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Abstract

The problem of three-user multiple-access channel (MAC) with noiseless feedback is investigated. A new coding strategy
is presented. The coding scheme builds upon the natural extension of the Cover-Leung (CL) scheme [1]; and uses quasi-linear
codes. A new single-letter achievable rate region is derived. The new achievable region strictly contains the CL region. This is
shown through an example. In this example, the coding scheme achieves optimality in terms of transmission rates. It is shown
that any optimality achieving scheme for this example must have a specific algebraic structure. Particularly, the codebooks must
be closed under binary addition.

I. INTRODUCTION

THE problem of three user MAC with noiseless feedback is depicted in Figure 1. This communication channel consists of

one receiver and multiple transmitters. After each channel use, the output of the channel is received at each transmitter

noiselessly. Gaarder and Wolf [2] showed that the capacity region of the MAC can be expanded through the use of the feedback.

This was shown in a binary erasure MAC. Cover and Leung [1] studied the two-user MAC with feedback, and developed a

coding strategy using unstructured random codes.

The main idea behind the CL scheme is to use superposition block-Markov encoding. The scheme operates in two stages.

In stage one, the transmitters send the messages with a rate outside of the no-feedback capacity region (i.e. higher rates than

what is achievable without feedback). The transmission rate is taken such that each user can decode the other user’s message

using feedback. In this stage, the receiver is unable to decode the messages reliably, since the transmission rates are outside

the no-feedback capacity region. Hence, the decoder only is able to form a list of “highly likely” pairs of messages. In the

second stage, the encoders fully cooperate to send the messages (as if they are sent by a centralized transmitter). The receiver

decodes the message pair from its initial list. After the initiation block, superposition coding is used to transmit the sequences

corresponding to the two stages.
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X2n

X3n
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S2
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Fig. 1. The three-user MAC with noiseless feedback. If the switch Si is closed, the feedback is available at the ith encoder, where i = 1, 2, 3.

The single-letter achievable rate region for the CL scheme was characterized in [1]. Later, it was shown that the CL scheme

achieves the feedback capacity for a class of MAC with feedback [3]. However, this is not the case for the general MAC

with feedback [4]. Several improvements to the CL achievable region were derived [5], [6]. In [5] and [6], additional stages

are appended to the CL scheme. In these schemes, the encoders decode each others’ messages in several stages. Kramer

[7], used the notion of directed information to derive the capacity region of the two-user MAC with feedback. However, the

characterization is not computable, since it is an infinite letter characterization. Finding a computable characterization of the

capacity region remains an open problem.
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In this work, we study the problem of three-user MAC with feedback. We propose a new coding scheme which builds

upon the CL scheme. We derive a computable single-letter achievable rate region for this scheme, and show that the new

region improves upon the previous known achievable regions for this problem. Recently, we showed that the application of

structured codes results in improved performance for the problem of transmission of sources over the MAC [8]. Here, we use

the ideas proposed in [8] to prove the necessity of structured codes in the problem of MAC with feedback. Specifically, we

use quasi-linear codes that are proposed in [9].

The coding scheme operates in three stages. In stage one, the encoders send independent messages with rates outside of the

CL region. Therefore, encoders are unable to decode each others’ messages. However, each encoder can decode the binary

sum of the messages of the other two encoders. In stage two, the messages are superimposed on the summation which is

decoded in the previous stage. At the end of this stage, the encoders decode each others’ messages. Stage three is similar to

the second stage in CL scheme. We provide an example where the new coding scheme achieves optimal performance, whereas

the previous schemes are suboptimal. Finally, we prove that any optimality achieving coding scheme must use encoders whose

set of output sequences is linearly closed.

The rest of the paper is organized as follows: Section II presents basic definitions. Section III characterizes the capacity

region of the three user MAC with feedback. Section IV presents an example of a MAC with feedback, and discusses the

necessity of structured codes for that setup. Section V contains the main result of the paper, and characterizes a new achievable

rate region. Finally, Section VI concludes the paper.

II. PRELIMINARIES AND MODEL

A three-user discrete memoryless MAC is defined by: 1) three input alphabets X1,X2, and X3, 2) an output alphabet Y ,

and 3) a conditional probability distribution p(y|x1, x2, x3) for all (y, x1, x2, x3) ∈ Y ×X1 ×X2 ×X3. Such setup is denoted

by (X1,X2,X3,Y, PY |X1X2X3
). Let yn be the output sequence corresponding to n uses of the channel, and xn

i be the input

sequence of the channel. Then, following condition is satisfied:

p(yn|y
n−1, xn−1

1 , xn−1
2 , xn−1

3 ) = p(yn|x1n, x2n, x3n). (1)

Figure 1 illustrates this setup. In this work, we assume that noiseless feedback is available at a subset of the encoders.

Definition 1. An (N,M1,M2,M3) transmission system for a given three-user MAC with feedback is defined as a sequence of

encoding functions and a decoding function. If the feedback is available at the ith user, the corresponding encoding functions

are defined as

fi,n : {1, 2, . . . ,Mi} × Yn−1 → Xi,

where i = 1, 2, 3, and n = 1, 2, . . . , N . If the feedback is not available at ith encoder, the corresponding encoding functions

are defined as

f ′
i,n : {1, 2, . . . ,Mi} → Xi.

The decoding function is defined as

g : YN → {1, 2, . . . ,M1} × {1, 2, . . . ,M2} × {1, 2, . . . ,M3}.

Let Θi denotes the message for ith transmitter, i = 1, 2, 3. We assume Θi is drawn randomly and uniformly from

{1, 2, ...,Mi}. Furthermore, we assume Θi,Θi, and Θi are mutually independent. The average probability of error for this

setup is

P̄ =
1

M1M2M3

∑

θ1,θ2,θ3

p(g(YN ) 6= (θ1, θ2, θ3)|θ1, θ2, θ3).

Definition 2. A rate triple (R1, R2, R3) is said to be achievable for a given MAC with feedback, if for any ǫ > 0 there exists

an (N,M1,M2,M3) transmission system such that

P̄ < ǫ,
1

n
log2 Mi ≥ Ri − ǫ, i = 1, 2, 3.

The capacity region of the MAC with feedback is the closure of the set of all achievable rate pairs (R1, R2, R3).



III. CAPACITY REGION OF THREE-USER MAC WITH FEEDBACK

We extend the results of Kramer for the three-user MAC with feedback. We derive a multi-letter characterization for the

capacity region. We use the notion of directed information presented in [7]. The entropy of a random sequence Y
n causally

conditioned on X
n is defined as

H(Yn||Xn) =

n
∑

k=1

H(Yk|Y
k−1,Xk).

Directed information from a sequence X
n to a sequence Y

n is defined as

I(Xn → Y
n) = H(Yn)−H(Yn||Xn).

Directed information from a sequence X
n to a sequence Y

n when causally conditioned on Z
n is defined by

I(Xn → Y
n||Zn) = H(Yn||Zn)−H(Yn||Xn

Z
n).

For more convenience, we use the following notation

In(X → Y ) =
1

n
I(Xn → Y

n). (2)

With the above notation, we are ready to derive the capacity region.

Definition 3. Given a positive integer L and a MAC with feedback, define RL as the convex hull of the set of all rates

(R1, R2, R3) such that,

Ri ≤ IL(Xi → Y ||XjXk) (3)

Ri +Rj ≤ IL(Xi, Xj → Y ||Xk) (4)

R1 +R2 + R3 ≤ IL(X1, X2, X3 → Y ), (5)

holds for all i, j, k ∈ {1, 2, 3}, i 6= j 6= k, where the conditional distribution p(x1,l, x2,l, x1,l|x
l−1
1 , xl−1

2 , xl−1
1 yl−1) equals

∏3
i=1 p(xi,l|x

l−1
1 yl−1).

Proposition 1. The capacity region of the three-user MAC with feedback is characterized by

CFB =

∞
⋃

L=1

RL

Proof. The proof is a generalized version of the result given in [7] and is omitted.

Note that this is a multi-letter characterization, and is not computable.

IV. AN EXAMPLE OF A MAC WITH FEEDBACK

In this section, we show that coding strategies based on structured codes are necessary for the problem of MAC with

feedback. We first provide an example of a MAC with feedback. Then, we propose a coding scheme using linear codes, and

show that such coding scheme achieves optimality in terms of achievable rates.

Example 1. Consider the three-user MAC with feedback problem depicted in Figure 2. In this setup, there is a MAC with three

inputs. The ith input is denoted by the pair (Xi1, Xi2), where i = 1, 2, 3. The output of the channel is denoted by the vector

(Y1, Y21, Y22). Noiseless feedback is available only at the third transmitter. The MAC in this setup consists of two parallel

Enc. 1

Enc. 2

Enc. 3

(X11, X12)

Dec.

D
elay

(X21, X22)

(X31, X32)

(Y1, Y21, Y22)

MAC

Fig. 2. The MAC with feedback setup for Example 1.



channels. The first channel is a three-user binary additive MAC with inputs (X11, X21, X31), and output Y1. The output is

related to the inputs via the relation

Y1 = X11 ⊕X21 ⊕X31 ⊕ Ñδ,

where Ñδ is a Bernoulli random variable with bias δ, and is independent of the inputs.

The second channel is a MAC with (X12, X22, X32) as the inputs, and (Y21, Y22) as the output. The relation between the

output and the input of the channel is depicted in Figure 3. The channel operates in two states. If the condition X31 = X12⊕X22

holds, the channel would be in the first state (the left channel in Figure 3); otherwise it would be in the second state (the right

channel in Figure 3). In this channel, Nδ and N ′
δ are Bernoulli random variables with identical bias δ. Whereas, N1/2 and

N ′
1/2 are Bernoulli random variables with bias 1

2 . We assume that Ñδ, Nδ, N
′
δ, N1/2, and N ′

1/2 are mutually independent, and

are independent of all the inputs.

Nδ

X12 Y21

X22 Y22

N
′

δ

N1/2

N
′

1/2

X32 = X12 ⊕X22 X32 6= X12 ⊕X22

X12

X22

Y21

Y22

Fig. 3. The second channel for Example 1. If the condition X31 = X12 ⊕X22 holds, the channel would be the one on the left; otherwise it would be the
right channel.

We use linear codes to propose a new coding strategy for the setup given in Example 1. The scheme uses a large number

L of blocks. The length of each block is n. Each encoder has two outputs, one for each channel. We use identical linear

codes with length n and rate k
n for each transmitter. The coding scheme at each block is performed in two stages. In the first

stage, each transmitter encodes the fresh message at the beginning of the block l, where 1 ≤ l ≤ L. The encoding process

is performed using the identical linear codes. At the end of the block l, the feedback is received by the third user. In stage

2, the third user uses the feedback from the first channel (that is Y1) to decode the binary sum of the messages of the other

encoders. Then, it encodes the summation, and sends it through its second output. If the decoding process is successful at the

third user, then the relation X32 = X12 ⊕X22 holds with probability one. This is because identical linear codes are used to

encode the messages. As a result of this equality, the channel in Figure 3 is in the first state with probability one. In the next

Lemma, we show that the rate

(1− h(δ), 1− h(δ), 1 − h(δ))

is achievable using this strategy.

Lemma 1. For the channel given in Example 1, the rate triple (1 − h(δ), 1− h(δ), 1− h(δ)) is achievable.

Proof. The proof is given in Appendix A.

Remark 1. Based on Preposition 1, the triple (1 − h(δ), 1 − h(δ), 1 − h(δ)) is a corner point in the capacity region of the

channel in Example 1. This implies the optimality of the above coding strategy in terms of achievable rates.

The above coding strategy is different from known schemes in two ways: 1) Identical linear codes are used to encode the

messages, 2) The third user uses feedback to decode only the binary sum others’ messages.

A. Converse

One implication of Remark 1 is that the proposed coding scheme achieves optimality. We show a stronger result in this

Subsection. We prove that every coding scheme that achieves (1 − h(δ), 1 − h(δ), 1 − h(δ)), should carry certain algebraic

structures such as closeness under the binary addition.

Suppose there exists a (N,M1,M2,M3) transmission system with rates close to Ri = 1− h(δ), and average probability of

error close to 0, in particular

P̄ < ǫ,
1

n
log2 Mi ≥ 1− h(δ)− ǫ, i = 1, 2, 3,

where ǫ > 0 is sufficiently small. Since there is no feedback at the first and second encoder, the transmission system

predetermines a codebook for user 1 and 2. Note that there are two outputs for encoder 1 and 2. Suppose C12 and C22
are the codebooks assigned to the second output of encoder 1 and encoder 2, respectively.



Let XN
i2 be the second output of encoder i, where i = 1, 2, 3. Let Xi2,l denote the lth component of XN

i2 , where 1 ≤ l ≤
N, i = 1, 2, 3. The following lemmas hold for this transmission system.

Lemma 2. For any fixed c > 0, define

IN
c := {l ∈ [1 : N ] : P (X32,l 6= X12,l ⊕X22,l) ≥ c}.

Then, the inequality
|IN

c |
N ≤ η(ǫ)

2c(1−h(δ)) holds, where η(ǫ) is a function such that, η(ǫ) → 0, as ǫ → 0.

Proof. The proof is given in Appendix B.

The Lemma implies that in order to achieve (1− h(δ), 1− h(δ), 1− h(δ)), the third user needs to decode X12,l ⊕X22,l for

“almost all” l ∈ [1 : N ]. This requirement is necessary to insure that the channel given in Figure 3 is in the first state.

In the next step, we use the results of Lemma 2, and drive two necessary conditions for decoding X12 ⊕X22.

Lemma 3. The following holds

1

N

∣

∣ log ||C12 ⊕ C22|| − log ||C12||
∣

∣ ≤ λ1(ǫ),

1

N

∣

∣ log ||C12 ⊕ C22|| − log ||C22||
∣

∣ ≤ λ2(ǫ),

where λj(ǫ) → 0, as ǫ → 0, j = 1, 2.

Proof. The proof is given in Appendix C.

As a result of this lemma, log ||C12 ⊕ C22|| needs to be close to log ||C12|| and log ||C22||. This implies that C12 and C22
possesses an algebraic structure, and are almost close under the binary addition. Not that for the case of unstructured random

codes ||C12 ⊕ C22|| ≈ ||C12|| × ||C22||. Hence, unstructured random coding schemes are suboptimal in this example.

Remark 2. The three-user extension of CL scheme is suboptimal. Because, the conditions in Lemma 3 are not satisfied.

V. A NEW ACHIEVABLE RATE REGION

In this Section, we use our intuition about the coding scheme in Example 1, and derive a new computable single-letter

achievable rate region for the three-user MAC with feedback problem.

Definition 4. For a given set U and a three-user MAC with feedback (X1,X2,X3,Y, PY |X1X2X3
), define P as the collection

of all distributions P of the form

p(u)p(v1, v2, v3)

3
∏

i=1

p(ti)p(xi|u, ti, vi)p(y|x1, x2, x3),

for all y ∈ Y, u ∈ U , ti ∈ F2, vi ∈ F2, xi ∈ Xi, i = 1, 2, 3, where 1) T1, T2, T3 are mutually independent with uniform

distribution over F2 , 2) V1, V2, V3 are pairwise independent, 3) p(vi) =
1
2 , and 3) p(v1, v2, v3) =

1
4 .

Fix a distribution P ∈ P . Denote Si = (Xi, Ti, Vi) for i = 1, 2, 3. Consider two sets of random variables (U, S1, S2, S3, Y )
and (Ũ , S̃1, S̃2, S̃3, Ỹ ). Suppose the distribution of each set of the random variables is P . Then with this notation we have

PUS1S2S3Y = PŨS̃1S̃2S̃3Ỹ
= P

Theorem 1. Consider a MAC (X1,X2,X3,Y, PY |X1X2X3
), and a distribution P ∈ P . For any subset A ⊆ {1, 2, 3}, and for

any distinct elements i, j, k ∈ {1, 2, 3} the following bounds hold

RA ≤ I(XA;Y |USAc Ṽ1Ṽ2Ṽ3) + I(U ;Y |Ũ Ỹ )

Ri +Rj ≤ I(Ti ⊕ Tj ;Y |UTkXkṼ1Ṽ2Ṽ3)

+ I(X̃iX̃j; Ỹ |Ũ S̃kṼ1Ṽ2Ṽ3Vk)

+ I(X̃iX̃j;Y |Ũ S̃kṼ1Ṽ2Ṽ3USkỸ )

Ri +Rj ≤
H(Wi) +H(Wj)

H(Wi ⊕Wj)
I(Ti ⊕ Tj;Y |UTkXk),

where 1) Wi, is a Bernoulli random variable that is independent of all other random variables, 2) the equality Vi = T̃j ⊕ T̃k

holds with probability one, and 3) the Markov chain

Ũ , S̃1, S̃2, S̃3 ↔ V1, V2, V3 ↔ U, Ti, Xi,



holds for i = 1, 2, 3.

Proof. The proof is given in Appendix D.

Remark 3. The rate region in Theorem 1 contains the three-user extension of the CL region. For that set V1, V2, V3 to be

independent of all other random variables. This gives a distribution in P .

VI. CONCLUSION

We proposed a new single-letter achievable rate region for the three-user discrete memoryless MAC with noiseless feedback.

We used an example to show that this achievable region strictly contains the CL region. In the example, the proposed coding

scheme achieves optimality in terms of transmission rates. Moreover, we proved that any optimality achieving scheme for this

example must have a specific algebraic structure. Particularly, the codebooks must be closed under binary addition.

APPENDIX A

PROOF OF LEMMA 1

Outline of the proof: We start by proposing a coding scheme. There are L blocks of transmissions in this scheme, with

new messages available at each user at the beginning of each block. The scheme sends the messages with n uses of the

channel. Let Wk
i,[l] denotes the message of the ith transmitter at the lth block, where i = 1, 2, 3, and 1 ≤ l ≤ L. Let Wk

i,[l]

take values randomly and uniformly from F
k
2 . In this case, the transmission rate of each user is Ri =

k
n , i = 1, 2, 3. The first

and the second outputs of the ith encoder in block l is denoted by X
n
i1,[l] and X

n
i2,[l], respectively.

Codebook Construction: Select a k×n matrix G randomly and uniformly from F
k×n
2 . This matrix is used as the generator

matrix of a linear code. Each encoder is given the matrix G. Therefore, the encoders use an identical linear code generated

by G.

Encoder 1 and 2: For the first block set Xn
i2,[1] = 0, for i = 1, 2, 3. For the block l, encoder 1 sends X

n
11,[l] = W

k
1,[l]G

through its first output. For the second output, encoder 1 sends Xn
11,[l−1] from block l−1, that is Xn

12,[l] = X
n
11,[l−1]. Similarly,

the outputs of the second encoder are X
n
21,[l] = W

k
2,[l]G, and X

n
22,[l] = X

n
21,[l−1].

Encoder 3: The third encoder sends X
n
31,[l] = W

k
3,[l]G though its first output. This encoder receives the feedback from the

block l − 1 of the channel. This encoder wishes to decode W
k
1,[l−1] ⊕W

k
2,[l−1] using Y

n
1,[l−1]. For this purpose, it subtracts

X
n
31,[l−1] from Y

n
1,[l−1]. Denote the resulting vector by Z

n. Then, it finds a unique vector w̃k ∈ F
k
2 such that (w̃k

G,Zn) is

ǫ-typical with respect to PXZ , where X is uniform over F2 , and Z = X⊕ Ñδ . If the decoding process is successful, the third

encoder sends X
n
32,[l] = w̃

k
[l−1]G. Otherwise, an event E1,[l] is declared.

Decoder: The decoder receives the outputs of the channel from the lth block, that is Y
n
1,[l] and Y

n
2,[l]. The decoding

is performed in three steps. First, the decoder uses Y
n
2,[l] to decode W

k
1,[l−1], and W

k
2,[l−1]. In particular, it finds unique

w̃
k
1 , w̃

k
2 ∈ F

k
2 such that (w̃k

1G, w̃k
2G,Yn

2,[l]) are jointly ǫ-typical with respect to PX12X22Y2
. Otherwise, an error event E2,[l]

will be declared.

Suppose the first part of the decoding process is successful. At the second step, the decoder calculates X
n
11,[l−1], and

X
n
21,[l−1]. This is possible, because X

n
11,[l−1], and X

n
21,[l−1] are functions of the messages. The decoder, then, subtracts

X
n
11,[l−1] ⊕X

n
21,[l−1] from Y1,[l−1]. The resulting vector is

Ỹ
n = X

n
31,[l−1] ⊕ Ñn

δ .

In this situation, the channel from X31 to Ỹ is a binary additive channel with δ as the bias of the noise. At the third step, the

decoder uses Ỹ
n to decode the message of the third user, i.e., Wk

3,[l−1]. In particular, the decoder finds unique w̃
k
3 ∈ F

k
2 such

that (w̃k
3G, Ỹn) are jointly ǫ-typical with respect to PX31Ỹ

. Otherwise, an error event E3,[l] is declared.

Error Analysis: We can show that this problem is equivalent to a point-to-point channel coding problem, where the channel

is described by Z = X ⊕ Ñδ. The average probability of error approaches zero, if k
n ≤ 1− h(δ).

Suppose there is no error in the decoding process of the third user. That is Ec
1,[l] occurs. Therefore, Xn

32,[l] = X
n
22,[l]⊕X

n
12,[l]

with probability one. As a result, the channel in Fig. 3 is in the first state. This implies that the corresponding channel consists

of two parallel binary additive channel with independent noises and bias δ. Similar to the argument for E1, it can be shown

that P (E2,[l]|E1,[l]) → 0, if k
n ≤ 1− h(δ). Lastly, we can show that conditioned on Ec

1,[l] and Ec
2,[l], the probability of E3,[l]

approaches zero, if k
n ≤ 1− h(δ).

As a result of the above argument, the average probability of error approaches 0, if k
n ≤ 1 − h(δ). This implies that the

rates Ri = 1− h(δ), i = 1, 2, 3 are achievable, and the proof is completed.



APPENDIX B

PROOF OF LEMMA 2

Proof: Let Ri be the rate of the ith encoder. We have Ri ≥ 1 − h(δ) − ǫ. We apply the generalized Fano’s inequality

(Lemma 4.3 in [7]) for decoding of the messages. More precisely, as P̄ ≤ ǫ, we have

1

M1M2M3
H(Θ1,Θ2,Θ3|Y

N ) ≤ h(P̄ ) ≤ h(ǫ)

By the definition of the rate we have

R1 +R2 +R3 =
1

N
H(Θ1,Θ2,Θ3)

≤
1

N
I(Θ1,Θ2,Θ3;Y

n) + o(ǫ)

(a)

≤
1

N
I(Xn

1 ,X
n
2 ,X

n
3 ;Y

N ) + o(ǫ)

(b)

≤ 3−
1

N
H(Yn|Xn) + o(ǫ), (6)

where (a) is because of (1), and for (b) we use the fact that Y is a vector of three binary random variables, which

implies 1
NH(Y N ) ≤ 3. As the channel is memoryless, and since (1) holds, we have

1

N
H(Yn|Xn) =

1

N

N
∑

l=1

H(Yl|X1,lX2,lX3,l).

Let P (X32,l 6= X12,l ⊕X12,l) = ql, for l ∈ [1 : N ]. Denote q̄l = 1− ql. We can show that,

H(Yl|X1,lX2,lX3,l) = (1 + 2q̄l)h(δ) + 2ql.

We use the above argument, and the last inequality in (6) to give the following bound

R1 +R2 +R3 ≤ 3−
1

N

N
∑

l=1

[(1 + 2q̄l)h(δ) + 2ql] + o(ǫ)

= 3− 3h(δ) +
1

N
2(1− h(δ))

N
∑

l=1

ql + o(ǫ)

By assumption R1 +R2 +R3 ≥ 3(1− h(δ)− ǫ). Therefore, using the above bound we obtain,

3ǫ+ o(ǫ)

2(1− h(δ))
≥

1

N

N
∑

l=1

ql
(a)

≥
1

N

∑

l∈IN
c

ql,

where (a) holds, because we remove the summation over all l /∈ IN
c . We defined IN

c as in the statement of this Lemma. Note

that if l ∈ IN
c , then ql ≥ c. Finally, we obtain

|IN
c |

N
≤

3ǫ+ o(ǫ)

2c(1− h(δ))



APPENDIX C

PROOF OF LEMMA 3

Proof. Let IN
c be as in Lemma 2. The average probability of error for decoding XN

12 ⊕XN
22 is bounded as

P̄e =
1

N

N
∑

l=1

P (X32,l 6= X12,l ⊕X22,l)

=
1

N

∑

l∈IN
c

P (X32,l 6= X12,l ⊕X22,l) +
1

N

∑

l/∈LN
c

P (X32,l 6= X12,l ⊕X22,l)

≤
|IN

c |

N
+ c(1 −

|IN
c |

N
)

= (1− c)
|IN

c |

N
+ c

≤ (1− c)
η(ǫ)

2c(1− h(δ))
+ c

As a result as ǫ → 0, then P̄e → c. Since c > 0 is arbitrary, P̄e can be made arbitrary small. Hence, for any ǫ′ > 0, and there

exist ǫ > 0 and large enough N such that P̄e < ǫ′. Note that XN
32 is a function of M3, Y

N
1 , Y N

12 and Y N
22 . Next we argue that

to get P̄e < ǫ′, it is enough for XN
32 to be a function of M3, Y

N
1 . More precisely, given X32,l, the random variables Y12,l and

Y22,l are independent of X12,l⊕X22,l. To see this, we need to consider two cases. If X32,l = X12,l⊕X22,l then the argument

follows trivially. Otherwise, Y12,l = X12,l ⊕ N1/2, where N1/2 ∼ Ber(1/2), and it is independent of X12,l. Hence in this

case, Y12,l is independent of X12,l. Similarly, Y22,l is independent of X22,l.

By subtracting XN
31 from Y N

1 , we get ZN := XN
11 ⊕XN

21 ⊕NN
δ . Next, we argue that the third encoder uses ZN to decode

XN
12⊕XN

22. Since M3 is independent of M1 and M2, it is independent of XN
1j , X

N
j2 for j = 1, 2. Therefore ZN is independent

of M3. Hence, XN
32 is function of ZN . Intuitively, we convert the problem of decoding XN

11 ⊕XN
21 to a point to point channel

coding problem. The channel in this case is a binary additive channel with noise Nδ ∼ Ber(δ). In this channel coding problem

the codebook at the encoder is C12⊕C22. The capacity of this channel equals 1−hb(δ). Since the average probability of error

is small, we can use the generalized Fano’s inequality to bound the rate of the encoder. As a result, it can be shown that

1

N
log2 ||C12 ⊕ C22|| ≤ 1− hb(δ) + η(ǫ), (7)

where η(ǫ) → 0 as ǫ → 0.

Claim 1. The following bound holds

1

N
log2 ||Cj2|| ≥ 1− hb(δ)− γj(ǫ), (8)

where j = 1, 2 and γj(ǫ) → 0 as ǫ → 0.

Outline of the proof. First, we show that the decoder must decode M3 from Y N
1 . We argued in the above that XN

32 is independent

of M3. Hence, the message M3 is encoded only to XN
31. Since XN

31 is sent though the first channel in Example 1, the decoder

must decode M3 from Y N
1 . Next, we argue that the receiver must decode M1 and M2 from Y N

21 and Y N
22 , respectively. Note

that the rate of the third encoder is 1− hb(δ), which equals to the capacity of the first channel given XN
11 ⊕XN

21. Therefore,

the decoder can decode M3, if it has XN
11 ⊕XN

21. Hence, the decoder must reconstruct XN
11 ⊕XN

21 from the second channel. It

can be shown that this is possible, if the decoder can decode M1 and M2 from the second channel. As a result, from Fano’s

inequality, the bounds in the Claim hold.

Finally, using (7) and (8) we get

0 ≤
1

N
log2 ||C12 ⊕ C22|| −

1

N
log2 ||Cj2|| ≤ η(ǫ) + γj(ǫ), j = 1, 2.

This completes the proof.



APPENDIX D

PROOF OF THEOREM 1

Proof. We build upon QLCs and propose a new coding scheme. Let Wi be a random variable with distribution PWi
. Fix

integer k and n. Consider the set of all ǫ-typical sequences W k
i . Without loss of generality assume that the new message at

the ith encoder is a sequence wk
i which is selected randomly and uniformly from A

(k)
ǫ (Wi). In this case Mi = |A

(k)
ǫ (Wi)|.

Define L[l− 2] as the list of highly likely messages corresponding to the block l− 2 at the decoder. This list is defined as

L[l − 2] , {(ŵ1, ŵ2, ŵ3) ∈ A(n)
ǫ (W1,W2,W3) : (Y[l−2], U[l−2], S1,[l−2], S2,[l−2], S3,[l−2]) ∈ A(n)

ǫ (Ỹ , Ũ , S̃1, S̃2, S̃3)}

Codebook Construction: For each 1 ≤ l ≤ L generate M0,[l] sequences U[l,m], each according to Pn
U , where 1 ≤ m ≤ M0,[l].

For any vector wk
i ∈ F

k
2 , denote

ti(w
k
i ) , wk

i G+ bni , i = 1, 2, 3,

where G is a k× n matrix with elements chosen randomly and uniformly from F2, and bni is a vector selected randomly and

uniformly from F
n
2 .

For each un ∈ Un and tn, vn ∈ F
n
2 generate Mi sequences Xn

i,[l,m] randomly with conditional distribution
∏n

j=1 P (·|uj , tj , vj), where m ∈ [1 : Mi]. Denote such sequences by xi(u
n, tn, vn,mi).

Initialization: For block l = 0, set M0,[0] = 1, U[0,1] = 0 and . For block l = 1, set M0,[1] = 1, U[1,1] = 0,vi,[1] = 0.

Encoding

a) Block l = 1: At block l = 1, given a message wi,[1] ∈ A
(k)
ǫ (Wi), the ith encoder calculates ti(wi,[1]). This sequence

is denoted by ti,[1]. Next the encoder i calculates xi(u[0,1], ti,[1], vi,[1],wi,[1]). Denote such sequence by xi,[1]. Finally, the i′s
encoder sends xi,[1].

b) Block l = 2: At the beginning of the block l = 2, each encoder i receives Y[1] as a feedback from the channel. The

encoder i wishes to decode sum of the messages of the other two encoders. The first encoder finds unique ŵ23 ∈ A
(k)
ǫ (W2+W3)

such that

(ŵ23G+ b2 + b3, Y[0]) ∈ A(n)
ǫ (T2 + T3, Y |u[0]t1,[0], x1,[l]).

Otherwise an encoding error will be declared. If ŵ23 was unique, the encoder sets v1,[2] = ŵ23G+ b2 + b3. Similarly encoder

2 finds unique ŵ13 and determines v2,[2]. Also encoder 3 finds unique ŵ12, and determines v3,[2].
c) Block l > 2: At the beginning of the block l > 2, each encoder i receives Y[l−1] as a feedback from the channel. The

encoder i wishes to decode sum of the messages of the other two encoders from block l − 1. Next, given Y[l−2], the encoder

i decodes the messages of the other two encoders from block l− 2.

The first decoding process is the same as the decoding process in block l = 2. Suppose ŵjk and vi,[l] are the outputs of

this decoding process at the encoder i. The next stage of the decoding process is as follows. The first encoder finds unique

ŵ2,[l−2] ∈ A
(k)
ǫ (W2) and ŵ3,[l−2] ∈ A

(k)
ǫ (W3) such that

1) ŵ2,[l−2] + ŵ3,[l−2] = ŵ23.

2)
(

t2(ŵ2,[l−2]), x2

(

un, t2(ŵ2,[l−2]), v2,[l−2], ŵ2,[l−2]

)

,

t3(ŵ3,[l−2]), x3

(

un, t3(ŵ3,[l−2]), v3,[l−2], ŵ3,[l−2]

)

, Y[l−2]

)

∈ A(n)
ǫ (T̃2X̃2T̃3X̃3Ỹ |s1,[l−2]v2,[l−2], v3,[l−2])

3) (v̂2,[l−1], v̂2,[l−1], Y[l−1]) ∈ A
(n)
ǫ (V2V3Y |u[l−1]s1[l−1])),

where vi,[l−2] is known at the encoder from the previous blocks, and v̂2,[l−1], v̂3,[l−1] are defined as

v̂2,[l−1] = (w1,[l−2] + ŵ3,[l−2])G+ b1 + b3

v̂3,[l−1] = (w1,[l−2] + ŵ2,[l−2])G+ b1 + b2.

If the messages are not unique, an error will be declared.

The next step, the encoder creates the list L[l−2] as defined in the above. If (w1,[l−2], ŵ2,[l−2], ŵ3,[l−2]) ∈ L[l−2], then the

first encoder finds the index m corresponding to (w1,[l−2], ŵ2,[l−2], ŵ3,[l−2]). Then the encoder calculates the corresponding

u[l−2,m. Denote such sequence by u[l]. This sequence is used for transmission of new messages at block l. If the decoding

processes are successful, then the sequences v1,[l] and u[l] are determined. The next step is the encoding process, which is the

same as in the block l = 1.

d) Decoding at block l: The decoder knows the list of highly likely messages . This list is L[l − 2] as defined in the

above. Given Y[l] the decoder wishes to decode U[l]. Note that U[l] determines the index of the messages in L[l − 2] which

were transmitted at block l− 2. This decoding process is performed by finding unique index mı[1 : M0,[l]] such that

(U[l,m], Y[l]) ∈ A(n)
ǫ (U, Y |u[l−1], y[l−1])



e) Error Analysis: There are three types of decoding errors: 1) error in decoding sum of the messages of the other two

encoders, i.e., ŵjk is not unique at the encoder i. 2) error in the decoding of the individual messages of the other encoders, i.e.,

ŵj,[l], ŵk,[l] are not unique at the encoder i. 3) error at the decoder, i.e. the index m is not unique. Using standard arguments

for each type of the errors we get the following bounds:

The probability of the first type of the errors approaches zero, if fro any distinct i, j, k ∈ {1, 2, 3} the following bound holds:

k

n
H(Wj +Wk) ≤ I(Tj + Tk;Y |UTkVkXk). (9)

The probability of the second type of the errors approaches zero, if

k

n
H(Wi|Wj +Wk) ≤ I(X̃iX̃j ; Ỹ |Ũ S̃kṼ1Ṽ2Ṽ3) (10)

Note that the third type of error occurs with high probability, if |L[l]| > 2nI(U ;Y |Ũ,Ỹ ). It can be shown that for sufficiently

large n,

P{|L[l]| < 2nmaxA⊆{1,2,3} FA+o(ǫ)} > 1− ǫ,

where

FA ,
k

n
H(WA)− I(XA;Y |USAc Ṽ1, Ṽ2, Ṽ3)

Therefore, the probability of third type of the errors approaches zero, if the following bounds hold:

FA ≤ I(U ;Y |Ũ , Ỹ ),

Using the definition of FA and the above bound, we can get the following bound:

k

n
H(WA) ≤ I(XA;Y |USAc Ṽ1, Ṽ2, Ṽ3) + I(U ;Y |Ũ , Ỹ ) (11)

Note that the effective rate of our coding scheme is Ri ,
1
n log2 Mi =

k
nH(Wi) for i = 1, 2, 3. Finally, it can be shown

that using this equation and the bounds in (9), (10), and (11), the following bounds are achievable

RA ≤ I(XA;Y |USAc Ṽ1Ṽ2Ṽ3) + I(U ;Y |Ũ Ỹ )

Ri +Rj ≤ I(Ti ⊕ Tj ;Y |UTkXkṼ1Ṽ2Ṽ3)

+ I(X̃iX̃j; Ỹ |Ũ S̃kṼ1Ṽ2Ṽ3Vk)

+ I(X̃iX̃j;Y |Ũ S̃kṼ1Ṽ2Ṽ3USkỸ )

Ri +Rj ≤
H(Wi) +H(Wj)

H(Wi ⊕Wj)
I(Ti ⊕ Tj;Y |UTkXk).
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