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Abstract—Consider random linear estimation with Gaussian
measurement matrices and noise. One can compute infinitesimal
variations of the mutual information under infinitesimal vari-
ations of the signal-to-noise ratio or of the measurement rate.
We discuss how each variation is related to the minimum mean-
square error and deduce that the two variations are directly
connected through a very simple identity. The main technical
ingredient is a new interpolation method called “sub-extensive
interpolation method”. We use it to provide a new proof of an
I-MMSE relation recently found by Reeves and Pfister [1] when
the measurement rate is varied. Our proof makes it clear that
this relation is intimately related to another I-MMSE relation
also recently proved in [2].

One can directly verify that the identity relating the two
types of variation of mutual information is indeed consistent
with the one letter replica symmetric formula for the mutual
information, first derived by Tanaka [3] for binary signals, and
recently proved in more generality in [1, 2, 4, 5] (by independent
methods). However our proof is independent of any knowledge
of Tanaka’s formula.

I. INTRODUCTION

Random linear estimation (RLE) is a fundamental research
field which has been revived by a number of recent theoretical
and practical developments such as compressed sensing [6],
error correction via sparse superposition codes [7], Boolean
group testing [8] or code division multiple access in com-
munication [9]. Important steps towards a complete rigorous
theory have been recently obtained. In particular the proof of
the replica symmetric formula, a single letter formula for the
asymptotic mutual information (MI), is now established for
Gaussian RLE [1, 2, 4, 5]. In [2] the limits of optimality of
the low complexity approximate message-passing denoising
algorithm are explicitly established.

An important ingredient in the proofs of the replica formula
are interesting relations for the rate of variation (the derivative)
of the MI when: i) the signal-to-noise ratio varies [2]; ii) the
measurement rate varies [5]. These formulas give the rate of
variation directly in terms of the MMSE, and therefore belong
to a “family” of I-MMSE relations, the simplest member of
the family being the well known relation of Guo, Verdu and
Shamai [10]. Of course once the replica symetric formula
for the MI is available one can a posteriori check all these
relations, however the proof of these relations does not involve
any knowledge of the replica formula.

In this note we give a new derivation of the I-MMSE relation
proved and used in [5]. The derivation given here explicitly
shows that all I-MMSE relations are intimately connected. The
main new technical ingredient is an interpolation method, here
called sub-extensive interpolation method. It involves a mix of
ideas originating in interpolation methods developed in recent
years for dense and sparse graphical systems, and we believe
it is of independent interest and is bound to have applications
in other problems.

We end this introduction with a few (non-exhaustive) point-
ers to the literature that has led to the present work. The
replica formula for Gaussian RLE was first proposed, on the
basis of (non-rigorous) calculations using the replica method,
by Tanaka [3] for the CDMA problem with binary input
signals, and was later generalized in [11] (see also [12] for
recent developments in the context of compressed sensing).
Montanari and Tse [13] sketched a rigorous proof of Tanaka’s
formula in a regime where there is no phase transition (by
which we here mean no jump discontinuity in the MMSE)
and Korada and Macris [14, 15] used a Guerra-Toninelli [16]
interpolation method to establish that the replica formula is
always an upper bound to the MI. In [2, 4] the converse bound
(and equality) is proven by using spatial coupling as a proof
technique [17, 18] developped in the realm of spatially coupled
graphical systems; namely spatial coupling for RLE [19–21],
threshold saturation [22–26] and invariance of the MI under
spatial coupling [17, 27].

II. RANDOM LINEAR ESTIMATION: SETTING AND RESULTS

A. Gaussian random linear estimation

We consider Gaussian RLE, where one is interested in
reconstructing a signal s ∈ RN from measurements y ∈ RM
obtained from the projection of s by a random i.i.d Gaussian
measurement matrix φ ∈ RM×N . We consider i.i.d additive
white Gaussian noise (AWGN) of variance ∆. Call the (stan-
dardized) noise components Zµ ∼ N (0, 1), µ ∈ {1, . . . ,M}.
The RLE model is

y = φs + z
√

∆ ⇔ yµ =

N∑
i=1

φµisi + zµ
√

∆ . (1)

Consider a structured setting where the signal is made of L
i.i.d B-dimensional sections sl∈RB , l∈{1, . . . , L} distributed
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according to a discrete prior p0(sl) :=
∑K
k=1 pkδ(sl − ak)

with a finite (but as large as desired) number of terms and
all ak’s bounded (with maximum componentwise amplitude
smax). Thus the total number of signal components is N=LB.
We denote X ∼ P0 if Xl ∼ p0 for all its i.i.d sections. The
matrix φ has entries φµi ∼ N (0, 1/L). We place ourselves
in the high dimensional setting where the measurement rate
α :=M/N is fixed when letting L→∞ (B is always finite).

Define x̄ := x−s, [φx̄]µ :=
∑N
i=1 φµix̄i. The likelihood of

y is P (y|x)=(2π∆)−M/2 exp(−‖φx− y‖2/(2∆)). From the
Bayes formula, the posterior of the RLE model is

P (x|y) =
1

Z
exp

(
− 1

2∆

M∑
µ=1

(
[φx̄]µ−zµ

√
∆
)2)

P0(x), (2)

where by a slight abuse of notation y here denotes the set
of the independent quenched random variables φ, s, z. The
normalization Z is the integral w.r.t x of the numerator. The
Gibbs averages w.r.t this posterior (2) are denoted by 〈−〉. For
example the MMSE estimator is EX|y[X|y]=〈X〉.

B. I-MMSE relations

The mutual information per section iL := i(Y; X) is

iL=
1

L
EΦ,X,Y

[
ln
(P (Y|X)

P (Y)

)]
=−αB

2
− 1

L
EΦ,S,Z[lnZ] (3)

and the MMSE per section is

EL :=
1

L
EΦ,S,Z[‖S−〈X〉‖2]. (4)

Moreover we define a measurement MMSE as

YM :=
1

M
EΦ,S,Z[‖Φ(S−〈X〉)‖2],

linked to the MI by a canonical I-MMSE relation [2, 10]:

diL
d∆−1

=
αB

2
YM . (5)

One can show thanks to the Guerra-Toninelli interpolation
method that i := limL→∞ iL exists (see [15] for binary signals
and [2] for general signals). It can also be shown from (5)
that d2iL/d(∆−1)2 ≤ 0 [28] (indeed the measurement MMSE
cannot increase by increasing the snr) so iL is a sequence of
concave functions. We will repeatedly use that for a sequence
of concave differentiable functions whose pointwise limit
exists on R+, a standard result of real analysis states that: i)
the limit is concave and continuous on all compact subsets; ii)
the limit is differentiable at almost every (a.e.) point; iii) we
can exchange the limit and derivative for a.e. points. Therefore
for a.e. ∆ > 0 we have limL→∞ diL/d∆−1 = di/d∆−1.

We now present the new I-MMSE relations specific to
Gaussian RLE.

Theorem 2.1 (snr I-MMSE relation): For Gaussian RLE
with a discrete prior, limL→∞EL = E exists and for a.e. ∆,

di

d∆−1
=
αB

2

E

1 + E/∆
. (6)

Proof: As remarked above limL→∞ diL/d∆−1 =
di/d∆−1 for a.e. ∆. Thus from (5) (αB/2) limM→∞ YM

exists for a.e. ∆ and equals di/d∆−1. On the other hand
Theorem 3.4 in [2] states that a.e. ∆,

YM =
EL

1 + EL/∆
+ OL(1) (7)

where limL→∞ OL(1) = 0. Therefore E = limL→∞EL also
exists for a.e. ∆ and (6) holds.

Remark 2.2: The proof of (7) in [2] (Theorem 3.4) requires
concentration properties that are currently proven for a discrete
prior. An extension to the case of a general prior (e.g., a
mixture of discrete and absolutely continuous parts) could
perhaps be obtained by quantizing the signal and showing that
OL(1) is uniform in the quantization but this is not immediate.
A similar relation already appears in [13] but to the best of
our knowledge the proof details are not given.

The main goal of this note is to give a new proof of the
following I-MMSE relation first obtained in [1] (for B=1).

Theorem 2.3 (α I-MMSE relation): For Gaussian RLE and
for a.e. ∆ and α,

di

dα
=
B

2
ln
(

1 +
E

∆

)
. (8)

Remark 2.4: We conjecture that the relation is true for all
∆ and a.e α. The proof of [1] works for general priors that can
have discrete and absolutely continuous parts. Our approach
is based on concentration theorems underpinning (7) that as
explained in Remark 2.2 do not quite cover this general case.

We end this section by noting that eliminating E from (6)
and (8) we obtain the interesting and simple formula

2

αB

di

d ln(∆−1)
= 1− exp

(
− 2

B

di

dα

)
. (9)

One may check (9) directly on the replica formula for the MI.

III. A SUB-EXTENSIVE INTERPOLATION METHOD

We introduce the sub-extensive interpolation method which
allows to first prove a slightly weaker form of Theorem 2.3.
All the stated lemmas are proved in the next section.

A. The interpolated perturbed model

The interpolation is done between the RLE model (1) where
a measurement matrix with M lines is used and one where
the measurement matrix has M +Mu lines, 0 < u < 1.
The Mu additional lines have the same statistical properties
and are indexed by a set S of extra indices. This is a sub-
extensive set because |S|=Mu�M . We still denote y,φ the
overall measurement and measurement matrix, that include the
additional measurements and lines associated with S. Define
the following interpolated perturbed Hamiltonian

Ht,h(x; y) :=
h

2

N∑
i=1

(
x̄i −

ẑi√
h

)2

+
√
hsmax

N∑
i=1

|ẑi| (10)

+
1

2∆

M∑
µ=1

(
[φx̄]µ − zµ

√
∆
)2

+
t

2∆

∑
ν∈S

(
[φx̄]ν − zν

√
∆

t

)2

.

Here the interpolation parameter is t ∈ [0, 1], and going from
t= 0 to t= 1 continuously adds the Mu new measurements.



The first perturbation term corresponds to extra measurements
obtained from scalar AWGN “side channels”, yi=si+ẑi/

√
h,

Ẑi∼N (0, 1), i∈{1, . . . , N}, where the snr h is “small” and
will eventually tend to zero. This term allows to use a useful
concentration result proved in [2] (see Lemma 4.1 in sec. IV
where also the second term is needed for technical reasons).

Denote the MI associated with the perturbed interpolated
model it,h, expressed similarly to (3) but with Pt,h(y|x) ∝
exp(−Ht,h(x; y)). This leads to it,h = −B((1+Mu−1)α+
1)/2−E[lnZt,h]/L where Zt,h=

∫
dxP0(x) exp(−Ht,h(x; y)).

The MI of this model with and without the additional measure-
ments is, respectively, i1,h and i0,h. The Gibbs average 〈−〉t,h
is associated with the posterior of the interpolated pertubed
model Pt,h(x|y) ∝ Z−1

t,hPt,h(y|x)P0(x). Finally, we define the
MMSE Et,h similarly as (4) but with 〈X〉t,h replacing 〈X〉.

B. The sub-extensive interpolation

We first show a weaker version of Theorem 2.3 for the
perturbed interpolated model which is valid for all ∆ but a.e.
h. In sec. III-C we show how to take the limit h→ 0 for a.e.
∆ and thus recover Theorem 2.3.

Theorem 3.1 (α I-MMSE relation for a.e. h): The following
limits exist for all ∆ and a.e. h, α and satisfy

d

dα
lim
L→∞

i0,h =
B

2
ln
(

1 +
limL→∞E0,h

∆

)
. (11)

The proof is based on two lemmas proved in sec. IV.
Define a measurement MMSE associated to the subset S:

Y
(S)
t,h := M−u

∑
ν∈S

E[〈[ΦX̄]ν〉2t,h], (12)

where E denotes the expectation w.r.t all quenched variables.
Lemma 3.2 (MMSE relation): For a.e h we have

Y
(S)
t,h =

Et,h
1 + Et,h(t/∆)

+ OL(1). (13)

Lemma 3.3 (MMSE variation): Fix 0 < u < 1/20 in the
interpolated perturbed model (10). Then for any t∈ [0, 1], we
have Et,h = E0,h + OL(1) for a.e. h.

We now sketch the proof of Theorem 3.1.
Proof: By the fundamental theorem of calculus, one may

write i1,h−i0,h =
∫ 1

0
dt (dit,h/dt). Direct differentiation gives

dit,h
dt

=
1

2∆L

∑
ν∈S

E
[〈

[ΦX̄]2ν −
[ΦX̄]νZν√

t/∆

〉
t,h

]
. (14)

Integrating by parts over Zµ∼N (0, 1), (14) becomes

dit,h
dt

=
αBMu−1

2∆
Y

(S)
t,h =

αBMu−1

2∆

[ Et,h
1+Et,h(t/∆)

+ OL(1)
]

for a.e h. For the second equality we used Lemma 3.2. Thus

i1,h−i0,h=
αBMu−1

2∆

∫ 1

0

dt
Et,h

1+Et,h(t/∆)
+O(Lu−1). (15)

This integral over t cannot be calculated immediately as
the MMSE depends on t. We overcome this difficulty using
Lemma 3.3 and t′= t/∆. Then (15) becomes

i1,h − i0,h
αMu−1

=
B

2

∫ 1/∆

0

dt′
E0,h

1 + E0,ht′
+ OL(1)

=
B

2
ln
(

1 +
E0,h

∆

)
+ OL(1). (16)

Note that i1,h is the MI of a (perturbed) RLE model with
measurement rate (M + Mu)/N = α(1 +Mu−1) while i0,h
corresponds to a measurement rate α. It is then not difficult
to show with concavity inequalities w.r.t α,1 that for a.e. α

lim
L→∞

i1,h − i0,h
αMu−1

= lim
L→∞

di0,h
dα

=
d

dα
lim
L→∞

i0,h. (17)

Finally equations (16) and (17) imply (11).

C. Proof of Theorem 2.3: taking the h→ 0 limit

We consider the limit h → 0 of (11). Again, a concavity
argument allows to permute this limit and the derivative for
a.e. α. Also it is not very difficult to argue that all finite size
quantities are continuous in h ≥ 0. Therefore limh→0 i0,h =
i0,0 = iL and limh→0E0,h = E0,0 = EL. So Theorem
2.3 follows if we can show that limh→0 limL→∞ i0,h =
limL→∞ limh→0 i0,h = i and limh→0 limL→∞E0,h =
limL→∞ limh→0E0,h = E for a.e. ∆. We will show that the
first limit exchange is valid for all ∆ and the second one for
a.e. ∆.

For the first limit exchange the argument is standard.
The first derivative of i0,h w.r.t h is an MMSE, namely
L−1E[

∑N
i=1(Si − 〈Xi〉0,h)2], so its second derivative is neg-

ative because the MMSE cannot increase with increasing snr
of the side channel (it can also be seen by explicit calculation
[2]). Thus i0,h is concave in h, and since also limL→∞ i0,h
exists, the limit is attained uniformly in h. This allows to
exchange the limits for all ∆.

The second limit exchange is less immediate because we
cannot use a convexity argument directly on the sequence
E0,h. However by a mild generalisation of Theorem 2.1 (that
follows from Lemmas 4.5 and 4.6 in [2]) we have for a.e. ∆,

d

d∆−1
lim
L→∞

i0,h =
αB

2

limL→∞E0,h

1 + limL→∞E0,h/∆
.

Then, since limL→∞ i0,h is a concave function of ∆ and its
limit h → 0 exists we can take the limit h → 0 of this
equation and permute it with the derivative for a.e. ∆. Thus
limh→0 limL→∞E0,h must exist for a.e. ∆ and satisfies

di

d∆−1
=
αB

2

limh→0 limL→∞E0,h

1 + limh→0 limL→∞E0,h/∆
.

But since we have (6), we conclude limh→0 limL→∞E0,h =
E for a.e. ∆. Thus the limits are exchangeable for a.e. ∆.

1Alternatively one can also directly use the Alexandrov theorem which
states that a concave function has a second derivative almost everywhere.



IV. PROOFS OF LEMMAS 3.2 AND 3.3

A. Preliminaries

Let X, X′ two i.i.d replicas drawn according to the product
distribution Pt,h(x|y)Pt,h(x′|y). Then for any function g,

E[〈g(X,S)〉t,h]=E[〈g(X,X′)〉t,h]. (18)

This identity, which has been called a Nishimori identity in
the statistical mechanical literature, follows from a simple
application of Bayes formula. It has a certain number of useful
consequences that we list here (all the derivations can be found
in appendix B of [2]).

1) Identity 1: First we have

2E[〈[ΦX̄]µ〉2t,h] = E[〈[ΦX̄]2µ〉t,h]. (19)

To derive this recall X̄ = X − S, expand the squares and
systematically apply (18).

2) Identity 2: Set E :=L−1
∑N
i=1 X̄iXi. Then (18) implies

E[〈E〉t,h] = Et,h. (20)

3) Identity 3: This one is more complicated. Define uν :=√
t/∆[φx̄]ν−zν . From Gaussian integration by parts over zν

and (18) one can show

E[Zν〈UνX̄iX̄
′
i〉t,h]

= E[Z2
νSi〈X̄i〉t,h]−

√
t

∆
E[ZνSi〈[ΦX̄]νX̄i〉t,h]. (21)

We also need the following concentration result.
Lemma 4.1 (Concentration of E): Let δE :=E−Et,h (recall

(20)). For any 0 < a < ε we have∫ ε

a

dhE[〈δE2〉t,h] = O(L−1/10). (22)

The proof of this lemma is the same as the one of Propo-
sition 8.1 in [2]. This type of result is also found in [15]
for binary signals. Lebesgue’s dominated convergence theorem
applied to (22) implies E[〈δE2〉t,h]=OL(1) for a.e. h>0.

B. Proof of Lemma 3.2

Using (12) and an integration by parts w.r.t zν gives

Y
(S)
t,h = M−u

∑
ν∈S

E
[〈

[ΦX̄]2ν −
√

∆

t
[ΦX̄]νZν

〉
t,h

]
,

which combined with (19) leads to

Y
(S)
t,h = M−u

√
∆

t

∑
ν∈S

E[Zν〈[ΦX̄]ν〉t,h]. (23)

Integrating by part (23) again but this time w.r.t φνi ∼
N (0, 1/L), one finds

Y
(S)
t,h =

M−u

L

∑
ν∈S

N∑
i=1

E[Zν〈UνX̄iX̄
′
i〉t,h − Zν〈UνX̄2

i 〉t,h]

(where X̄ = X− S, X̄′ = X′ − S and X,X′ are i.i.d replicas).
Then using (21) for the first term in the bracket and the

definition of uν for the second one, simple algebra leads to
Y

(S)
t,h =Y1−Y2 where

Y1 = E[(M−u
∑
ν∈S

Z2
ν )〈E〉t,h],

Y2 =

√
t

∆
M−u

∑
ν∈S

E[Zν〈[ΦX̄]νE〉t,h].

The noise z has i.i.d standardized Gaussian components, so
the central limit theorem implies

Y1 = E[〈E〉t,h](1+O(L−u/2))=Et,h+O(L−u/2).

Below we show that Lemma 4.1 implies for a.e. h,

Y2 =

√
t

∆
M−u

∑
ν∈S

E[Zν〈[ΦX̄]ν〉t,h]Et,h+OL(1). (24)

Then from (23) and (24) we get Y2 = (t/∆)Y
(S)
t,h Et,h+OL(1).

Putting all pieces together we get

Y
(S)
t,h = Et,h − (t/∆)Y

(S)
t,h Et,h + OL(1),

which is equivalent to (13) in Lemma 3.2.
It remains to justify (24). We have E[Zν〈[ΦX̄]νE〉t,h] =

E[Zν〈[ΦX̄]ν〉t,h]Et,h+E[Zν〈[ΦX̄]νδE〉t,h]. Thus it suffices to
show that the second term is OL(1) for a.e. h. From Cauchy-
Schwarz

E[Zν〈[ΦX̄]νδE〉t,h]2 ≤ E[〈δE2〉t,h]E[Z2
ν 〈[ΦX̄]2ν〉t,h]. (25)

As remarked below it, Lemma 4.1 implies E[〈δE2〉t,h] =
OL(1) for a.e. h, thus we just have to argue that
E[Z2

ν 〈[ΦX̄]2ν〉t,h] is bounded uniformly in L. By Cauchy-
Schwarz again the square of this quantity is smaller than

E[Z4
ν ]E[〈[ΦX̄]4ν〉t,h] = 3E[〈[ΦX̄]4ν〉t,h]. (26)

Expanding [ΦX̄]4ν only terms of the form E[[ΦS]nν 〈[ΦX]mν 〉t,h]
remain (with 0 ≤ m,n ≤ 4). By Cauchy-Schwarz once more,
their square is less than

E[[ΦS]2nν ]E[〈[ΦX]2mν 〉t,h] =E[[ΦS]2nν ]E[[ΦS]2mν ], (27)

where the equality comes form the Nishimori identity (18). It
is clear that these moments are all bounded uniformly in L.
Indeed φµi ∼ N (0, 1/L) is independent of s, so conditional
on s, the linear combination Φs is a Gaussian variable with a
variance less than Bs2

max.
The proof of Lemma 3.2 is now complete.

C. Proof of Lemma 3.3

Recall (20). Then the MMSE difference can be written as

|Et,h−E0,h| =
∣∣∣ ∫ t

0

ds
d

ds
E[〈E〉s,h]

∣∣∣
=
∣∣∣∑
ν∈S

∫ t

0

dsE[〈EGν〉s,h−〈E〉s,h〈Gν〉s,h]
∣∣∣, (28)

where Gν := ([φx̄]2ν − [φx̄]νzν
√

∆/s)/(2∆). Note that in
(28) E can be replaced by δE . Also, all Gν’s are statistically



equivalent and we can replace them by the first term in the
set S, say ν = 1. Thus

|Et,h−E0,h| ≤Mu

∫ t

0

ds
∣∣E[〈δEG1〉s,h−〈δE〉s,h〈G1〉s,h]

∣∣.
Integrating over h ∈ [a, ε], applying Fubini and Cauchy-
Schwarz, one gets(∫ ε

a

dh |Et,h−E0,h|
)2

≤ 4M2u

∫ t

0

ds

∫ ε

a

dhE[〈δE2〉s,h]

×
∫ t

0

ds

∫ ε

a

dhE[〈G2
1〉s,h].

Proceeding similarly as in the steps (26)–(27) one shows that
E[〈G2

1〉s,h] = O(1) (w.r.t L). Lemma 4.1 allows to conclude∫ ε

a

dh |Et,h−E0,h| = O(MuL−1/20) = O(Lu−1/20),

which implies Lemma 3.3 by Lebesgue’s dominated conver-
gence theorem as the integrand is bounded and u< 1/20.

V. CONCLUSION

Let us end by pointing another application of the sub-
extensive interpolation method. In [2] it is used to prove the
invariance of the MI under spatial coupling in RLE. There, one
interpolates between a homogeneous measurement matrix and
a spatially coupled one. This is done by iteratively removing
sub-extensive blocks of lines in the homogeneous matrix and
replacing them by “spatially coupled” lines. Along this process
the MI is monotonously varying which leads to useful in-
equalities. This partly discrete, partly continuous interpolation
defines a “family” of interpolation methods parametrized by
u (the sub-extensive block size parameter). Roughly speaking
our sub-extensive interpolation method “interpolates” between
the purely global and continuous method of Guerra and
Toninelli for dense graphical models [16] (at u = 1) and
the combinatorial approach developed for sparse graphs by
Gamarnik, Bayati and Tetali in [29] (at u=0), where a discrete
and local interpolation is done “one constraint at a time” (here
one measurement at a time).
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