle represents the space of the four
times continuous differentiable functions C4[0, 1]. The innermost rectangle denotes the
subset class of C4[0, 1] such that the absolute value of its fourth derivative

∣∣φ(4)(p)
∣∣ is finite

for any p ∈ (0, 1]. In this subclass of φ, the horizontal direction represents the divergence
speed of the fourth derivative of φ, in which a faster φ is on the left-hand side and a
slower φ is on the right-hand side. The φ with an explicit form and divergence speed is
denoted by a point in the rectangle. For example, the black circle denotes φ(p) = −p ln p
where the divergence speed of the fourth derivative of this φ is p−3. Class B denotes a
set of any function φ such that the divergence speed of the fourth derivative is pα−4 where
α ∈ (0, 1). As already discussed, existing methods have achieved minimax optimality in
the large-k regime for specific φ, including φ(p) = −p ln p (black circle in Figure 1) and
φ(p) = pα (middle line in Figure 1 where the white circle denotes that there is no α > 0
such that the divergence speed is p−3).

We investigate the minimax optimality of the estimation problem of θ for φ in Class A and
Class B. Class A is a class of φ such that the divergence speed of the fourth derivative is faster
than p−4. Class B is a class of φ such that the divergence speed of the fourth derivative is
pα−4 where α ∈ (0, 1). In Class A, we show that we cannot construct a consistent estimator
of θ for any φ in Class A (the leftmost hatched area in Figure 1, Proposition 1). In other
words, the minimax optimal rate is larger than constant order if the divergence speed of the
fourth derivative is faster than p−4. Thus, there is no need to derive the minimax optimal
estimator in Class A.

Also, we derive the minimax optimal estimator for any φ in Class B (the middle hatched
area in Figure 1, Theorem 1). For example, φ(p) = pα (Réyni entropy case), φ(p) =
cos(cp)pα, and φ(p) = ecppα for α ∈ (0, 1) include the coverage of our estimator, where c is
a universal constant. Intuitively, since the large derivative makes the estimation problem θ
more difficult, the minimax rate decreases if the derivative of φ diverges faster. Our minimax
optimal rate reflects this behavior. For φ in Class B, the minimax optimal rate is obtained
as

k2

(n lnn)2α
+
k2−2α

n
,

where k & ln
4
3 n if α ∈ (0, 1/2]. We can clearly see that this rate decreases for larger α, i.e.,

a slower divergence speed.
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Currently, the minimax optimality of φ in Class C is an open problem. However, we provide
a notable discussion in Section 3.

2 Preliminaries

Notations. We now introduce some additional notations. For any positive real sequences
{an} and {bn}, an & bn denotes that there exists a positive constant c such that an ≥ cbn.
Similarly, an . bn denotes that there exists a positive constant c such that an ≤ cbn.
Furthermore, an � bn implies an & bn and an . bn. For an event E , we denote its
complement by Ec. For two real numbers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}.
For a function φ : R→ R, we denote its i-th derivative as φ(i).

Poisson sampling. We employ the Poisson sampling technique to derive upper and
lower bounds for the minimax risk. The Poisson sampling technique models the sam-
ples as independent Poisson distributions, while the original samples follow a multinomial
distribution. Specifically, the sufficient statistic for P in the Poisson sampling is a his-
togram Ñ = (Ñi, ..., Ñk), where Ñ1, ..., Ñk are independent random variables such that
Ñi ∼ Poi(npi). The minimax risk for Poisson sampling is defined as follows:

R̃∗(n, k;φ) = inf
{θ̂}

sup
P∈Mk

E

[(
θ̂(Ñ)− θ(P )

)2
]
.

The minimax risk of Poisson sampling well approximates that of the multinomial distribu-
tion. Indeed, Jiao et al. (2015) presented the following lemma.
Lemma 1 (Jiao et al. (2015)). The minimax risk under the Poisson model and the multi-
nomial model are related via the following inequalities:

R̃∗(2n, k;φ)− sup
P∈Mk

|θ(P )|e−n/4 ≤ R∗(n, k;φ) ≤ 2R̃∗(n/2, k;φ).

Lemma 1 states R∗(n, k;φ) � R̃∗(n, k;φ), and thus we can derive the minimax rate of the
multinomial distribution from that of the Poisson sampling.

Best polynomial approximation. Acharya et al. (2015); Wu and Yang (2016); Jiao et al.
(2015) presented a technique of the best polynomial approximation for deriving the minimax
optimal estimators and their lower bounds for the risk. Let PL be the set of polynomials of
degree L. Given a function φ, a polynomial p, and an interval I ⊆ [0, 1], the uniform error
between φ and p on I is defined as

sup
x∈I
|φ(x)− p(x)|. (1)

The best polynomial approximation of φ by a degree-L polynomial with a uniform error is
achieved by the polynomial p ∈ PL that minimizes Eq (1). The error of the best polynomial
approximation is defined as

EL(φ, I) = inf
p∈PL

sup
x∈I
|φ(x)− p(x)|.

The error rate with respect to the degree L has been studied since the 1960s (Timan et al.,
1965; Petrushev and Popov, 2011; Ditzian and Totik, 2012; Achieser, 2013). The polynomial
that achieves the best polynomial approximation can be obtained, for instance, by the Remez
algorithm (Remez, 1934) if I is bounded.
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3 Main results

Suppose φ is four times continuously differentiable on (0, 1]1. We reveal that the divergence
speed of the fourth derivative of φ plays an important role for the minimax optimality of the
estimation problem of the additive functional. Formally, the divergence speed is defined as
follows.
Definition 1 (divergence speed). For an integer m ≥ 1, let φ be an m times continuously
differentiable function on (0, 1]. For β > 0, the divergence speed of the mth derivative of φ
is p−β if there exist finite constants W > 0, cm, and c′m such that for all p ∈ (0, 1]∣∣∣φ(m)(p)

∣∣∣ ≤ βm−1Wp−β + cm, and
∣∣∣φ(m)(p)

∣∣∣ ≥ βm−1Wp−β + c′m,

where βm =
∏m
i=1(i−m+ β).

A larger β implies faster divergence. We analyze the minimax optimality for two cases:
the divergence speed of the fourth derivative of φ is i) larger than p−4 (Class A), and ii)
pα−4 (Class B), for α ∈ (0, 1).

Minimax optimality for Class A. We now demonstrate that we cannot construct a
consistent estimator for any n and k ≥ 3 if the divergence speed of φ is larger than p−4.
Proposition 1. Let φ be a continuously differentiable function on (0, 1]. If there exists
finite constants W > 0 and c′1 such that for p ∈ (0, 1]∣∣∣φ(1)(p)

∣∣∣ ≥Wp−1 + c′1,

then there is no consistent estimator, i.e., R∗(n, k;φ) & 1.

The proof of Proposition 1 is given in Appendix D. From Lemma 15, the divergence speed of
the first derivative is p−1 if that of the fourth derivative is p−4. Thus, if the divergence speed
of φ is greater than p−4, we cannot construct an estimator that consistently estimates θ for
any probability measure P ∈ Mk. Consequently, there is no need to derive the minimax
optimal estimator in this case.

Minimax optimality for Class B. We derive the minimax optimal rate for φ in which the
divergence speed of its fourth derivative is pα−4 for α ∈ (0, 1). Thus, we make the following
assumption.
Assumption 1. Suppose φ is four times continuously differentiable on (0, 1]. For α ∈ (0, 1),
the divergence speed of the fourth derivative of φ is pα−4.

Note that a set of φ satisfying Assumption 1 is Class B depicted in Figure 1. The diver-
gence speed increases as α decreases. Under Assumption 1, we derive the minimax optimal
estimator of which the minimax rate is given by the following theorems.

Theorem 1. Under Assumption 1 with α ∈ (0, 1/2], if n & k1/α

ln k and k & ln
4
3 n,

R∗(n, k;φ) � k2

(n lnn)2α
.

Otherwise, there is no consistent estimator, i.e., R∗(n, k;φ) & 1.

Theorem 2. Under Assumption 1 with α ∈ (1/2, 1), if n & k1/α

ln k

R∗(n, k;φ) � k2

(n lnn)2α
+
k2−2α

n
.

Otherwise, there is no consistent estimator, i.e., R∗(n, k;φ) & 1.

1We say that a function φ : [0, 1]→ R+ is differentiable at 1 if limh→−0
φ(1+h)−φ(1)

h
exists.
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Theorems 1 and 2 are proved by combining the results in Sections 6 and 7. The minimax
optimal rate in Theorems 1 and 2 are characterized by the parameter for the divergence
speed α from Assumption 1. From Theorems 1 and 2, we can conclude that the minimax
optimal rate decreases as the divergence speed increases.

The explicit estimator that achieves the optimal minimax rate shown in Theorems 1 and 2
are described in the next section.
Remark 1. Assumption 1 covers φ(p) = pα for α ∈ (0, 1), but does not for all existing works.
For φ(p) = −p ln(p) and φ(p) = pα with α ≥ 1, the divergence speed of these φ is lower
than pα−4 for α ∈ (0, 1). Indeed, the divergence speed of φ(p) = −p ln(p) and φ(p) = pα for
α ≥ 1 are p−3 and pα−4, respectively. We can expect that the corresponding minimax rate
is characterized by the divergence speed even if the divergence speed is lower than pα−4 for
α ∈ (0, 1). The analysis of the minimax rate for lower divergence speeds remains an open
problem.

4 Estimator for θ

In this section, we describe our estimator for θ in detail. Our estimator is composed of
the bias-corrected plugin estimator and the best polynomial estimator. We first describe
the overall estimation procedure on the supposition that the bias-corrected plugin estimator
and the best polynomial estimator are black boxes. Then, we describe the bias-corrected
plugin estimator and the best polynomial estimator in detail.

For simplicity, we assume the samples are drawn from the Poisson sampling model, where
we first draw n′ ∼ Poi(2n), and then draw n′ i.i.d. samples Sn′ = {X1, ..., Xn′}. Given the
samples Sn′ , we first partition the samples into two sets. We use one set of the samples
to determine whether the bias-corrected plugin estimator or the best polynomial estimator

should be employed, and the other set to estimate θ. Let {Bi}n
′

i=1 be i.i.d. random variables
drawn from the Bernoulli distribution with parameter 1/2, i.e., P{Bi = 0} = P{Bi = 1} =
1/2 for i = 1, ..., n′. We partition (X1, ..., Xn′) according to (B1, ..., Bn′), and construct the
histograms Ñ and Ñ ′, which are defined as

Ñi =

n′∑
j=1

1Xj=i1Bj=0, Ñ ′i =

n′∑
j=1

1Xj=i1Bj=1, for i ∈ [n′].

Then, Ñ and Ñ ′ are independent histograms, and Ñi, Ñ
′
i ∼ Poi(npi).

Given Ñ ′, we determine whether the bias-corrected plugin estimator or the best polynomial
estimator should be employed for each alphabet. Let ∆n,k be a threshold depending on n
and k to determine which estimator is employed, which will be specified as in Theorem 5
on page 10. We apply the best polynomial estimator if Ñ ′i < 2∆n,k, and otherwise, i.e.,

Ñ ′i ≥ 2∆n,k, we apply the bias-corrected plugin estimator. Let φpoly and φplugin be the best
polynomial estimator and the bias-corrected plugin estimator for φ, respectively. Then, the
estimator of θ is written as

θ̃(Ñ) =

k∑
i=1

(
1Ñ ′i≥2∆n,k

φplugin(Ñi) + 1Ñ ′i<2∆n,k
φpoly(Ñi)

)
.

Finally, we truncate θ̃ so that the final estimate is not outside of the domain of θ.

θ̂(Ñ) =(θ̃(Ñ) ∧ θsup) ∨ θinf ,

where θinf = infP∈Mk
θ(P ) and θsup = supP∈Mk

θ(P ). Next, we describe the details of the
best polynomial estimator φpoly and the bias-corrected plugin estimator φplugin.
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Best polynomial estimator. The best polynomial estimator is an unbiased estimator
of the polynomial that provides the best approximation of φ. Let {am}Lm=0 be coefficients
of the polynomial that achieves the best approximation of φ by a degree-L polynomial
with range I = [0,

4∆n,k

n ], where L is as specified in Theorem 5 on page 10. Then, the
approximation of φ by the polynomial at point pi is written as

φL(pi) =

L∑
m=0

amp
m
i . (2)

From Eq (2), an unbiased estimator of φL can be derived from an unbiased estimator of pmi .
For the random variable Ñi drawn from the Poisson distribution with mean parameter npi,

the expectation of the mth factorial moment (Ñi)m = Ñi!
(Ñi−m)!

becomes (npi)
m. Thus, (Ñi)m

nm

is an unbiased estimator of pmi . Substituting this into Eq (2) gives the unbiased estimator
of φL(pi) as

φ̄poly(Ñi) =

L∑
m=0

am
nj

(Ñi)m.

Next, we truncate φ̄poly so that it is not outside of the domain of φ(p). Let φ
inf,

∆n,k
n

=

inf
p∈[0,

∆n,k
n ]

φ(p) and φ
sup,

∆n,k
n

= sup
p∈[0,

∆n,k
n ]

φ(p). Then, the best polynomial estimator

is defined as

φpoly(Ñi) = (φ̄poly(Ñi) ∧ φsup,
∆n,k
n

) ∨ φ
inf,

∆n,k
n

.

Bias-corrected plugin estimator. In the bias-corrected plugin estimator, we apply the
bias correction of (Miller, 1955). Applying the second-order Taylor expansion to the bias of
the plugin estimator gives

E

[
φ

(
Ñi
n

)
− φ(pi)

]
≈E

φ(1)(pi)

(
Ñi
n
− pi

)
+
φ(2)(pi)

2

(
Ñi
n
− pi

)2


=
piφ

(2)(pi)

2n
.

Thus, we include − Ñiφ
(2)(Ñi/n)
2n2 as a bias-correction term in the plugin estimator φ(Ñi/n),

which offsets the second-order approximation of the bias. However, we do not directly apply
the bias-corrected plugin estimator to estimate φ(pi) for two reasons. First, the derivative
of φ is large near 0, which results in a large bias, and second, φ(p) for p > 1 is undefined
even though Ñi/n can exceed 1. Thus, we apply the bias-corrected plugin estimator to the
function φ̄∆n,k

n

defined below instead of φ. Define

HL(p;φ, a, b)

=φ(a) +

L∑
m=1

φ(m)(a)

m!
(p− a)m(p− b)L+1

L−m∑
`=0

(−1)`(L+ `)!

`!L!
(a− b)−L−1−`(p− a)`

=φ(a) +

L∑
m=1

φ(m)(a)

m!
(p− a)m

L−m∑
`=0

L+ 1

L+ `+ 1
B`,L+`+1

(
p− a
b− a

)
,

where Bν,n(x) =
(
n
ν

)
xν(1 − x)n−ν denotes the Bernstein basis polynomial. Then,

HL(p;φ, a, b) denotes a function that interpolates between φ(a) and φ(b) using Hermite inter-

polation. From generalized Hermite interpolation (Spitzbart, 1960), H
(i)
L (a;φ, a, b) = φ(i)(a)

8



for i = 0, ..., L and H
(i)
L (b;φ, a, b) = 0 for i = 1, ..., L. The function φ̄∆n,k

n

is defined as

φ̄∆n,k
n

(p) =



H4

(
∆n,k

2n
;φ,

∆n,k

n
,

∆n,k

2n

)
if p ≤ ∆n,k

2n
,

H4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)
if

∆n,k

2n
< p <

∆n,k

n
,

H4(p;φ, 1, 2) if 1 < p < 2,

H4(2;φ, 1, 2) if p ≥ 2,

φ(p) otherwise .

From this definition, φ̄∆n,k
n

= φ if p ∈ [
∆n,k

n , 1]. From Hermite interpolation, the function

φ̄∆n,k
n

is four times differentiable on R+ and φ̄
(1)
∆n,k
n

(p) = ... = φ̄
(4)
∆n,k
n

(p) = 0 for p ≤ ∆n,k

2n and

p ≥ 2. By introducing φ̄∆n,k
n

, we can bound the fourth derivative of φ̄∆n,k
n

using ∆n,k, and

this enables us to control the bias with the threshold parameter ∆n,k. Using φ̄∆n,k
n

instead

of φ yields the bias-corrected plugin estimator

φplugin(Ñi) = φ̄∆n,k
n

(
N̄i
n

)
− Ñi

2n2
φ̄

(2)
∆n,k
n

(
N̄i
n

)
. (3)

5 Remark about Differentiability for Analysis

Why is the minimax rate characterized by the divergence speed of the fourth derivative? In-
deed, most of the results can be obtained on a weaker assumption compared to Assumption 1
regarding differentiability, which is formally defined as follows.
Assumption 2. Suppose φ is two times continuously differentiable on (0, 1]. For α ∈ (0, 1),
the divergence speed of the second derivative of φ is pα−2.

Assumption 2 only requires two times continuous differentiability, whereas Assumption 1
requires four times. Only the analysis of the bias-corrected plugin estimator requires As-
sumption 1 to achieve the minimax rate due to the bias-correction term in Eq (3). The
bias-correction term is formed as the plugin estimator of the second derivative of φ, and
its convergence rate is highly dependent on the smoothness of the second derivative. The
smoothness of the second derivative of φ is characterized by the fourth derivative of φ,
and thus Assumption 1 is required to derive the error bound of the bias-corrected plugin
estimator. Another bias-correction method might weaken the assumption as in Assump-
tion 2.

6 Analysis of Lower Bound

In this section, we derive a lower bound for the minimax rate of θ. Under Assumption 2,
we can derive the lower bound of the minimax risk as in the following theorem.
Theorem 3. Under Assumption 2, for k ≥ 3, we have

R∗(n, k;φ) &
k2−2α

n
.

The lower bound is obtained by applying Le Cam’s two-point method (see (Tsybakov,
2009)). The details of the proof of Theorem 3 can be found in Appendix B. Next, we derive
another lower bound for the minimax rate.

9



Theorem 4. Under Assumption 2, if n & k1/α

ln k , we have

R∗(n, k;φ) &
k2

(n lnn)2α
,

where we need k & ln
4
3 n if α ∈ (0, 1/2].

The proof is accomplished in the same manner as (Wu and Yang, 2016, Proposition 3). The
details of the proof of Theorem 4 are also found in Appendix B. Combining Theorems 3

and 4, we get the lower bounds in Theorems 1 and 2 as R∗(n, k;φ) & k2

(n lnn)2α ∨ k2−2α

n &
k2

(n lnn)2α + k2−2α

n .

7 Analysis of Upper Bound

Here, we derive the upper bound for the worst-case risk of the estimator.
Theorem 5. Suppose ∆n,k = C2 lnn and L = bC1 lnnc where C1 and C2 are universal
constants such that 6C1 ln 2 + 4

√
C1C2(1 + ln 2) < 1 and C2 > 16. Under Assumption 1, the

worst-case risk of θ̂ is bounded above by

sup
P∈Mk

E

[(
θ̂(Ñ)− θ(P )

)2
]
.

k2

(n lnn)2α
+
k2−2α

n
,

where we need k & ln
4
3 n if α ∈ (0, 1/2].

To prove Theorem 5, we derive the bias and the variance of θ̂.
Lemma 2. Given P ∈Mk, for 1 . ∆n,k ≤ n, the bias of θ̂ is bounded above by

Bias
[
θ̃(Ñ)− θ(P )

]
.

k∑
i=1

(
(e/4)∆n,k + Bias

[
φplugin(Ñi)− φ(pi)

]
1npi>∆n,k

+ Bias
[
φpoly(Ñi)− φ(pi)

]
1npi≤4∆n,k

+ e−∆n,k/8

)
.

Lemma 3. Given P ∈Mk, for 1 . ∆n,k ≤ n, the variance of θ̂ is bounded above by

Var
[
θ̃(Ñ)− θ(P )

]
.

k∑
i=1

(
(e/4)∆n,k + Var

[
φplugin(Ñi)− φ(pi)

]
1npi>∆n,k

+ Var
[
φpoly(Ñi)− φ(pi)

]
1npi≤4∆n,k

+ e−∆n,k/8

+
(
Bias

[
φplugin(Ñi)− φ(pi)

]
+ Bias

[
φpoly(Ñi)− φ(pi)

])2

1∆n,k≤pi≤4∆n,k

)
.

The proofs of Lemmas 2 and 3 are left to Appendix C. As proved in Lemmas 2 and 3,
the bounds on the bias and the variance of our estimator are obtained with the bias and
the variance of the plugin and the best polynomial estimators for each individual alphabet.
Thus, we next analyze the bias and the variance of the plugin and the best polynomial
estimators.

Analysis of the best polynomial estimator. The following lemmas provide the upper
bounds on the bias and the variance of the best polynomial estimator.

10



Lemma 4. Let Ñ ∼ Poi(np). Given an integer L and a positive real ∆, let φL(p) =∑L
m=0 amp

m be the optimal uniform approximation of φ by degree-L polynomials on [0,∆],

and gL(Ñ) =
∑L
m=0 am(Ñ)m/n

m be an unbiased estimator of φL(p). Under Assumption 2,
we have

Bias
[
(gL(Ñ) ∧ φsup,∆) ∨ φinf,∆ − φ(p)

]
.

√
Var

[
gL(Ñ)− φL(p)

]
+

(
∆

L2

)α
.

Lemma 5. Let Ñ ∼ Poi(np). Given an integer L and a positive real ∆ & 1
n , let φL(p) =∑L

m=0 amp
m be the optimal uniform approximation of φ by degree-L polynomials on [0,∆],

and gL(Ñ) =
∑L
m=0 am(Ñ)m/n

m be an unbiased estimator of φL(p). Assume Assumption 2.
If p ≤ ∆ and 2∆3L ≤ n, we have

Var
[
(gL(Ñ) ∧ φsup,∆) ∨ φinf,∆ − φ(p)

]
.

∆3L64L(2e)2
√

∆nL

n
.

The proofs of Lemmas 4 and 5 can be found in Appendix C.

Analysis of the plugin estimator. The following lemmas provide the upper bounds for
the bias and the variance of the plugin estimator.
Lemma 6. Assume Assumption 1 and 1

n . ∆ < p ≤ 1. Let Ñ ∼ Poi(np). Then, we have

Bias

[
φ̄∆

(
Ñ

n

)
− Ñ

2n2
φ̄

(2)
∆

(
Ñ

n

)
− φ(p)

]
.

1

n2∆2−α +
p

n2
.

Lemma 7. Assume Assumption 1 and 1
n . ∆ < p ≤ 1. Let Ñ ∼ Poi(np). Then, we have

Var

[
φ̄∆

(
Ñ

n

)
− Ñ

2n2
φ̄

(2)
∆

(
Ñ

n

)
− φ(p) +

pφ(2)(p)

2n

]
.
p2α−1

n
+

1

n4∆4−2α
+
p

n
.

The proofs of Lemmas 6 and 7 are left to Appendix C.

Proof for the Upper Bound. Combining Lemmas 2 to 7, we prove Theorem 5.

Proof of Theorem 5. Set L = bC1 lnnc and ∆n,k = C2 lnn where C1 and C2 are some
positive constants. Substituting Lemmas 4 to 7 into Lemmas 2 and 3 yields

Bias
[
θ̂(Ñ)− θ(P )

]
.

k∑
i=1

(
1

nC2(ln 4−1)
+

1

nα(lnn)2−α +
pi
n2

+
(lnn)2n3C1 ln 2+2

√
C1C2(ln 2+1)

n2

+
1

(n lnn)α
+

1

nC2/8

)

≤ k

nC2(ln 4−1)
+

k

nα(lnn)2−α +
1

n2
+
k(lnn)2n3C1 ln 2+2

√
C1C2(ln 2+1)

n2

+
k

(n lnn)α
+

k

nC2/8
,
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and

Var
[
θ̂(Ñ)− θ(P )

]
.

k∑
i=1

(
1

nC2(ln 4−1)
+ 1pi≥C2 lnn/n

p2α−1
i

n
+

1

n2α(lnn)4−2α
+
pi
n

+
(lnn)4n6C1 ln 2+4

√
C1C2(ln 2+1)

n4
+

1

nC2/8
+

(
1

nα(lnn)2−α +
pi
n2

+
(lnn)2n3C1 ln 2+2

√
C1C2(ln 2+1)

n2
+

1

(n lnn)α

)2)

.
k

nC2(ln 4−1)
+
k2−2α

n
∨ k

n2α ln1−2α n
+

k

n2α(lnn)4−2α
+

1

n

+
k(lnn)4n6C1 ln 2+4

√
C1C2(ln 2+1)

n4
+

k

nC2/8
+

k

n2α(lnn)4−2α
+

1

n4

+
k(lnn)4n6C1 ln 2+4

√
C1C2(ln 2+1)

n4
+

k

(n lnn)2α
,

where we use Lemmas 17 and 18. For δ > 0, as long as C2(ln 4 − 1) ≥ 2α + δ, 6C1 ln 2 +
4
√
C1C2(ln 2 + 1) ≤ 3− 2α− δ, and C2/8 ≥ 2α+ δ, we have

Bias
[
θ̂(Ñ)− θ(P )

]2
.

1

n4
+

k2

n2α+δ
+

k2

(n lnn)2α
.

1

n4
+

k2

(n lnn)2α
(4)

Var
[
θ̂(Ñ)− θ(P )

]
.
k2−2α

n
∨ k

n2α ln1−2α n
+

k

n2α+δ
+

k

(n lnn)2α

.
k2−2α

n
∨ k

n2α ln1−2α n
+

k

(n lnn)2α
(5)

There exist the constants C1 and C2 that satisfies these conditions, for example, C1 <
1/6 ln 2 and C2 > 16. Since θ̂(Ñ), θ(P ) ∈ [θinf , θsup], the bias-variance decomposition gives

sup
P∈Mk

E

[(
θ̂(Ñ)− θ(P )

)2
]
≤ sup
P∈Mk

E

[(
θ̃(Ñ)− θ(P )

)2
]

≤
(
Bias

[
θ̃(Ñ)− θ(P )

])2

+ Var
[
θ̃(Ñ)− θ(P )

]
. (6)

Substituting Eqs (4) and (5) into Eq (6) yields

sup
P∈Mk

E

[(
θ̂(Ñ)− θ(P )

)2
]
.
k2−2α

n
∨ k

n2α ln1−2α n
+

k2

(n lnn)2α
.

If α ∈ (0, 1/2] and k & ln
4
3 , the last term is dominated. If α ∈ (1/2, 1), the term k

n2α ln1−2α n

is dominated by k2−2α

n .
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A Error Rate of Best Polynomial Approximation

Here, we analyze the upper bound and the lower bound of the best polynomial approximation
error EL(φ, [0,∆]). The upper bound and the lower bound are derived as follows.
Lemma 8. Under Assumption 2, for ∆ ∈ (0, 1], we have

EL(φ, [0,∆]) .

(
∆

L2

)α
.

Lemma 9. Under Assumption 2, for ∆ ∈ (0, 1] there is a positive constant c such that

lim inf
L→∞

(
L2

∆

)α
EL(φ, [0,∆]) > c.

Combining Lemmas 8 and 9, we can conclude E(φ, [0,∆]) �
(

∆
L2

)α
. The proofs of these

lemmas are given as follows.

Proof of Lemma 8. Letting φ∆(p) = φ(∆x2), we have EL(φ, [0,∆]) = EL(φ∆, [−1, 1]). We
utilize the Jackson’s inequality to upper bound the best polynomial approximation error EL
by using the modulus of continuity defined as

ω(f, δ) = sup
x,y∈[−1,1]

{|f(x)− f(y)| : |x− y| ≤ δ}.

To derive the upper bound of EL, we divide into two cases: α ∈ (0, 1/2] and α ∈ (1/2, 1).

Case α ∈ (0, 1/2]. From the Jackson’s inequality (Achieser, 2013), there is a trigonometric
polynomial TL with degree-L such that

sup
x∈[0,2π]

|f(x)− TL(x)| . sup
x,y∈[0,2π]

{
|f(x)− f(y)| : |x− y| ≤ 1

L

}
.

By the definition of EL, we have

EL(f, [−1, 1]) = inf
g∈PL

sup
x∈[−1,1]

|f(x)− g(x)|

= inf
g∈PL

sup
x∈[0,2π]

|f(cos(x))− g(cos(x))|

. sup
x,y∈[0,2π]

{
|f(cos(x))− f(cos(y))| : |x− y| ≤ 1

L

}
= sup
x,y∈[−1,1]

{
|f(x)− f(y)| :

∣∣cos−1(x)− cos−1(y)
∣∣ ≤ 1

L

}
≤ sup
x,y∈[−1,1]

{
|f(x)− f(y)| : |x− y| ≤ 1

L

}
= ω

(
f,

1

L

)
, (7)

where we use the fact that
∣∣cos−1(x)− cos−1(y)

∣∣ ≥ |x− y| for x, y ∈ [−1, 1] to derive the

last line. From Lemma 15 and the fact that pα−1 ≥ 1 for p ∈ (0, 1], we have
∣∣φ(1)(p)

∣∣ ≤ (W+
|c1|)pα−1 for p ∈ (0, 1]. From the absolute continuousness of φ on (0, 1], for x, y ∈ (−1, 1]
where x ≤ y we have

|φ∆(x)− φ∆(y)| ≤
∫ y

x

∣∣∣2∆tφ(1)
(
∆t2

)∣∣∣dt
≤2∆α(W + |c1|)

∫ y

x

t2α−1dt

=
∆α(W + |c1|)

α

(
y2α − x2α

)
≤∆α(W + |c1|)

α
(y − x)2α,
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where the last line is obtained since xβ for β ∈ (0, 1] is β-Holder continuous. This is valid
for the case x = 0 since |φ∆(0)− φ∆(y)| = limx→0|φ∆(x)− φ∆(y)|. Thus, we have

ω(φ∆, δ) ≤
∆α(W + |c1|)

α
δ2α.

Substituting this into Eq (7), we have

EL(φ∆, [−1, 1]) .
∆α(W + |c1|)

α

1

L2α
.

(
∆

L2

)α
.

Case α ∈ (1/2, 1). From the Jackson’s inequality (Achieser, 2013), there is a trigonometric
polynomial TL with degree-L such that

sup
x∈[0,2π]

|f(x)− TL(x)| . 1

L
sup

x,y∈[0,2π]

{∣∣∣f (1)(x)− f (1)(y)
∣∣∣ : |x− y| ≤ 1

L

}
.

In the similar manner of the case α ∈ (0, 1/2], we have

EL(φ∆, [−1, 1]) = inf
g∈PL

sup
x∈[0,2π]

|φ∆(cos(x))− g(cos(x))|

.
1

L
ω

(
φ

(1)
∆ ,

1

L

)
. (8)

Since pα−2 ≥ 1 for p ∈ (0, 1] and Assumption 2, we have
∣∣φ(2)(p)

∣∣ ≤ (α1W + |c2|)pα−2 for

p ∈ (0, 1]. From the absolute continuousness of φ(1) on (0, 1], for x, y ∈ (−1, 1] where x ≤ y
we have ∣∣∣φ(1)

∆ (x)− φ(1)
∆ (y)

∣∣∣ ≤∫ y

x

∣∣∣2∆φ(1)
(
∆t2

)
+ 4∆2t2φ(2)

(
∆t2

)∣∣∣dt
≤
∫ y

x

(
2∆α(W + |c1|)t2α−2 + 4∆α(α1W + |c2|)t2α−2

)
dt

=∆α 2(W + |c1|) + 4(α1W + |c2|)
2α− 1

(
y2α−1 − x2α−1

)
≤∆α 2(W + |c1|) + 4(α1W + |c2|)

2α− 1
(y − x)2α−1.

Also, we use the fact that xβ for β ∈ (0, 1] is β-Holder continuous. Thus, we have

ω
(
φ

(1)
∆ , δ

)
≤ ∆α 2(W + |c1|) + 4(α1W + |c2|)

2α− 1
δ2α−1.

Substituting this into Eq (8), we have

EL(φ∆, [−1, 1]) .
1

L
∆α 2(W + |c1|) + 4(α1W + |c2|)

2α− 1

1

L1−2α
.

(
∆

L2

)α
.

Proof of Lemma 9. Let φ∆(x) = φ
(
∆x+1

2

)
. Then, we have EL(φ, [0,∆]) = EL(φ∆, [−1, 1]).

To derive the lower bound of EL(φ∆, [−1, 1]), we introduce the second-order Ditzian-Totik
modulus of smoothness (Ditzian and Totik, 2012) defined as

ω2
ϕ(f, t) = sup

x,y∈[−1,1]

{∣∣∣∣f(x) + f(y)− 2f

(
x+ y

2

)∣∣∣∣ : |x− y| ≤ 2tϕ

(
x+ y

2

)}
,
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where ϕ(x) =
√

1− x2. Fix y = −1, for t > 0 we have

|x− y| ≤ 2tϕ

(
x+ y

2

)
⇐⇒

x+ 1 ≤ 2t

√
1− (x− 1)2

4
⇐⇒

(x+ 1)2

4t2
≤ 1− (x− 1)2

4
⇐⇒

t−2(x+ 1)2 + (x− 1)2 − 4 ≤ 0 ⇐⇒
(t−2 + 1)x2 + 2(t−2 − 1)x+ (t−2 + 1)− 4 ≤ 0 ⇐⇒(
x+

t−2 − 1

t−2 + 1

)2

+ 1− 4

t−2 + 1
− (t−2 − 1)2

(t−2 + 1)2
≤ 0 ⇐⇒(

x+ 1− 2

t−2 + 1

)2

≤ 4

(t−2 + 1)2
⇐⇒

−1 ≤ x ≤ −1 +
4

t−2 + 1
.

Thus, we have

ω2
ϕ(φ∆, t) ≥ sup

x

{∣∣∣∣φ∆(x) + φ∆(−1)− 2φ∆

(
x− 1

2

)∣∣∣∣ : −1 ≤ x ≤ −1 +
4

t−2 + 1

}
= sup

x

{∣∣∣∣φ(∆x) + φ(0)− 2φ

(
∆x

2

)∣∣∣∣ : 0 ≤ x ≤ 2

t−2 + 1

}
Application of the Taylor theorem gives

φ(∆x) + φ(0)− 2φ

(
∆x

2

)
=λφ(1)

(
∆x

2

)(
0− x

2

)
+ λφ(1)

(
∆x

2

)(
x− x

2

)
−
∫ x

2

0

∆2φ(2)(∆t)(0− t)dt+

∫ x

x
2

∆2φ(2)(∆t)(x− t)dt

=

∫ x
2

0

∆2φ(2)(∆t)tdt+

∫ x

x
2

∆2φ(2)(∆t)(x− t)dt.

Letting p0 = (α1W/(α1W ∨ −c′2))1/(2−α),
∣∣φ(2)(p)

∣∣ ≥ α1Wpα−2 + c′2 ≥ 0 for (0, p0]. From

continuousness of φ(2), φ(2)(x) has same sign in x ∈ (0, p0]. Since t ≥ 0 for t ∈ [0, x2 ] and
x− t ≥ 0 for t ∈ [x2 , x], we have for x ∈ (0, p0]∣∣∣∣φ(∆x) + φ(0)− 2φ

(
∆x

2

)∣∣∣∣
≥∆αα1W

(∫ x
2

0

tα−2tdt+

∫ x

x
2

tα−2(x− t)dt

)
+ c′2∆2

(∫ x
2

0

tdt+

∫ x

x
2

(x− t)dt

)

=∆αα1W

(
xα

α2α
+

x

1− α

(
xα−1

2α−1
− xα−1

)
+

1

α

(
xα

2α
− xα

))
+
c′2∆2x2

4

=∆αxα
(
W (2−α − 1) +

α1W

α
(21−α − 1) +

c′2∆2−α

4
x2−α

)
& ∆αxα.

Thus, we have for sufficiently small t

ω2
ϕ(φ∆, t) & ∆α

(
2

t−2 + 1

)α
& ∆αt2α. (9)
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With the definition of ω2
ϕ(f, t), we have the converse result 1

L2

∑L
m=1(m+1)Em(f, [−1, 1]) &

ω2
ϕ(f, L−1) (Ditzian and Totik, 2012). Let L′ be an integer such that L′ = c`L where c` > 1.

Then, we have

EL(φ, [0,∆])

≥ 1

L′ − L

L′∑
m=L+1

Em(φ, [0,∆])

≥ 1

L′2

L′∑
m=L+1

(m+ 1)Em(φ, [0,∆])

≥ 1

L′2

L′∑
m=0

(m+ 1)Em(φ, [0,∆])− 1

L′2
E0(φ, [0,∆])− 1

L′2

L∑
m=1

(m+ 1)Em(φ, [0,∆]). (10)

From Lemma 16, we have |φ(x)− φ(y)| ≤ W
α ∆α + |c1|∆ for x, y ∈ [0,∆]. Substituting it

and Eq (9) into Eq (10) and applying the converse result and Lemma 8 yields that there
are constants C > 0 and C ′ > 0 such that

EL(φ, [0,∆]) ≥Cω2
ϕ(φ∆, L

′−1)− W

L′2α
∆α − |c1|

L′2
∆− C ′

L′2

L∑
m=1

(m+ 1)

(
∆

m2

)α

≥C ∆α

L′2α
− W

L′2α
∆α − |c1|

L′2
∆− C ′

L′2

L∑
m=1

(m+ 1)

(
∆

m2

)α

≥C ∆α

L′2α
− W

αc2`L
2α

∆α − |c1|
c2`L

2α
∆− 2C ′∆α

L′2

L∑
m=1

m1−2α

≥C ∆α

L′2α
− W

αc2`L
2α

∆α − |c1|
c2`L

2α
∆− 2C ′∆α

L′2

(
L2−2α ∨

∫ L

0

x1−2αdx

)

≥C ∆α

c2α` L2α
− W

αc2`L
2α

∆α − |c1|
c2`L

2α
∆− 2C ′∆α

((2− 2α) ∧ 1)c2`L
2α

=
1

c2α`

(
∆

L2

)α(
C − W

αc2−2α
`

− |c1|∆
−α

c2−2α
`

− 2C ′

((2− 2α) ∧ 1)c2−2α
`

)
.

Thus, by taking sufficiently large c`, there is c > 0 such that

lim sup
L→∞

(
L2

∆

)α
EL(φ, [0,∆]) > c.

B Proofs for Lower Bounds

To prove Theorem 3, the Le Cam’s two-point method (See, e.g., (Tsybakov, 2009)). The
consequent corollary of the Le Cam’s two-point method is as follows.
Corollary 1. For any two probability measures P,Q ∈Mk, we have

R̃∗(n, k;φ) ≥ 1

4
(θ(P )− θ(Q))

2
exp(−nDKL(P,Q)),

where DKL(P,Q) denotes the KL-divergence between P and Q.

We provide the proof of Theorem 3.
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Proof of Theorem 3. For ε ∈ (0, 1/2). Define two probability measures on [k] as

P =

(
1

2
,

1

2(k − 1)
, ...,

1

2(k − 1)

)
,

Q =

(
1

2
(1 + ε),

1

2(k − 1)
(1− ε), ..., 1

2(k − 1)
(1− ε)

)
.

Then, the KL-divergence between P and Q is obtained as

DKL(P,Q) =− 1

2
ln(1 + ε)− 1

2
ln(1− ε) = −1

2
ln
(
1− ε2

)
≤ ε2.

Applying the Taylor theorem gives that there exist ξ1 ∈ [1/2, (1 + ε)/2] and ξ2 ∈ [(1 −
ε)/2(k − 1), 1/2(k − 1)] such that

θ(Q)− θ(P )

=
1

2
φ(1)

(
1

2

)
ε− 1

2
φ(1)

(
1

2(k − 1)

)
ε+

φ(2)(ξ1)

8
ε2 +

φ(2)(ξ2)

8(k − 1)
ε2.

From the reverse triangle inequality, we have

|θ(Q)− θ(P )|

≥1

2

∣∣∣∣φ(1)

(
1

2(k − 1)

)∣∣∣∣ε− ∣∣∣∣12φ(1)

(
1

2

)
ε+

φ(2)(ξ1)

8
ε2 +

φ(2)(ξ2)

8(k − 1)
ε2
∣∣∣∣

≥1

2

∣∣∣∣φ(1)

(
1

2(k − 1)

)∣∣∣∣ε− ∣∣∣∣12φ(1)

(
1

2

)∣∣∣∣ε− ∣∣∣∣φ(2)(ξ1)

8

∣∣∣∣ε2 − ∣∣∣∣ φ(2)(ξ2)

8(k − 1)

∣∣∣∣ε2.
Combining Assumption 2, Lemma 15, and the fact that ξ1 ≥ 1/2 and ξ2 ≥ 1/4(k− 1) yields∣∣∣∣φ(1)

(
1

2(k − 1)

)∣∣∣∣ ≥W21−α(k − 1)1−α + c′1,∣∣∣∣φ(1)

(
1

2

)∣∣∣∣ ≤W21−α + c1,∣∣∣φ(2)(ξ1)
∣∣∣ ≤α1W22−α + c2,∣∣∣φ(2)(ξ2)
∣∣∣ ≤α1W42−α(k − 1)2−α + c2.

Consequently, we have

|θ(Q)− θ(P )| ≥W2−αε
(
(k − 1)1−α − 1− α1(2−1 + 21−α(k − 1)1−α)ε

)
− 2−1(c1 − c′1)ε− c2(2−3 + 2−3(k − 1)−1)ε2.

Set ε = 1/
√
n. Applying Corollary 1, we have

R̃∗(n, k;φ)

≥ W 2(k − 1)2−2α

2−2αn

(
1− 1

(k − 1)1−α −
α1

2(k − 1)α
√
n
− α121−α
√
n

− c1 − c′1
21−αW (k − 1)1−α −

2α−3c2
W (k − 1)1−α√n

− 2α−3c2
W (k − 1)2−α√n

)2

&
k2−2α

n
.

From Lemma 1, this lower bound is valid for R∗(n, k;φ).
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The proof of Theorem 4 is following the proof of (Wu and Yang, 2016). For ε ∈ (0, 1), define
the approximate probabilities by

Mk(ε) =

{
{pi}ki=1 ∈ Rk+ :

k∑
i=1

pi ≤ 1− ε

}
.

With this definition, we define the minimax risk for Mk(ε) as

R̃∗(n, k, ε;φ) = inf
θ̂

sup
P∈Mk(ε)

E
(
θ̂(Ñ)− θ(P )

)2

. (11)

The minimax risk of Poisson sampling can be bounded below by Eq (11) as
Lemma 10. Under Assumption 2, for any k, n ∈ N and any ε < 1/3,

R̃∗(n/2, k;φ) ≥ 1

3
R̃∗(n, k, ε;φ)− 4

(
W

α
k1−α + |c1|

)2

e−n/32 − W 2

α2
k2−2αε2α − c21ε2.

Proof of Lemma 10. This proof is following the same manner of the proof of (Wu and Yang,

2016, Lemma 1). Fix δ > 0. Let θ̂(·, n) be a near-minimax optimal estimator for fixed sample
size n, i.e.,

sup
P∈Mk

E
[
(θ̂(N,n)− θ(P ))

2
]
≤ δ +R∗(k, n;φ).

For an arbitrary approximate distribution P ∈Mk(ε), we construct an estimator

θ̃(Ñ) = θ̂(Ñ , n′),

where Ñi ∼ Poi(npi) and n′ =
∑
iNi. From the triangle inequality, Lemma 16 and

Lemma 17, we have

1

3
(θ̃(Ñ)− θ(P ))2

≤1

3

(∣∣∣∣∣θ̃(Ñ)− θ

(
P∑k
i=1 pi

)∣∣∣∣∣+

∣∣∣∣∣θ
(

P∑k
i=1 pi

)
− θ(P )

∣∣∣∣∣
)2

≤1

3

(∣∣∣∣∣θ̃(Ñ)− θ

(
P∑k
i=1 pi

)∣∣∣∣∣+
W

α

k∑
i=1

∣∣∣∣∣ pi∑k
j=1 pj

− pi

∣∣∣∣∣
α

+ |c1|
k∑
i=1

∣∣∣∣∣ pi∑k
j=1 pj

− pi

∣∣∣∣∣
)2

≤ 1

3

(∣∣∣∣∣θ̃(Ñ)− θ

(
P∑k
i=1 pi

)∣∣∣∣∣+
W

α

k∑
i=1

 pi∑k
j=1 pj

∣∣∣∣∣∣
k∑
j=1

pj − 1

∣∣∣∣∣∣
α

+ |c1|
k∑
i=1

pi∑k
j=1 pj

∣∣∣∣∣∣
k∑
j=1

pj − 1

∣∣∣∣∣∣
)2

≤1

3

(∣∣∣∣∣θ̃(Ñ)− θ

(
P∑k
i=1 pi

)∣∣∣∣∣+
W

α
εα

k∑
i=1

(
pi∑k
j=1 pj

)α
+ |c1|ε

k∑
i=1

pi∑k
j=1 pj

)2

≤1

3

(∣∣∣∣∣θ̃(Ñ)− θ

(
P∑k
i=1 pi

)∣∣∣∣∣+
W

α
k1−αεα + |c1|ε

)2

≤

(∣∣∣∣∣θ̃(Ñ)− θ

(
P∑k
i=1 pi

)∣∣∣∣∣
)2

+
W 2

α2
k2−2αε2α + c21ε

2.
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For the first term, we observe that Ñ ∼ Multinomial(m, P∑
pi

) conditioned on n′ = m.

Therefore, we have

E

(
θ̃(Ñ)− θ

(
P∑k
i=1 pi

))2

=

∞∑
m=0

E

(θ̃(Ñ ,m)− θ

(
P∑k
i=1 pi

))2
∣∣∣∣∣∣n′ = m

P{n′ = m}

≤
∞∑
m=0

R̃∗(m, k;φ)P{n′ = m}+ δ.

From Lemma 16 and Lemma 17, we have

R̃∗(m, k;φ) ≤ sup
P,P ′∈Mk

(θ(P )− θ(P ′))2

≤ sup
P,P ′∈Mk

(
W

α

k∑
i=1

|pi − p′i|
α

+ |c1|
k∑
i=1

|pi − p′i|

)2

≤4 sup
P∈Mk

(
W

α

k∑
i=1

pαi + |c1|
k∑
i=1

pi

)2

≤4

(
W

α
k1−α + |c1|

)2

.

Note that R̃∗(m, k;φ) is a decreasing function with respect to m. Since n′ ∼ Poi(n
∑
i pi)

and |
∑
i pi − 1| ≤ ε ≤ 1/3, applying Chernoff bound yields P{n′ ≤ n/2} ≤ e−n/32. Thus,

we have

E

(
θ̃(Ñ)− θ

(
P∑k
i=1 pi

))2

≤
∑

m≥n/K

R̃∗(m, k;φ)P{n′ = m}+ 4

(
W

α
k1−α + |c1|

)2

P{n′ ≤ n/K}+ δ

≤R̃∗(n/K, k;φ) + 4

(
W

α
k1−α + |c1|

)2

e−n/32 + δ.

The arbitrariness of δ gives the desired result.

The lower bound of R̃∗(n, k, ε;φ) is given by the following lemma.
Lemma 11. Let U and U ′ be random variables such that U,U ′ ∈ [0, λ] and E[U ] = E[U ′] ≤ 1
and |E[θ(U)− θ(U ′)]| ≥ d, where λ ≤ k. Let ε = 4λ/

√
k. Then

R̃∗(n, k, ε;φ) ≥ d2

16

(
7

8
− kTV(E[Poi(nU/k)],E[Poi(nU ′/k)])− 64W 2λ2α

α2k2α−1d2
− 64c21λ

2

kd2

)
.

Proof of Lemma 11. The proof follows the same manner of the proof of (Wu and Yang,
2016, Lemma 2) expect Eq (12) below. Let β = E[U ] = E[U ′] ≤ 1. Define two random
vectors

P =

(
U1

k
, ...,

Uk
k
, 1− β

)
, P ′ =

(
U ′1
k
, ...,

U ′k
k
, 1− β

)
,

where Uia nd U ′i are independent copies of U and U ′, respectively. Put ε = 4λ/
√
k. Define
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the two events:

E =

[∣∣∣∣∣∑
i

Ui
k
− β

∣∣∣∣∣ ≤ ε, |θ(P )−E[θ(P )]| ≤ d/4

]
,

E ′ =

[∣∣∣∣∣∑
i

U ′i
k
− β

∣∣∣∣∣ ≤ ε, |θ(P ′)−E[θ(P ′)]| ≤ d/4

]
.

Applying Chebyshev’s inequality, the union bound, the triangle inequality and Lemma 16
gives

PEc ≤P

{∣∣∣∣∣∑
i

Ui
k
− β

∣∣∣∣∣ > ε

}
+ P{|θ(P )−E[θ(P )]| > d/4}

≤Var[U ]

kε2
+

16
∑
i Var[φ(Ui/k)]

d2

≤ 1

16
+

16
∑
i E[(φ(Ui/k)− φ(β/k))2]

d2

≤ 1

16
+

32
∑
i E[W 2(Ui − β)2α]

α2k2αd2
+

32
∑
i E[c21(Ui − β)2]

k2d2

≤ 1

16
+

32W 2λ2α

α2k2α−1d2
+

32c21λ
2

kd2
(12)

By the same manner, we have

PE ′c ≤ 1

16
+

32W 2λ2α

α2k2α−1d2
+

32c21λ
2

kd2
.

We define two priors on the set Mk(ε), the conditional distributions π = PU |E and π′ =
PU ′|E′ . By the definition of events E , E ′ and triangle inequality, we obtain that under π, π′,

|θ(P )− θ(P ′)| ≥ d

2
.

By triangle inequality, we have the total variation of observations under π, π′ as

TV(PÑ |E , PÑ ′|E′) ≤TV(PÑ |E , PÑ ) + TV(PÑ , PÑ ′) + TV(PÑ ′ , PÑ ′|E′)

=PEc + TV(PÑ , PÑ ′) + PE ′c

≤TV(PÑ , PÑ ′) +
1

8
+

64W 2λ2α

α2k2α−1d2
+

64c21λ
2

kd2
.

From the fact that total variation of product distribution can be upper bounded by the
summation of individual ones, we obtain

TV(PÑ , PÑ ′) ≤
k∑
i=1

TV(PÑi , PÑ ′i
) + TV(n(1− β), n(1− β))

=kTV(E[Poi(nU/k)],E[Poi(nU ′/k)]).

Then, applying Le Cam’s lemma (Le Cam, 1986) yields that

R̃∗(n, k, ε;φ) ≥ d2

16

(
7

8
− kTV(E[Poi(nU/k)],E[Poi(nU ′/k)])− 64W 2λ2α

α2k2α−1d2
− 64c21λ

2

kd2

)
.

To derive the upper bound of TV(E[Poi(nU/k)],E[Poi(nU ′/k)]), we apply the following
lemma proved by Wu and Yang (2016).
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Lemma 12 (Wu and Yang (2016, Lemma 3)). Let V and V ′ be random variables on [0,M ].
If E[V j ] = E[V ′j ], j = 1, ..., L and L > 2eM , then

TV(E[Poi(V )],E[Poi(V ′)]) ≤
(

2eM

L

)L
.

Under the condition of Lemma 12, the following lemmas provides the lower bound of
d.
Lemma 13. For any given integer L > 0, there exists two probability measures ν0 and ν1

on [0, λ] such that

EX∼ν0
[Xm] = EX∼ν1

[Xm], for m = 0, ..., L,

EX∼ν0
[φ(X)]−EX∼ν1

[φ(X)] = 2EL(φ, [0, λ]).

Lemma 13. The proof is almost same as the proof of Jiao et al. (2015, Lemma 10). It follows
directly from a standard functional analysis argument proposed by Lepski et al. (1999). It
suffices to replace xα with φ(x) and [0, 1] with [0, λ] in the proof of (Cai et al., 2011, Lemma
1).

As proved Lemma 13, we can choose the probability measures of U and U ′ in Lemma 10
so that d in Lemma 10 becomes the uniform approximation error of the best polynomial
EL(φ, [0, λ]). The analysis of the lower bound on EL(φ, [0, λ]) can be found in Appendix A.
By using the lower bound (in Lemma 9), we prove Theorem 4 as follows.

Proof of Theorem 4. Set L = bC1 lnnc and λ = C2
lnn
n where C1 and C2 are universal

constants such that 2eC2 ≤ C1. Assembling Lemmas 9 and 11 to 13, we have M = C2
lnn
k ,

|E[φ(U)− φ(U ′)]| = d ≥ ck
(
λ
L2

)α
where c > 0 is an universal constant. Also, we have

R̃∗(n, k, ε;φ)

≥d
2

16

(
7

8
− k
(

2eC2 lnn

kbC1 lnnc

)bC1 lnnc

− 64W 2bC1 lnnc4α

c2α2k2α+1
− 64c21bC1 lnnc4αλ2−2α

c2k3

)
.

If α ∈ (1/2, 1), it is sufficient to prove Theorem 4 when k & n1−1/2α lnn because of Theo-
rem 3. Hence,

64W 2bC1 lnnc4α

c2α2k2α+1
=o(1) (13)

64c21bC1 lnnc4αλ2−2α

c2k3
=o(1). (14)

If α ∈ (0, 1/2], we assume k & ln
4
3 n. Then, we get Eqs (13) and (14). Moreover, for

sufficiently large C1, we get k
(

2eC2 lnn
kbC1 lnnc

)bC1 lnnc
= o(1).Thus, we have

R̃∗(n, k, ε;φ) & d2 &
k2

(n lnn)2α
. (15)

The second term in Lemma 10 is bounded above as

4

(
W

α
k1−α + |c1|

)2

e−n/32 = o

(
k2

(n lnn)2α

)
.

23



For α ∈ (0, 1), we get an upper bound on the fourth term in Lemma 10 as

c21ε
2 ≤c

2
1λ

2−2αL4α

k2
· d2

≤c
2
1λ

2−2αbC1 lnnc4α

k2
· d2 = o(1) · d2.

If α ∈ (1/2, 1), the third term in Lemma 10 is bounded above as

W 2

α2
k2−2αε2α ≤W

2L4α

c2α2k3α
· d2

≤W
2bC1 lnnc4α

c2α2k3α
· d2 = o(1) · d2.

Then, Eq (15) and Lemma 10 gives

R̃∗(n, k;φ) &
k2

(n lnn)2α
.

If α ∈ (0, 1/2], we assume k ≥ c′ ln
4
3 n for an arbitrary constant c′ > 0, and we get

W 2

α2
k2−2αε2α ≤ W 2C4α

1

c2α2c′3α
· d2.

Hence, for sufficiently small c′, Eq (15) and Lemma 10 yields

R̃∗(n, k;φ) &
k2

(n lnn)2α
.

C Proofs for Upper Bounds

We use the following helper lemma for proving Lemma 3.
Lemma 14 (Cai et al. (2011), Lemma 4). Suppose 1E is an indicator random variable
independent of X and Y , then

Var[X1E + Y 1Ec ] = Var[X]PE + Var[Y ]PEc + (E[X]−E[Y ])
2PEPEc.

Proof of Lemma 2. From the property of the absolute value, the bias is bounded above as

Bias
[
θ̂(Ñ)− θ(P )

]
≤

k∑
i=1

(
Bias

[
1Ñ ′i≥2∆n,k

(
φplugin(Ñi)− φ(pi)

)]
+ Bias

[
1Ñ ′i<2∆n,k

(
φpoly(Ñi)− φ(pi)

)])
.

Because of the independence between Ñ and Ñ ′, we have

Bias
[
1Ñ ′i≥2∆n,k

(
φplugin(Ñi)− φ(pi)

)]
=Bias

[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
Bias

[
1Ñ ′i<2∆n,k

(
φpoly(Ñi)− φ(pi)

)]
=Bias

[
φpoly(Ñi)− φ(pi)

]
P
{
Ñ ′i < 2∆n,k

}
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For p ∈ [
∆n,k

2n ,
∆n,k

n ], from Lemmas 15 and 16, we have∣∣∣∣H4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)
− φ(pi)

∣∣∣∣
≤

∣∣∣∣∣∣
4∑

m=1

φ(m)
(

∆n,k

n

)
m!

(
p− ∆n,k

n

)m 4−m∑
`=0

4 + 1

4 + `+ 1
B`,4+`+1

(
p− ∆n,k

n
∆n,k

2n −
∆n,k

n

)∣∣∣∣∣∣
+

∣∣∣∣φ(∆n,k

n

)
− φ(pi)

∣∣∣∣
≤

4∑
m=1

∣∣∣φ(m)
(

∆n,k

n

)∣∣∣
m!

(
∆n,k

2n

)m 4−m∑
`=0

(
4 + `

`

)(
`

4 + `+ 1

)`(
4 + 1

4 + `+ 1

)4+1

+
W

α
+ |c1|

≤
4∑

m=1

∣∣∣φ(m)
(

∆n,k

n

)∣∣∣
m!

(
∆n,k

2n

)m
(5−m) +

W

α
+ |c1|

≤5

4∑
m=1

(
αm−1W

m!

(
∆n,k

n

)α
2−m + cm

(
∆n,k

2n

)m)
+
W

α
+ |c1|,

where we use 0 ≤ Bν,n(x) ≤ Bν,n(ν/n) to get the third line. From the assumption ∆n,k ≤ n,
we have ∣∣∣∣H4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)
− φ(p)

∣∣∣∣ ≤ 5

4∑
m=1

(
αm−1W

m!2m
+ cm

)
+
W

α
+ |c1|.

Also, for p ∈ [1, 2], we have

|H4(p;φ, 1, 2)− φ(pi)|

≤

∣∣∣∣∣
4∑

m=1

φ(m)(1)

m!
(p− 1)m

4−m∑
`=0

4 + 1

4 + `+ 1
B`,4+`+1

(
p− 1

2− 1

)∣∣∣∣∣+ |φ(1)− φ(pi)|

≤5

4∑
m=1

∣∣φ(m)(1)
∣∣

m!
+
W

α
+ |c1|

≤5

4∑
m=1

(αm−1W + cm) +
W

α
+ |c1|.

For p ∈ (
∆n,k

n , 1), we have by Lemma 16 that

|φ(p)− φ(pi)| ≤
W

α
+ |c1|.

Consequently, we have for p ≥ 0

∣∣∣φ̄∆n,k
n

(p)− φ(pi)
∣∣∣ ≤ 5

4∑
m=1

(αm−1W + cm) +
W

α
+ |c1| . 1. (16)
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For p ∈ (
∆n,k

2n ,
∆n,k

n ),

p

2n

∣∣∣∣H(2)
4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)∣∣∣∣
=

p

2n

∣∣∣∣∣
4∑

m=1

φ(m)

(
∆n,k

n

) 2∑
i=0

(
2

i

)
1

((m− i) ∨ 0)!

(
p− ∆n,k

n

)(m−i)∨0

4−m∑
`=0

4 + 1

4 + `+ 1
B

(2−i)
`,4+`+1

(
p− ∆n,k

n

−∆n,k

2n

)∣∣∣∣∣
=

p

2n

∣∣∣∣∣
4∑

m=1

φ(m)

(
∆n,k

n

) 2∑
i=0

(
2

i

)
1

((m− i) ∨ 0)!

(
p− ∆n,k

n

)(m−i)∨0

4−m∑
`=0

(4 + 1)(4 + `+ 1)!

(4 + `+ 1)(4 + `− 1 + i)!

(2−i)∧`∑
j=0

(−1)j
(

2− i
j

)
B`−j,4+`−1+i

(
p− ∆n,k

n

−∆n,k

2n

)∣∣∣∣∣,
where the last line is obtained by using the fact B(1)

ν,n(x) = n(Bν−1,n−1(x) − Bν,n−1(x)).
Again, the fact 0 ≤ Bν,n(x) ≤ Bν,n(ν/n) gives

p

2n

∣∣∣∣H(2)
4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)∣∣∣∣
≤ p

2n

4∑
m=1

∣∣∣∣φ(m)

(
∆n,k

n

)∣∣∣∣ 2∑
i=0

(
2

i

)
1

((m− i) ∨ 0)!

(
∆n,k

2n

)(m−i)∨0

4−m∑
`=0

(2−i)∧`∑
j=0

(
2− i
j

)
(4 + 1)(4 + `)!

(`− j)!(4− 1 + i+ j)!

(`− j)`−j(4− 1 + i+ j)4−1+i+j

(4 + `− 1 + i)4+`−1+i

≤ p

2n

4∑
m=1

∣∣∣∣φ(m)

(
∆n,k

n

)∣∣∣∣
(

5−m
((m− 2) ∨ 0)!

(
∆n,k

2n

)(m−2)∨0

+
20(5−m)

(m− 1)!

(
∆n,k

2n

)m−1

+
20(4 + (4−m)(5−m))

2m!

(
∆n,k

2n

)m)

≤ 1

n

4∑
m=1

(
αm−1W

(
∆n,k

n

)α−m
+ cm

)(
5−m

((m− 2) ∨ 0)!

(
∆n,k

2n

)(m−1)∨1

+
20(5−m)

(m− 1)!

(
∆n,k

2n

)m
+

20(4 + (4−m)(5−m))

2m!

(
∆n,k

2n

)m+1
)
.

From the assumption ∆n,k ≤ n, we have

p

2n

∣∣∣∣H(2)
4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)∣∣∣∣
≤ 1

n

4∑
m=1

(
αm−1W

(
∆n,k

n

)α−1

+ cm

)
(

(5−m)

2m−1((m− 2) ∨ 0)!
+

20(5−m)

2m(m− 1)!
+

20(4 + (4−m)(5−m))

2m+2m!

)
.
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From the assumption, there is a universal constant c > 0 such that ∆n,k ≥ c. Thus, we have

p

2n

∣∣∣∣H(2)
4

(
p;φ,

∆n,k

n
,

∆n,k

2n

)∣∣∣∣
≤

4∑
m=1

(
αm−1W

cα−1

nα
+
cm
n

)
(

(5−m)

2m−1((m− 2) ∨ 0)!
+

20(5−m)

2m(m− 1)!
+

20(4 + (4−m)(5−m))

2m+2m!

)
.

Also, for p ∈ (1, 2), we have

p

2n

∣∣∣H(2)
4 (p;φ, 1, 2)

∣∣∣
≤ 1

n

4∑
m=1

(αm−1W + cm)

(
5−m

((m− 2) ∨ 0)!
+

20(5−m)

(m− 1)!
+

20(4 + (4−m)(5−m))

2m!

)
.

Thus, we have for p ≥ 0∣∣∣∣ p2nφ̄(2)
∆n,k
n

(p)

∣∣∣∣
≤

4∑
m=1

(
αm−1W

cα−1

nα
+
|cm|
n

)
(

1 ∨
(

(5−m)

((m− 2) ∨ 0)!
+

20(5−m)

(m− 1)!
+

20(4 + (4−m)(5−m))

2m!

))
.

.
1

nα
. (17)

Combining Eqs (16) and (17) yields for any pi ∈ [0, 1]

Bias
[
φplugin(Ñi)− φ(pi)

]
. 1.

Then, we have

Bias
[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
= Bias

[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
1npi≤∆n,k

+ Bias
[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
1npi>∆n,k

.P
{
Ñ ′i ≥ 2∆n,k

}
1npi≤∆n,k

+ Bias
[
φplugin(Ñi)− φ(pi)

]
1npi>∆n,k

.

The Chernoff bound for the Poisson distribution gives P
{
Ñ ′i ≥ 2∆n,k

}
1npi≤∆n,k

≤
(e/4)∆n,k . Thus, we have

Bias
[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
.(e/4)∆n,k + Bias

[
φplugin(Ñi)− φ(pi)

]
1npi>∆n,k

. (18)

Similarly, we have by the final truncation of φpoly and Lemma 16 that

Bias
[
φpoly(Ñi)− φ(pi)

]
≤ sup
p∈[0,1]

|φ(p)− φ(pi)| ≤
W

α
+ |c1|.
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The Chernoff bound yields P
{
Ñ ′i < 2∆n,k

}
≤ e−∆n,k/8 for pi > 4∆n,k. Thus, we have

Bias
[
φpoly(Ñi)− φ(pi)

]
P
{
Ñ ′i < 2∆n,k

}
≤Bias

[
φpoly(Ñi)− φ(pi)

]
P
{
Ñ ′i < 2∆n,k

}
1npi≤4∆n,k

+ Bias
[
φpoly(Ñi)− φ(pi)

]
P
{
Ñ ′i < 2∆n,k

}
1npi>4∆n,k

≤Bias
[
φpoly(Ñi)− φ(pi)

]
1npi≤4∆n,k

+

(
W

α
+ |c1|

)
e−∆n,k/8. (19)

Combining Eqs (18) and (19) gives the desired result.

Proof of Lemma 3. Because of the independence of Ñ1, .., Ñk, Ñ
′
1, ..., Ñ

′
k, applying

Lemma 14 gives

Var
[
θ̂(Ñ)− θ(P )

]
≤Var

[
k∑
i=1

1Ñ ′i≥2∆n,k

(
φplugin(Ñi)− φ(pi)

)
+ 1Ñ ′i<2∆n,k

(
φpoly(Ñi)− φ(pi)

)]

≤
k∑
i=1

Var
[
1Ñ ′i≥2∆n,k

(
φplugin(Ñi)− φ(pi)

)
+ 1Ñ ′i<2∆n,k

(
φpoly(Ñi)− φ(pi)

)]
≤

k∑
i=1

(
Var

[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
+ Var

[
φpoly(Ñi)− φ(pi)

]
P
{
Ñ ′i < 2∆n,k

}
+
(
E
[
φplugin(Ñi)− φ(pi)

]
−E

[
φpoly(Ñi)− φ(pi)

])2

P
{
Ñ ′i ≥ 2∆n,k

}
P
{
Ñ ′i < 2∆n,k

})
.

(20)

We can derive upper bounds on the first two terms of Eq (20) in the same manner of Eqs (18)
and (19) as

Var
[
φplugin(Ñi)− φ(pi)

]
P
{
Ñ ′i ≥ 2∆n,k

}
. (e/4)∆n,k + Var

[
φplugin(Ñi)− φ(pi)

]
1npi>∆n,k

,

and

Var
[
φpoly(Ñi)− φ(pi)

]
P
{
Ñ ′i < 2∆n,k

}
. Var

[
φpoly(Ñi)− φ(pi)

]
1npi≤4∆n,k

+ e−∆n,k/8.

By the Chernoff bound, we have

P
{
Ñ ′i ≥ 2∆n,k

}
P
{
Ñ ′i < 2∆n,k

}
=(1pi<∆n,k

+ 1pi>4∆n,k
+ 1∆n,k≤pi≤4∆n,k

)P
{
Ñ ′i ≥ 2∆n,k

}
P
{
Ñ ′i < 2∆n,k

}
≤(e/4)∆n,k + e−∆n,k/8 + 1∆n,k≤pi≤4∆n,k

.
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Thus, we have the upper bound of the last term of Eq (20) as(
E
[
φplugin(Ñi)− φ(pi)

]
−E

[
φpoly(Ñi)− φ(pi)

])2

P
{
Ñ ′i ≥ 2∆n,k

}
P
{
Ñ ′i < 2∆n,k

}
≤
(
Bias

[
φplugin(Ñi)− φ(pi)

]
+ Bias

[
φpoly(Ñi)− φ(pi)

])2(
(e/4)∆n,k + e−∆n,k/8 + 1∆n,k≤pi≤4∆n,k

)
. (e/4)∆n,k + e−∆n,k/8

+
(
Bias

[
φplugin(Ñi)− φ(pi)

]
+ Bias

[
φpoly(Ñi)− φ(pi)

])2

1∆n,k≤pi≤4∆n,k
.

Next, we prove the upper bounds on the bias and the variance of the best polynomial
estimator as follows:

Proof of Lemma 4. Let φ′sup,∆ = φsup,∆ ∨ supp∈[0,∆] φL(p) and φ′inf,∆ = φinf,∆ ∧
infp∈[0,∆] φL(p). By the triangle inequality and the fact that gL is an unbiased estimator of
φL, we have

Bias
[
(gL(Ñ) ∧ φsup,∆) ∨ φinf,∆ − φ(p)

]
≤ Bias

[
(gL(Ñ) ∧ φsup,∆) ∨ φinf,∆ − (gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆

]
+ Bias

[
(gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆ − φL(p)

]
+ Bias

[
gL(Ñ)− φ(p)

]
.

By Chebyshev alternating theorem (Petrushev and Popov, 2011), the first term is bounded
above as

Bias
[
(gL(Ñ) ∧ φsup,∆) ∨ φinf,∆ − (gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆

]
≤(φ′sup,∆ − φsup,∆) ∨ (φinf,∆ − φ′inf,∆) ≤ EL(φ, [0,∆]).

Also, the third term is bounded above as

Bias
[
gL(Ñ)− φ(p)

]
=|φL(p)− φ(p)| ≤ EL(φ, [0,∆]).

The error bound of EL(φ, [0,∆]) is derived in Appendix A. From Lemma 8, we have
EL(φ, [0,∆]) .

(
∆
L2

)α
. The second term has upper bound as

Bias
[
(gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆ − φL(p)

]
=

√(
E
[
(gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆ − φL(p)

])2

≤

√
E

[(
(gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆ − φL(p)

)2
]
.

Since φL(p) ∈ [φ′inf,∆, φ
′
sup,∆] for p ∈ [0,∆], we have

(
(gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆ − φL(p)

)2

≤(
gL(Ñ)− φL(p)

)2

. Thus, we have

Bias
[
(gL(Ñ) ∧ φ′sup,∆) ∨ φ′inf,∆ − φL(p)

]
≤
√

Var
[
gL(Ñ)− φL(p)

]
.
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Proof of Lemma 5. It is obviously that truncation does not increase the variance, i.e.,

Var
[
(gL(Ñ) ∧ φsup,∆) ∨ φinf,∆ − φ(p)

]
≤ Var

[
gL(Ñ)− φ(p)

]
.

Letting φ∆(p) = φ(∆x) and a0, ..., aL be coefficients of the optimal uniform approximation

of φ∆ by degree-L polynomials on [0, 1], we have
∑L
m=0

∆mam
nm (Ñ)m = gL(Ñ). Then, since

the standard deviation of sum of random variables is at most the sum of individual standard
deviation, we have

Var
[
gL(Ñ)− φ(p)

]
≤

(
L∑

m=1

∆m|am|
nm

√
Var(Ñ)m

)2

.

From (Petrushev and Popov, 2011) and the fact from Lemma 16 that φ is bounded, there
is a positive constant C such that |am| ≤ C23L. From (Wu and Yang, 2016), Var(Ñ)m is
decreasing monotonously as m increases, and for X ∼ Poi(λ)

Var(X)m ≤ (λm)m

(
(2e)2

√
λm

π
√
λm

∨ 1

)
.

By the assumption of p ≤ ∆ and monotonous, Var(Ñ)m ≤ Var(X)m where X ∼ Poi(∆n).
Thus, we have

Var
[
gL(Ñ)

]
.

(
L∑

m=1

∆m23L

nm

√
(∆nL)m(2e)2

√
∆nL

)2

≤

(
L∑

m=1

√
∆3mLm

nm
23L(2e)

√
∆nL

)2

.

From the assumption ∆3L
n ≤ 1

2 , we have(
L∑

m=1

cm
√

∆3mLm

nm
23L(2e)

√
∆nL

)2

≤

(
23L(2e)

√
∆nL

L∑
m=1

(√
∆3L

n

)m)2

≤

(
23L(2e)

√
∆nL

(√
∆3L

n
+

∫ L

1

(√
∆3L

n

)x
dx

))2

≤

23L(2e)
√

∆nL

√∆3L

n
+

2

ln
(

∆3L
n

)
(√∆3L

n

)L
−
√

∆3L

n

2

=

√∆3L

n
23L(2e)

√
∆nL

1 +
2

ln 2

1−

(√
∆3L

n

)L−1
2

≤16∆3L64L(2e)2
√

∆nL

n

.
∆3L64L(2e)2

√
∆nL

n
.
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The proofs of the upper bounds on the bias and the variance of the bias-corrected plugin
estimator are obtained as follows.

Proof of Lemma 6. Applying Taylor theorem yields

Bias

[
φ̄∆

(
Ñ

n

)
− φ(p)

]

=

∣∣∣∣∣E
[
φ(1)(p)

Ñ − np
n

+
φ(2)(p)

2

(
Ñ

n
− p

)2

− Ñ

2n
φ̄

(2)
∆

(
Ñ

n

)

+
φ(3)(p)

6

(
Ñ

n
− p

)3

+R3

(
Ñ

n
; φ̄∆, p

)]∣∣∣∣∣
≤ 1

2n

∣∣∣∣∣E
[
pφ(2)(p)− Ñ

n
φ̄

(2)
∆

(
Ñ

n

)]∣∣∣∣∣+
p
∣∣φ(3)(p)

∣∣
6n2

+

∣∣∣∣∣E
[
R3

(
Ñ

n
; φ̄∆, p

)]∣∣∣∣∣, (21)

where we use the fact that for X ∼ Poi(λ), E[(X − λ)2] = λ, E[(X − λ)3] = λ, and
R3(x; φ̄∆, p) denotes the reminder term of the Taylor theorem. The first term of Eq (21) is
bounded above as

1

2n

∣∣∣∣∣E
[
pφ(2)(p)− Ñ

n
φ̄

(2)
∆

(
Ñ

n

)]∣∣∣∣∣
=

1

2n

∣∣∣∣∣E
[
φ(2)(p)

(
p− Ñ

n

)
+
Ñ

n

(
φ(2)(p)− φ̄(2)

∆

(
Ñ

n

))]∣∣∣∣∣
=

1

2n

∣∣∣∣∣E
[
Ñφ(3)(p)

n

(
Ñ

n
− p

)
+
Ñ

n
R1

(
Ñ

n
; φ̄

(2)
∆ , p

)]∣∣∣∣∣
≤
p
∣∣φ(3)(p)

∣∣
2n2

+

∣∣∣∣∣E
[
Ñ

2n2
R1

(
Ñ

n
; φ̄

(2)
∆ , p

)]∣∣∣∣∣, (22)

where the last line is obtained by using the fact that for X ∼ Poi(λ), E[X(X − λ)] = λ,

and R1(x; φ̄
(2)
∆ , p) denotes the reminder term of the Taylor theorem. From Lemma 15, the

second term of Eq (21) and the first term of Eq (22) are bounded above as

p
∣∣φ(3)(p)

∣∣
6n2

≤α2Wpα−2 + c3p

6n2
.

1

n2∆2−α +
p

n2
(23)

p
∣∣φ(3)(p)

∣∣
2n2

≤α2Wpα−2 + c3p

2n2
.

1

n2∆2−α +
p

n2
. (24)

The rest is to derive the upper bound on
∣∣∣E[R3

(
Ñ
n ; φ̄∆, p

)]∣∣∣ and
∣∣∣E[ Ñ

2n2R1

(
Ñ
n ; φ̄

(2)
∆ , p

)]∣∣∣.
Let p̂ = Ñ

n . From the mean value theorem, letting a function G(x) be continuous on the
closed interval and differentiable with non-vanishing derivative on the open interval between
p and p̂, there exists ξ between p and p̂ such that

R3

(
p̂; φ̄∆, p

)
=
φ̄

(4)
∆ (ξ)

6
(p̂− ξ)3G(p̂)−G(p)

G(1)(ξ)
.

Define G(x) = 1
x2 (p̂− x)4. Then, there exists ξ such that

R3

(
p̂; φ̄∆, p

)
=−

φ̄
(4)
∆ (ξ)

12
(p̂− ξ)3 ξ3(p̂− p)4

p2(ξ + p̂)(p̂− ξ)3

=−
ξ3φ̄

(4)
∆ (ξ)

12p2(ξ + p̂)
(p̂− p)4 (25)
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Thus, we have

∣∣E[R3

(
p̂; φ̄∆, p

)]∣∣ ≤E

 ξ3
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣

12p2(ξ + p̂)
(p̂− p)4


≤ 1

12p2
E
[
ξ2
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣(p̂− p)4

]
≤

supξ∈R+
ξ2
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣

12p2
E
[
(p̂− p)4

]
≤
(

1

4n2
+

1

12pn3

)
sup
ξ∈R+

ξ2
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣,

where we use the fact that for X ∼ Poi(λ), E[X4] = 3λ2 + λ. For ξ ∈ (∆
2 ,∆), we have∣∣∣∣H(4)

(
ξ;φ,

∆

2
,∆

)∣∣∣∣
=

∣∣∣∣∣
4∑

m=1

φ(m)(∆)

4∑
i=0

(
4

i

)
1

((m− i) ∨ 0)!
(ξ −∆)(m−i)∨0

4−m∑
`=0

5

5 + `
B

(4−i)
`,5+`

(
ξ −∆

∆/2

)∣∣∣∣∣
=

∣∣∣∣∣
4∑

m=1

φ(m)(∆)

4∑
i=0

(
4

i

)
1

((m− i) ∨ 0)!
(ξ −∆)(m−i)∨0

4−m∑
`=0

5(5 + `)!

(5 + `)(1 + `+ i)

(4−i)∧`∑
j=0

(−1)j
(

4− i
j

)
B`−j,1+`+i

(
ξ −∆

∆/2

)∣∣∣∣∣,
where we use B(1)

ν,n(x) = n(Bν−1,n−1(x) − Bν,n−1(x)). Since 0 ≤ Bν,n(x) ≤ Bν,n(ν/n) ≤ 1,
there is a universal constant c > 0 such that for any i = 0, ..., 4∣∣∣∣∣∣

4−m∑
`=0

5(5 + `)!

(5 + `)(1 + `+ i)

(4−i)∧`∑
j=0

(−1)j
(

4− i
j

)
B`−j,1+`+i

(
ξ −∆

∆/2

)∣∣∣∣∣∣ ≤ c.
Thus, we have from Lemma 15 that

ξ2

∣∣∣∣H(4)

(
ξ;φ,

∆

2
,∆

)∣∣∣∣
≤

4∑
m=1

∣∣∣φ(m)(∆)
∣∣∣ 4∑
i=0

(
4

i

)
c

((m− i) ∨ 0)!

∣∣∣ξ2(ξ −∆)
(m−i)∨0

∣∣∣
≤

4∑
m=1

(
αm−1W∆α−m + cm

) 4∑
i=0

(
4

i

)
c

((m− i) ∨ 0)!
∆(2+m−i)∨2

=

4∑
m=1

4∑
i=0

(
4

i

)
c

((m− i) ∨ 0)!

(
αm−2W∆(2+α−i)∨(2+α−m) + cm∆(2+m−i)∨2

)
.∆α−2.
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Similarly, for ξ ∈ (1, 2)

ξ2
∣∣∣H(4)(ξ;φ, 2, 1)

∣∣∣
≤

4∑
m=1

∣∣∣φ(m)(1)
∣∣∣ 4∑
i=0

(
4

i

)
c

((m− i) ∨ 0)!

∣∣∣ξ2(ξ − 1)
(m−i)∨0

∣∣∣
≤

4∑
m=1

(αm−1W + cm)

4∑
i=0

(
4

i

)
4c

((m− i) ∨ 0)!

.1.

For ξ ∈ [∆, 1], we have from Lemma 15 that∣∣∣ξ2φ(4)(ξ)
∣∣∣ ≤ α1Wξα−2 + c4ξ

2 . ∆α−2.

Since φ̄∆(ξ) = 0 for ξ ∈ [0,∆/2] and ξ ≥ 2 by the construction, we have

sup
ξ∈R+

ξ2
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣ . ∆α−2. (26)

Thus, we have ∣∣E[R3

(
p̂; φ̄∆, p

)]∣∣ . 1

n2∆2−α +
1

n3∆3−α . (27)

Define G(x) = 1
2 ( p̂x − 1)2. Then, the mean value theorem stats that there exists ξ such that

R1(p̂; φ̄
(2)
∆ , p) =

φ̄
(4)
∆ (ξ)

2
(p̂− ξ)

ξ2( p̂p − 1)2

p̂( p̂ξ − 1)

=
φ̄

(4)
∆ (ξ)

2

ξ3(p̂− p)2

p2p̂
.

Thus, we have

∣∣∣∣E[ p̂2nR1(p̂; φ̄
(2)
∆ , p)

]∣∣∣∣ ≤E


∣∣∣φ̄(4)

∆ (ξ)
∣∣∣

4n

ξ3(p̂− p)2

p2


≤

supξ∈R+
ξ3
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣

4np2
E
[
(p̂− p)2

]
=

1

4n2p
sup
ξ∈R+

ξ3
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣.

In the similar manner of Eq (26), we have

sup
ξ∈R+

ξ3
∣∣∣φ̄(4)

∆ (ξ)
∣∣∣ . ∆α−1.

Thus, we have ∣∣∣∣E[ p̂2nR1(p̂; φ̄
(2)
∆ , p)

]∣∣∣∣ . 1

n2p∆1−α ≤
1

n2∆2−α . (28)

By the assumption ∆ & 1
n , we have 1

n3∆3−α . 1
n2∆2−α . Assembling Eqs (23), (24), (27)

and (28) gives the desired result.
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Proof of Lemma 7. From the property of the variance and the triangle inequality, we have

Var

[
φ̄∆

(
Ñ

n

)
− Ñ

2n2
φ̄

(2)
∆

(
Ñ

n

)
− φ(p) +

pφ(2)(p)

2n

]

≤E

(φ̄∆

(
Ñ

n

)
− Ñ

2n2
φ̄

(2)
∆

(
Ñ

n

)
− φ(p) +

pφ(2)(p)

2n

)2


≤2E

(φ̄∆

(
Ñ

n

)
− φ(p)

)2
+ 2E

( Ñ

2n2
φ̄

(2)
∆

(
Ñ

n

)
− pφ(2)(p)

2n

)2
. (29)

Applying Taylor theorem to the first term of Eq (29) gives∣∣∣∣∣φ̄∆

(
Ñ

n

)
− φ(p)

∣∣∣∣∣
=

∣∣∣∣∣∣φ(1)(p)

(
Ñ

n
− p

)
+
φ(2)(p)

2

(
Ñ

n
− p

)2

+
φ(3)(p)

6

(
Ñ

n
− p

)3

+R3

(
Ñ

n
; φ̄∆, p

)∣∣∣∣∣∣,
where R3

(
Ñ
n ; φ̄∆, p

)
denotes the reminder term of the Taylor theorem. From the triangle

inequality, we have(
φ̄∆

(
Ñ

n

)
− φ(p)

)2

= 4
(
φ(1)(p)

)2
(
Ñ

n
− p

)2

+
(
φ(2)(p)

)2
(
Ñ

n
− p

)4

+

(
φ(3)(p)

)2
9

(
Ñ

n
− p

)6

+ 4

(
R3

(
Ñ

n
; φ̄∆, p

))2

. (30)

The central moments for X ∼ Poi(λ) are given as E[(X − λ)2] = λ,E[(X − λ)4] = 3λ2 + λ,
and E[(X − λ)6] = 15λ3 + 25λ2 + λ. Lemma 15, the triangle inequality and the assumption
1
n & ∆, the expectation of the first three terms in Eq (30) have upper bounds as

E

4
(
φ(1)(p)

)2
(
Ñ

n
− p

)2
 ≤ 8W 2p2α−1 + 8c21p

n
.
p2α−1

n
+
p

n
,

E

(φ(2)(p)
)2
(
Ñ

n
− p

)4
 ≤(2α2

1W
2p2α−4 + c22

)(3p2

n2
+

p

n3

)

.
p2α−1

n2∆
+
p2α−1

n3∆2
+

p

n2

.
p2α−1

n
+

p

n2
,

and

E

(φ(3)(p)
)2

9

(
Ñ

n
− p

)6
 ≤(2α2

2W
2p2α−6 + c23

)(15p3

n3
+

25p2

n4
+

p

n5

)

.
p2α−1

n3∆2
+
p2α−1

n4∆3
+
p2α−1

n5∆4
+

p

n3

.
p2α−1

n
+

p

n3
.
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From Eq (25), there exists ξ between p and p̂ such that

4E

(R3

(
Ñ

n
; φ̄∆, p

))2


=4E

( ξ3φ̄
(4)
∆ (ξ)

12p2(ξ + p̂)
(p̂− p)4

)2


≤
supξ∈R+

∣∣∣ξ2φ̄
(4)
∆ (ξ)

∣∣∣2
36p4

E
[
(p̂− p)8

]
≤
(

105

36n4
+

490

36n5p
+

119

36n6p2
+

1

36n7p

)
sup
ξ∈R+

∣∣∣ξ2φ̄
(4)
∆ (ξ)

∣∣∣2,
where we use E[(X − λ)8] = 105λ4 + 490λ3 + 119λ2 + λ for X ∼ Poi(λ). Since

supξ∈R+

∣∣∣ξ2φ̄
(4)
∆ (ξ)

∣∣∣2 . ∆2α−4 from Eq (26) and ∆ & 1
n by the assumption, we have

4E

(R3

(
Ñ

n
; φ̄∆, p

))2


.
1

n4∆4−2α
+

1

n5∆5−2α
+

1

n6∆6−2α
+

1

n7∆7−2α

.
1

n4∆4−2α
.

Letting g(p) = pφ̄
(2)
∆ (p), application of the Taylor theorem to the second term of Eq (29)

yields∣∣∣∣∣ Ñ2n2
φ̄

(2)
∆

(
Ñ

n

)
− pφ(2)(p)

2n

∣∣∣∣∣ ≤ 1

2n

∣∣∣∣∣(φ(2)(p) + pφ(3)(p))

(
Ñ

n
− p

)
+R1

(
Ñ

n
; g, p

)∣∣∣∣∣.
The triangle inequality and E[(X − λ)2] = λ for X ∼ Poi(λ) give

E

( Ñ

2n2
φ̄

(2)
∆

(
Ñ

n

)
− pφ(2)(p)

2n

)2


≤ (φ(2)(p))2 + (pφ(3)(p))2

n2
E

(Ñ
n
− p

)2
+

1

2n2
E

(R1

(
Ñ

n
; g, p

))2


=
p(φ(2)(p))2 + p(pφ(3)(p))2

n3
+

1

2n2
E

(R1

(
Ñ

n
; g, p

))2
.

Applying Lemma 15 gives

p(φ(2)(p))2 + p(pφ(3)(p))2

n3

≤ 1

n3

(
2α2

1W
2p2α−3 + 2pc22 + 2α2

1W
2p2α−3 + 2p3c23

)
.
p2α−1

n3∆2
+

p

n3

.
p2α−1

n
+

p

n3
.
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Let p̂ = Ñ
n and G(x) = 1

x (p̂− x)2. Then, the mean value theorem gives that there exists ξ
between p and p̂ such that

E
[
(R1(p̂; g, p))

2
]

=E

[(
g(1)(ξ)(p̂− ξ)G(p̂)−G(p)

G(1)(ξ)

)2
]

=E

[(
g(1)(ξ)

ξ2(p̂− p)2

p(p̂+ ξ)

)2
]

≤
(

3

n2
+

1

n3p

)
sup
ξ∈R+

∣∣∣ξg(1)(ξ)
∣∣∣2

≤
(

3

n2
+

1

n3p

)
sup
ξ∈R+

∣∣∣2ξφ̄(3)
∆ (ξ) + ξ2φ̄

(4)
∆ (ξ)

∣∣∣2
≤
(

3

n2
+

1

n3p

)(
2 sup
ξ∈R+

∣∣∣ξφ̄(3)
∆ (ξ)

∣∣∣2 + 2 sup
ξ∈R+

∣∣∣ξ2φ̄
(4)
∆ (ξ)

∣∣∣2).
In the similar manner of Eq (26), we have

sup
ξ∈R+

∣∣∣ξφ̄(3)
∆ (ξ)

∣∣∣2 . ∆2α−4, and sup
ξ∈R+

∣∣∣ξ2φ̄
(4)
∆ (ξ)

∣∣∣2 . ∆2α−4.

Thus, we have

1

2n2
E

(R1

(
Ñ

n
; g, p

))2
 .

1

n4∆4−2α
+

1

n5∆5−2α
.

1

n4∆4−2α
.

Consequently, we get the bound of the variance as

p2α−1

n
+

1

n4∆4−2α
+
p

n
.

D Proof of Proposition 1

Proof of Proposition 1. It is obviously that if the output domain of φ is unbounded, i.e.,
there is a point p0 ∈ [0, 1] such that |φ(p)| → ∞ as p→ p0, there is no consistent estimator.

Letting p0 =
(

W
W∨−c′1

)
, φ(1)(p) has same sign in (0, p0]. Thus, for any p ∈ (0, p0], we have

|φ(p)− φ(p0)| =
∣∣∣∣∫ p

p0

φ(1)(x)dx

∣∣∣∣
=

∫ p0

p

∣∣∣φ(1)(x)
∣∣∣dx

≥W
∫ p0

p

p−1dx+ c′1(p0 − p)

≥W ln(p0/p) + c′1(p0 − p).

Since |φ(p)− φ(p0)| → ∞ as p→ 0, φ is unbounded and we gets the claim.

36



E Additional Lemmas

Here, we introduce some additional lemmas and their proofs.
Lemma 15. For a non-integer α, let φ be a m times continuously differentiable function
on (0, 1] where m ≥ 1 +α. Suppose that there exist finite constants W > 0, cm and c′m such
that ∣∣∣φ(m)(p)

∣∣∣ ≤ αm−1Wpα−m + cm, and
∣∣∣φ(m)(p)

∣∣∣ ≥ αm−1Wpα−m + c′m.

Then, there exists finite constants cm−1 and c′m−1 such that∣∣∣φ(m−1)(p)
∣∣∣ ≤ αm−2Wpα−m+1 + cm−1, and

∣∣∣φ(m−1)(p)
∣∣∣ ≥ αm−2Wpα−m+1 + c′m−1,

where α0 = 1 and αi =
∏i
j=1(j − α) for i = 1, ...,m.

Proof of Lemma 15. Let pm =
(

αm−1W
αm−1W∨−c′m

)1/(m−α)

. Then,
∣∣φ(m)(p)

∣∣ > 0 for p ∈ (0, pm).

From continuousness of φ(m), φ(m)(p) has same sign in p ∈ (0, pm], and thus we have either
φ(m)(p) ≥ αm−1Wpα−m+c′m or φ(m)(p) ≤ −αm−1Wpα−m−c′m in p ∈ (0, pm]. Since φ(m−1)

is absolutely continuous on (0, 1], we have for any p ∈ (0, 1]

φ(m−1)(p) = φ(m−1)(pm) +

∫ p

pm

φ(m)(x)dx.

The absolute value of the second term has an upper bound as∣∣∣∣∫ p

pm

φ(m)(x)dx

∣∣∣∣ ≤∣∣∣∣∫ p

pm

αm−1Wxα−m + cmdx

∣∣∣∣
≤
∣∣αm−2W

(
pα−m+1
m − pα−m+1

)
+ cm(p− pm)

∣∣
≤αm−2Wpα−m+1 +

∣∣αm−2Wpα−m+1
m + cm(pm − p)

∣∣
≤αm−2Wpα−m+1 + αm−2Wpα−m+1

m + |cm|.

Also, we have a lower bound of the second term as∣∣∣∣∫ p

pm

φ(m)(x)dx

∣∣∣∣ =

∣∣∣∣∫ p∧pm

pm

φ(m)(x)dx+

∫ p

p∧pm
φ(m)(x)dx

∣∣∣∣
≥
∣∣∣∣∫ p∧pm

pm

αm−1Wxα−m + c′mdx

∣∣∣∣− ∣∣∣∣∫ p

p∧pm
αm−1Wpα−mm + cmdx

∣∣∣∣
≥
∣∣∣αm−2W

(
pα−m+1
m − (p ∧ pm)

α−m+1
)

+ c′m((p ∧ pm)− pm)
∣∣∣

−
∣∣(αm−1Wpα−mm + cm

)
(p− (p ∧ pm))

∣∣
≥αm−2W (p ∧ pm)

α−m+1 − αm−2Wpα−m+1
m − |c′m(pm − (p ∧ pm))|

−
(
αm−1Wpα−mm + cm

)
(p− (p ∧ pm))

≥αm−2Wpα−m+1 − αm−2Wpα−m+1
m − |c′m|pm

−
(
αm−1Wpα−mm + cm

)
(1− pm)

.

Applying the triangle inequality and the reverse triangle inequality gives∣∣∣∣∫ p

pm

φ(m)(x)dx

∣∣∣∣− ∣∣∣φ(m−1)(pm)
∣∣∣ ≤ ∣∣∣φ(m−1)(p)

∣∣∣ ≤ ∣∣∣∣∫ p

pm

φ(m)(x)dx

∣∣∣∣+
∣∣∣φ(m−1)(pm)

∣∣∣.
Thus, setting cm−1 = αm−2Wpα−m+1

m +|cm|+
∣∣φ(m−1)(pm)

∣∣ and c′m−1 = −αm−2Wpα−m+1
m −

|c′m|pm − (αm−1Wpα−mm + cm)(1− pm)−
∣∣φ(m−1)(pm)

∣∣ yields the claim.
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Lemma 16. Under Assumption 1 or Assumption 2, for any p, p′ ∈ [0, 1]

|φ(p)− φ(p′)| ≤ W

α
|p− p′|α + |c1(p− p′)|.

Proof of Lemma 16. We can assume p′ ≤ p without loss of generality. The absolute contin-
uously of φ gives

|φ(p)− φ(p′)| =
∣∣∣∣∫ p

p′
φ(1)(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ p

p′

∣∣∣φ(1)(x)
∣∣∣dx∣∣∣∣.

From Lemma 15, we have

|φ(p)− φ(p′)| ≤
∣∣∣∣∫ p

p′
(Wxα−1 + c1)dx

∣∣∣∣
=

∣∣∣∣Wα (pα − p′α) + c1(p− p′)
∣∣∣∣

≤W
α
|p− p′|α + |c1(p− p′)|,

where the last line is obtained since a function xα for α ∈ (0, 1) is α-Holder continuous.
This is valid for the case p′ = 0. Indeed,

|φ(p)− φ(0)| = lim
p′→0
|φ(p)− φ(p′)|

≤ lim
p′→0

(
W

α
|p− p′|α + |c1(p− p′)|

)
=
W

α
|p− 0|α + |c1(p− 0)|.

Lemma 17. Given α ∈ [0, 1], supP∈Mk

∑k
i=1 p

α
i = k1−α.

Proof of Lemma 17. If α = 1, the claim is obviously true. Thus, we assume α < 1. We in-
troduce the Lagrange multiplier λ for a constraint

∑n
i=1 pi = 1, and let the partial derivative

of
∑k
i=1 p

α
i + λ(1−

∑k
i=1 pi) with respect to pi be zero. Then, we have

αpα−1
i − λ = 0. (31)

Since pα−1 is a monotone function, the solution of Eq (31) is given as pi = (λ/α)1/(α−1),

i.e., the values of p1, ..., pk are same. Thus, the function
∑k
i=1 p

α
i is maximized at pi = 1/k

for i = 1, ..., k. Substituting pi = 1/k into
∑k
i=1 p

α
i gives the claim.

Lemma 18. Given α < 0 and ∆ ≤ 1
k , supP∈Mk:∀i,pi≥∆

∑k
i=1 p

α
i =

((1− (k − 1)∆)α + (k − 1)∆α) ≤ k∆α.

Proof. From the KarushKuhnTucker conditions, letting P ∗ = (p∗1, ..., p
∗
k) be a probability

vector that attains the supremum, there exist real values λ and δi ≥ 0 such that

(p∗i )
α−1 − λ− δi = 0,

and p∗i = ∆ only if δi > 0. Thus, we have

p∗i = λ1/(α−1) or p∗i = ∆.
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Hence,

sup
P∈Mk:∀i,pi≥∆

k∑
i=1

pαi = max
m=1,...,k−1

(m∆α + (k −m)(1−m∆)α).

Since ∆α ≥ (1−m∆)α for m = 1, ..., k−1, the maximum is attained at m = k−1. Moreover,
we have (1− (k − 1)∆)α ≤ ∆α, and thus we get the claim.
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