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Abstract

We study a class of linear network coding (LNC) schemes, called circular-shift LNC, whose

encoding operations consist of only circular-shifts and bit-wise additions (XOR). Formulated as a special

vector linear code over GF(2), an L-dimensional circular-shift linear code of degree δ restricts its local

encoding kernels to be the summation of at most δ cyclic permutation matrices of size L. We show

that on a general network, for a certain block length L, every scalar linear solution over GF(2L−1)

can induce an L-dimensional circular-shift linear solution with 1-bit redundancy per-edge transmission.

Consequently, specific to a multicast network, such a circular-shift linear solution of an arbitrary degree

δ can be efficiently constructed, which has an interesting complexity tradeoff between encoding and

decoding with different choices of δ. By further proving that circular-shift LNC is insufficient to achieve

the exact capacity of certain multicast networks, we show the optimality of the efficiently constructed

circular-shift linear solution in the sense that its 1-bit redundancy is inevitable. Finally, both theoretical

and numerical analysis imply that with increasing L, a randomly constructed circular-shift linear code

has linear solvability behavior comparable to a randomly constructed permutation-based linear code, but

has shorter overheads.

I. INTRODUCTION

Assume that every edge in a network transmits a binary sequence of length L. Different

linear network coding (LNC) schemes manipulate the binary sequences by different approaches.

With conventional scalar LNC (See, e.g., [1][2]) and vector LNC (See, e.g., [3][4]), the binary

sequence carried at every edge is modeled, respectively, as an element of the finite field GF(2L)

and an L-dimensional vector over GF(2). The coding operations performed at every intermediate

† Q. T. Sun (Email: qfsun@ustb.edu.cn) is the corresponding author.
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node by scalar LNC and by vector LNC are linear functions over GF(2L) and over the ring of

L×L binary matrices, respectively. The coefficients of these linear functions are called the local

encoding kernels (See, e.g., [5][6]).

There have been continuous attempts to design LNC schemes with low implementation

complexities. A straightforward way is to reduce the block length L. It is well known that

when 2L is no smaller than the number of receivers, a scalar linear solution over GF(2L) can

be efficiently constructed on a (single-source) multicast network by algorithms in [7] and [8].

Recent literature has witnessed a few interesting multicast networks that have an L-dimensional

vector linear solution over GF(2) but do not have a scalar linear solution over GF(2L
′
) for any

L′ ≤ L [6][9]. In particular, for the multicast networks designed in [9], the minimum block

length L for an L-dimensional vector linear solution over GF(2) can be much shorter than the

minimum block length L′ for a scalar linear solution over GF(2L
′
). This verifies that compared

with scalar LNC, vector LNC may yield solutions with lower implementation complexities.

Another approach to reduce the encoding complexity of LNC is to carefully design the coding

operations performed at intermediate nodes. A special type of vector LNC based on permutation

operations is studied in [10], from a random coding approach. In permutation-based vector

LNC, at an intermediate node, every incoming binary sequence is first permuted, and then an

outgoing binary sequence is formed by bit-wise additions of the permutated incoming binary

sequences. Equivalently, the local encoding kernels at intermediate nodes are chosen from L×L

binary permutation matrices, rather than arbitrary L × L binary matrices. Though permutation

can be more efficiently implemented than general matrix multiplication on a binary sequence,

its computational complexity may not be low enough for real-world implementation, when the

block length L is long, as required in random coding.

Towards further reducing the encoding and decoding complexity of LNC,

we study in this paper another class of LNC schemes whose encoding operations on the binary

sequences are restricted to merely bit-wise additions and circular-shifts, which are operations

to sequentially move the final entry to the first position, and shift all other entries to the next

position. Circular-shift operations have lower computational complexity than permutations, and

are amenable to implementation through atomic hardware operations.

One may notice that prior to this work, similar ideas of adopting circular-shift and bit-wise

addition operations for encoding have been considered in [11], [12] and [13]. In particular, the

LNC schemes studied in [11], for a special class of multicast networks called Combination
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Networks, involve not only circular-shifts and bit-wise additions, but also a bit truncation

process. The low-complexity LNC schemes studied in [12], for an arbitrary multicast network,

are called rotation-and-add linear codes, and the low-complexity functional-repair regenerating

codes studied in [13] for a distributed system are called BASIC (Binary Addition and Shift

Implementable Cyclic convolutional) functional-repair regenerating codes. From the perspective

of cyclic convolutional coding, the work in [12] and [13] respectively showed the existence of

the rotation-and-add linear solutions and BASIC functional-repair regenerating codes. However,

due to the lack of a systematic model, they did not provide any efficient algorithm to construct

these codes and how to decode these codes was not discussed either.

In this paper, we algebraically formulate circular-shift LNC as a special type of vector LNC.

In particular, an L-dimensional circular-shift linear code of degree δ is defined as an L-

dimensional vector linear code over GF(2) with the local encoding kernels restricted to the

summation of at most δ cyclic permutation matrices of size L. Under this framework, we make

the following contributions for the theory of circular-shift LNC:

• An intrinsic connection between scalar LNC and circular-shift LNC is established on a

general multi-source multicast network. In particular, for a prime L with primitive root 2,

i.e., with the multiplicative order of 2 modulo L equal to L−1, every scalar linear solution

over GF(2L−1) can induce an (L−1, L) circular-shift linear solution of degree at most L−1
2

.

The notation (L − 1, L) here means that for this L-dimensional circular-shift linear code,

the binary sequences generated at sources and transmitted along edges are respectively of

lengths L − 1 and L, so that the induced code falls into the category of fractional LNC

(See, e.g., [14]).

• Consequently, specific to a (single-source) multicast network, an (L − 1, L) circular-shift

linear solution of an arbitrary degree δ can be efficiently constructed. In addition, we

analyze that when δ = L−1
2

, the constructed solution requires fewer binary operations for

both encoding and decoding processes compared with scalar linear solutions over GF(2L−1).

Furthermore, when δ decreases from L−1
2

to 1, there is an interesting tradeoff between

decreasing encoding complexity and increasing decoding complexity, making the code

design more flexible.

• We further prove that circular-shift LNC is insufficient to achieve the exact capacity of

certain multicast networks. This result in turn shows the optimality of the efficiently

constructed circular-shift linear solution for a multicast network in the sense that the 1-
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bit redundancy of the code is inevitable.

• We also study circular-shift LNC from a random coding approach. We derive a lower

bound on the success probability of randomly generating a circular-shift linear solution,

which is essentially the same as the one in [10] for permutation-based LNC. Numerical

results also demonstrate comparable success probability of randomly generating a circular-

shift linear solution to the one of randomly generating a permutation-based linear solution.

These findings are interesting because for a block length L, circular-shift LNC can only

provide L+1 local encoding kernel candidates, much less than L! in permutation-based LNC.

Last, we show that circular-shift LNC has the additional advantage of shorter overheads for

random coding.

Because both the rotation-and-add linear codes (over GF(2)) and the BASIC functional-repair

regenerating codes can be regarded as circular-shift linear codes of degree 1, the present paper

also unveils a method to efficiently construct these codes.

The rest of the paper is organized as follows. Section II briefly reviews the basic concepts of

LNC as well as some useful properties of cyclic permutation matrices. Section III formulates

circular-shift LNC from the perspective of vector LNC and establishes an intrinsic connection

between scalar LNC and circular-shift LNC on general networks. Section IV discusses efficient

construction of circular-shift linear solutions on multicast networks. Section V analyzes circular-

shift LNC by the random coding approach. Section VII concludes the paper.

In addition to the proof details of some lemmas and propositions, the frequently used important

notation for the discussion of circular-shift LNC is listed in Appendix for reference.

II. PRELIMINARIES

A. Linear Network Codes

A general (acyclic multi-source multicast) network is modeled as a finite directed acyclic

multigraph, with a set S of source nodes and a set T of receivers. For a node v in the network,

denote by In(v) and Out(v), respectively, the set of its incoming and outgoing edges. Similarly,

for a set N of nodes, denote by In(N) and Out(N) the set of incoming edges to and outgoing

edges from the nodes in N , i.e., In(N) =
⋃

v∈N In(v) and
⋃

v∈N Out(v). Every edge has a

unit capacity to transmit a data unit per channel use. Write |Out(S)| = ω. Every source s ∈ S

generates |Out(s)| source data units, and there are in total ω source data units generated by

S to be propagated along the network. Assume an arbitrary order on S = {s1, . . . , s|S|} and a
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topological order on the edge set E of the network led by the edges in Out(sj), 1 ≤ j ≤ |S|,

sequentially. For every receiver t ∈ T , based on the data units received from edges in In(t),

its goal is to recover the ωt = |Out(St)| data units generated from a particular set St ⊆ S of

sources. To simplify the network model, without loss of generality (WLOG), assume that for

every source, its in-degree is zero and there is not any edge leading from it to a receiver. When

there is a unique source node s and all receivers need recover the ω source data units generated

at s, the network is called a multicast network. In a multicast network, the maximum flow from

the source to every receiver is assumed equal to ω.

Notation. Let ⊗ denote the Kronecker product and ue be an ω × 1 unit vector such that the

column-wise juxtaposition1 [ue]e∈Out(S) forms the ω×ω identity matrix Iω. For a positive integer

j, define U
j
e = ue ⊗ Ij . Note that Uj

e is an ωj × j matrix and [Uj
e]e∈Out(S) = Iωj .

For vector LNC, the data unit transmitted along every edge e is an L-dimensional row vector

me of binary data symbols. An L-dimensional vector linear code (Kd,e) over GF(2) (See, e.g.,

[6]), is an assignment of a local encoding kernel Kd,e, which is an L × L matrix over GF(2),

to every pair (d, e) of edges such that Kd,e is the zero matrix 0 when (d, e) is not an adjacent

pair. Then, for every edge e emanating from a non-source node v, the data unit vector of binary

data symbols transmitted on e is me =
∑

d∈In(v) mdKd,e. WLOG, for every s ∈ S, assume the

data units me, e ∈ Out(s), just constitute the |Out(s)| source data units generated by s. Every

vector linear code uniquely determines a global encoding kernel Fe, which is an ωL×L matrix

over GF(2), for every edge e such that

• [Fe]e∈Out(S) = [UL
e ]e∈Out(S) = IωL;

• For every outgoing edge e from a non-source node v, Fe =
∑

d∈In(v) FdKd,e.

Correspondingly, the data unit vector transmitted along every edge can also be represented as

me = [md]d∈Out(S)Fe. (1)

A vector linear code is called a vector linear solution if for every receiver t ∈ T , there is an

|In(t)|L× ωtL decoding matrix Dt over GF(2) such that

[Fe]e∈In(t)Dt = [UL
e ]e∈Out(St) (2)

1Unless otherwise specified, all juxtaposition of matrices or vectors throughout this paper refers to column-wise juxtaposition.
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Based on Dt, the data units generated at sources in St can be recovered by receiver t via

[me]e∈In(t)Dt =
(

[md]d∈Out(S)[Fe]e∈In(t)
)

Dt (3)

= [md]d∈Out(S)

(

[Fe]e∈In(t)Dt

)

(4)

= [md]d∈Out(S)[U
L
e ]e∈Out(St) (5)

= [md]d∈Out(St). (6)

In network coding theory, there are networks, such as the famous Vámos Network designed

in [15], with the linear coding capacity equal to a rational number. Thus, in order to achieve the

rational linear coding capacity, vector LNC is insufficient and what we need is fractional LNC,

a generalization of vector LNC (See, e.g., [14]). Same as in an L-dimensional vector linear code

over GF(2), in an (L′, L)-fractional linear code over GF(2), the data unit me transmitted on every

edge e is an L-dimensional row vector over GF(2), and the local encoding kernels Kd,e are L×L

matrices over GF(2). The difference is that for an (L′, L)-fractional linear code, where L′ ≤ L,

the |Out(s)| data units generated at every source s ∈ S are L′-dimensional row vectors over

GF(2). By a slight abuse of notation, denote the |Out(s)| L′-dimensional row vectors generated

at s by m
′
e, e ∈ Out(s). Each of the L binary data symbols in the data unit me transmitted on

e ∈ Out(s), is a GF(2)-linear combination of the ones in m
′
e, e ∈ Out(s), i.e.,

[me]e∈Out(s) = [m′
e]e∈Out(s)Gs (7)

for some |Out(s)|L′ × |Out(s)|L matrix Gs over GF(2). In total, the data units me transmitted

on e ∈ Out(S) can be expressed as

[me]e∈Out(S) = [m′
e]e∈Out(S)GS, (8)

where GS denotes the ωL′ × ωL matrix

GS =













Gs1 0 . . . 0

0 Gs2 . . . 0

...
...

. . .
...

0 0 0 Gs|S|













(9)

which consists of |S| × |S| blocks with the (j, j)th “diagonal” block, 1 ≤ j ≤ |S|, being the

ωsjL
′ × ωsjL matrix Gsj .
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Therefore, an (L′, L)-fractional linear code (Kd,e) over GF(2) is an L-dimensional vector

linear code (Kd,e) over GF(2) with an additional ωsjL
′ × ωsjL binary matrix Gsj for every

source sj . It qualifies as an (L′, L)-fractional linear solution if for each receiver t, there is an

|In(t)|L× ωtL
′ matrix Dt over GF(2) such that

GS[Fe]e∈In(t)Dt = [UL′

e ]e∈Out(St). (10)

Based on the decoding matrix Dt, the data units m
′
e, e ∈ Out(St) generated by sources in St

can be recovered at t via

[me]e∈In(t)Dt =
(

[me]e∈Out(S)[Fe]e∈In(t)
)

Dt (11)

=
(

[m′
e]e∈Out(S)GS[Fe]e∈In(t)

)

Dt (12)

= [m′
e]e∈Out(S)[U

L′

e ]e∈Out(St) (13)

= [m′
e]e∈Out(St). (14)

Conventional scalar linear codes over GF(2) and L-dimensional vector linear codes over GF(2)

can be respectively regarded as (1, 1)-fractional and (L, L)-fractional linear codes over GF(2),

with the matrix Gsj for every source sj equal to the identity matrix Iωsj
L. In a scalar linear

code over GF(2L), instead of Kd,e and Fe, we shall use the scalar symbol kd,e and the vector

symbol fe to denote the local encoding kernels and global encoding kernels respectively.

Example. Consider the network depicted in Fig.1, which consists of a source node s, a relay

node r and a receiver t. Every edge can transmit a binary sequence of length 3. Source s

generates two binary sequences (m11, m12), (m21, m22) of length 2. Consider a (2, 3)-fractional

linear code over GF(2) with the 4× 6 encoding matrix Gs at s to be Gs =





1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1



, and

the local encoding kernels at r to be Ke1,e3 =

[

0 1 0
0 0 0
0 1 1

]

, Ke1,e4 =

[

0 0 0
0 0 0
0 0 0

]

, Ke2,e3 =

[

0 0 0
0 0 0
0 0 0

]

Ke2,e4 =

[

0 1 0
0 0 0
0 1 1

]

. Under this code, the data units mej transmitted on edges ej , 1 ≤ j ≤ 4 are

me1 = [m11 0 m21], me2 = [m12 0 m22], me3 = [0 m11+m21 m21], me4 = [0 m12+m22 m22].

Correspondingly, the juxtaposition of global encoding kernels for edges incoming to t are

[Fe]e∈In(t) = [Fe3 Fe4 ] =

[

Ke1,e3 Ke1,e4

Ke2,e3 Ke2,e4

]

=













0 1 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 0 0 1 1













(15)

April 26, 2018 DRAFT



8

Fig. 1. A network consists of three nodes.

Given the 6 × 4 matrix Dt =











0 0 0 0
1 0 0 0
1 0 1 0
0 0 0 0
0 1 0 0
0 1 0 1











, as Gs[Fe]e∈In(t)Dt = I4, Dt is the decoding matrix

for receiver t, which can recover the source data units via [me3 me4 ]Dt = [m11 m12 m21 m22].

The considered code is thus a (2, 3)-fractional linear solution.

B. Cyclic Permutation Matrices

For a positive integer L, denote by CL the following L× L cyclic permutation matrix (over

GF(2))

CL =

















0 1 0 . . . 0

0 0 1
. . . 0

0
. . .

. . .
. . . 0

0
. . .

. . . 0 1
1 0 . . . 0 0

















. (16)

For a binary row vector m = [m1 m2 . . . mL], the linear operation mC
j is equivalent to a

circular-shift of m by j bits to the right, that is, ∀ 0 < j < L,

[m1 m2 . . . mL]C
j = [mL−j+1 . . . mL m1 . . . mL−j]. (17)

The following diagonalization manipulation on CL over a larger field will be very useful for

our subsequent study of circular-shift LNC in Section III.

Lemma 1. Let L be an odd integer and α be a primitive Lth root of unity over GF(2). Denote

by VL the L×L Vandermonde matrix generated by 1, α, . . . , αL−1 over GF(2)(α), the minimal

field containing GF(2) and α:

VL =













1 1 . . . 1

1 α . . . αL−1

...
... . . .

...

1 αL−1 . . . α(L−1)(L−1)













, (18)
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and by Λα the L× L diagonal matrix with diagonal entries equal to 1, α, . . . , αL−1, i.e.,

Λα =











1 0 . . . 0

0 α
. . .

...
...

. . .
. . . 0

0 . . . 0 αL−1











. (19)

The inverse of VL is

V
−1
L =











1 1 . . . 1
1 α−1 . . . α−(L−1)

...
... . . .

...

1 α−(L−1) . . . α−(L−1)(L−1)











, (20)

and

C
i
L = VLΛ

i
αV

−1
L ∀i ≥ 0. (21)

Proof. It can be proved in a similar way to show Lemma 1 in [16]. We provide the proof in

Appendix-A to make it self-contained.

It is interesting to note that the diagonalization manipulation on CL in Lemma 1 has already

been used in the rank analysis of quasi-cyclic LDPC codes [17][16] as well as certain quasi-

cyclic stabilizer quantum LDPC codes [18]. The present paper will be its first usage in the

construction of linear network codes.

For 1 ≤ δ ≤ L, let Cδ denote the following set of matrices:

Cδ =
{

∑L−1

j=0
ajC

j
L : aj ∈ {0, 1},

∑L−1

j=0
aj ≤ δ

}

, (22)

that is, Cδ contains the matrices that are the summation of at most δ cyclic permutation matrices

of size L. As a consequence of Lemma 1, when L is odd, every matrix
∑L−1

j=0 ajC
j
L ∈ Cδ can

be diagonalized as
∑L−1

j=0
ajC

j
L = VL

(

∑L−1

j=0
ajΛ

j
α

)

V
−1
L . (23)

In addition, since

∑L−1

j=0
ajC

j
L =











a0 a1 . . . aL−1

aL−1 a0 . . . aL−2
...

. . .
. . .

...

a1 . . . aL−1 a0











(24)

it is qualified as a circulant matrix. Thus, according to Lemma 1 in [19], for any L ≥ 1, we

have the following formula on the rank of
∑L−1

j=0 ajC
j
L:

rank
(

∑L−1

j=0
ajC

j
L

)

= L− deg (g(x)) , (25)
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where g(x) refers to the polynomial over GF(2) that is the greatest common divisor of xL − 1

and
∑L−1

j=0 ajx
j , and deg(g(x)) means the degree of g(x).

III. ALGEBRAIC FORMULATION OF CIRCULAR-SHIFT LNC ON A GENERAL NETWORK

Similar ideas of adopting circular-shifts and bit-wise additions as encoding operations have

been respectively considered in [12] and [13] to model the rotation-and-add linear codes for a

multicast network and the BASIC functional-repair regenerating codes for a distributed storage

system. Their approach stems from the cyclic codes in coding theory, and relates the binary

sequences transmitted on edges and the local encoding kernels to polynomials. Due to the lack

of a systematic model, they showed the code existence but did not provide any algorithm for

efficient code construction.

We next model circular-shift LNC as a subclass of vector LNC, so that the local encoding

kernels are particular circulant matrices prescribed by the set Cδ in (22). The advantage of such

formulation is that we can make use of Lemma 1 to conduct more transparent manipulations on

the matrix operations among local encoding kernels. An inherent connection between circular-

shift LNC and scalar LNC can be subsequently established not only on a multicast network,

but on a general network as well. As an application, it can facilitate efficient construction of

circular-shift linear solutions for multicast networks.

Definition 2. On a general network, an (L′, L) circular-shift linear code of degree δ refers to

an (L′, L)-fractional linear code (Kd,e) over GF(2) with all local encoding kernels chosen Kd,e

from Cδ defined in (22). It is called an (L′, L) circular-shift linear solution of degree δ if it is

an (L′, L)-fractional linear solution.

It is interesting to note that the set CL forms a commutative subring of the (non-commutative)

ring ML(GF(2)) of L×L binary matrices. Thus, circular-shift LNC conforms to the assumption in

the algebraic structure of vector LNC that local encoding kernels are selected from commutative

matrices [4]. In addition, under the general model in [20], an L-dimensional (i.e. (L, L)) circular-

shift linear code of degree L can be regarded as a linear code over the CL-module GF(2)L.

It is also worthwhile noting that rotation-and-add coding studied in [12] can be regarded as

a special type of circular-shift LNC of degree 1, where matrix 0 is not a candidate for local

encoding kernels.

DRAFT April 26, 2018
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s

t1 t2 t3 t4 t5 t6

u1 u2 u3 u4

r

Fig. 2. The (4, 2)-Combination Network has a unique source with ω = 2 and 6 receivers at the bottom.

Since every matrix in Cδ is the summation of at most δ cyclic permutation matrices of size L,

the operation mdKd,e on an L-dimensional binary row vector md conducts at most δ circular-

shifts and then computes bit-wise additions among at most δ circular-shifted row vectors.

Example. Fig. 2 depicts the (4, 2)-Combination Network, which is a multicast network with four

layers. The top layer consists of the unique source s with out-degree 2, the third layer consists of

4 nodes, and a bottom-layer receiver is connected from every pair of layer-3 nodes. Consider the

following (4, 5) circular-shift linear code (Kd,e) of degree 1. Denote by m
′
1 = [m11 m12 m13 m14]

and m
′
2 = [m21 m22 m23 m24] the two data units generated at s. The data units transmitted on

the two outgoing edges e1, e2 of s are, respectively, m1 = [0 m11 m12 m13 m14] and m2 =

[0 m21 m22 m23 m24]. The local encoding kernels for adjacent pairs (ei, ruj) are

Ke1,ru1
= Ke1,ru2

= Ke1,ru3
= Ke1,ru4

= Ke2,ru2
= I5,

Ke2,ru1
= 0, Ke2,ru3

= C5, Ke2,ru4
= C

2
5,

(26)

and all local encoding kernels at nodes uj , 1 ≤ j ≤ 4, are the identity matrix I5. Thus, the

binary sequence transmitted on every edge ruj , 1 ≤ j ≤ 4, can be computed as

mru1
= m1I5 +m20 = [0 m11 m12 m13 m14],

mru2
= m1I5 +m2I5 = [0 m11 +m21 m12 +m22 m13 +m23 m14 +m24],

mru3
= m1I5 +m2C5 = [m24 m11 m12 +m21 m13 +m22 m14 +m23],

mru4
= m1I5 +m2C

2
5 = [m23 m11 +m24 m12 m13 +m21 m14 +m22],

(27)

and [me]e∈In(t2) = [mru1
mru3

], [me]e∈In(t6) = [mru3
mru4

]. For receiver t2, given the 10 × 10

binary matrix D2 =

[

I5 C
4
5

0 C
4
5

]

, the circular-shift-based operations [me]e∈In(t2)D2 yields

[me]e∈In(t2)D2 = [mru1
mru1

C
4
5 +mru3

C
4
5] = [m1 m2], (28)

April 26, 2018 DRAFT



12

based on which the two source data units m
′
1, m′

2 can be directly recovered. For receiver t6,

given the 10 × 10 binary matrix D6 =

[

C
4
5 +C

2
5 C

2
5 + I5

C
3
5 +C5 C

2
5 + I5

]

, the circular-shift-based operations

[me]e∈In(t6)D6 yields

[me]e∈In(t6)D6 =
[

mru3
(C4

5 +C
2
5) +mru4

(C3
5 +C5) mru3

(C2
5 + I5) +mru4

(C2
5 + I5)

]

(29)

= [m1(C5 +C
2
5 +C

3
5 +C

4
5) m2(C5 +C

2
5 +C

3
5 +C

4
5)]. (30)

Note that m1(C5 + C
2
5 + C

3
5 + C

4
5) = [m1 m1 + m11 m1 + m12 m1 + m13 m1 + m14]

and m2(C5 + C
2
5 + C

3
5 + C

4
5) = [m2 m2 + m21 m2 + m22 m2 + m23 m2 + m24], where

m1 =
∑

1≤j≤4m1j and m2 =
∑

1≤j≤4m2j . Thus, the two source data units m
′
1, m′

2 can be

conveniently recovered at t6 from [me]e∈In(t6)D6 too. Analogously, one may check that for

receivers t1, t3, t4, t5, the source data units can also be respectively recovered based on D1 =
[

I5 I5

0 I5

]

,D3 =

[

I5 C
4
5 +C

2
5

0 C
4
5 +C

2
5

]

,D4 =

[

C
4
5 +C

2
5 C

3
5 +C5

C
3
5 +C5 C

3
5 +C5

]

, and D5 =

[

C
4
5 +C

3
5 C

2
5 +C5

C
2
5 +C5 C

2
5 +C5

]

. In

all, the considered code (Kd,e) qualifies as a (4, 5) circular-shift linear solution. �

The (4, 5) circular-shift linear solution in the above example for the (4, 2)-Combination

Network is not coincidentally constructed. Let α ∈ GF(24) be a root of the irreducible polynomial

f(x) = x4 + x3 + x2 + x+ 1 over GF(2). Since f(x) divides x5 + 1, α is a root of x5 + 1 and

thus α5 = 1. Via replacing C5 by α in (26), we can obtain a counterpart scalar linear code (kd,e)

over GF(24) prescribed by

ke1,ru1
= ke1,ru2

= ke1,ru3
= ke1,ru4

= ke2,ru2
= 1, ke2,ru1

= 0, ke2,ru3
= α, ke2,ru4

= α2, (31)

and all local encoding kernels at nodes uj , 1 ≤ j ≤ 4, equal to 1. For this scalar code, given

that the two data units generated at s are m1, m2 ∈ GF(24), the data units received by receiver

t2 and t6 are [me]e∈In(t2) = [m1 m1 + αm2] and [me]e∈In(t6) = [m1 + αm2 m1 + α2m2],

respectively. Thus, [me]e∈In(t2)D2 = [me]e∈In(t6)D6 = [m1 m2] with D2 =

[

1 α4

0 α4

]

and D6 =
[

α4 + α2 α2 + 1
α3 + α α2 + 1

]

. Similarly, one may further check that receiver t1, t3, t4, t5 can respectively

recover m1, m2 from the received data units based on D1 =

[

1 1
0 1

]

,D3 =

[

1 α4 + α2

0 α4 + α2

]

,D4 =
[

α4 + α2 α3 + α
α3 + α α3 + α

]

, and D5 =

[

α4 + α3 α2 + α
α2 + α α2 + α

]

. Hence, code (kd,e) qualifies as a scalar linear

solution.

We shall next show that the connection between the scalar linear solution over GF(24) and

the (4, 5) circular-shift linear solution demonstrated above intrinsically holds between a scalar
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linear solution over GF(2L−1) and an (L − 1, L) circular-shift linear solution for an arbitrary

network, given that L is a prime with primitive root 2, that is, the multiplicative order of 2

modulo L is equal to L − 1. Such a condition on L endows us with the following simple but

useful propositions.

Lemma 3. Let L be a prime with primitive root 2 and α be a primitive Lth root of unity over

GF(2). The following hold:

a) f(x) = xL−1 + . . .+ x + 1 is an irreducible polynomial over GF(2) and it has L− 1 roots:

α, . . . , αL−1, which belong to GF(2L−1).

b) Corresponding to every element k ∈ GF(2L−1), there is a unique polynomial over GF(2)

g(x) := aL−1x
L−1 + . . .+ a1x

1 + a0, (32)

subject to k = g(α), and at most L−1
2

nonzero coefficients aj , 0 ≤ j ≤ L− 1.

c) For two arbitrary polynomials g1(x) and g2(x) over GF(2), if g1(α
k1) = g2(α

k2), then

g1(α
jk1) = g2(α

jk2) for all 1 ≤ j ≤ L− 1.

Proof. Though the application of (a) and (b) related to GF(2L−1) can also be found in [13] and

[21], we still provide the proof in Appendix-B for self sufficiency.

Notation. Let L be a prime with primitive root 2, and α be a primitive Lth root of unity over

GF(2).

When an element in GF(2L−1) is expressed as g(α), g(x) means a polynomial over GF(2)

in the form of (32) with at most L−1
2

nonzero terms. Similarly, when an m × n matrix over

GF(2L−1) is expressed as M(α), M(x) means a matrix over the polynomial ring GF(2)[x], in

which every entry is a polynomial in the form of (32) with at most L−1
2

nonzero terms. Further,

M(αi), i ≥ 0, represents the m× n matrix over GF(2L−1) obtained from M(x) via setting x to

αi, and M(Ci
L) represents the mL × nL matrix over GF(2) obtained from M(x) via replacing

every zero entry by the L× L zero matrix and setting x to be the matrix C
i
L.

On an arbitrary network, given a scalar linear code (gd,e(α)) over GF(2L−1), construct an

(L− 1, L) circular-shift linear code (Kd,e) as follows:

• for each s ∈ S, the data unit me transmitted on e ∈ Out(s) is me = [0 m
′
e], where m

′
e is

one of the |Out(s)| (L− 1)-dimensional binary row vectors generated at s.
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• for every adjacent pair (d, e) of edges, the local encoding kernel Kd,e is

Kd,e = gd,e(CL). (33)

An inherent connection between the scalar linear code (gd,e(α)) and the circular-shift linear code

(Kd,e) is established by the following fundamental theorem of the present paper.

Theorem 4. If (gd,e(α)) is a scalar linear solution, then the constructed (Kd,e) is an (L− 1, L)

circular-shift linear solution of degree L−1
2

, i.e., with all Kd,e belonging to CL−1

2

defined in (22).

In addition, if Dt(α) is the |In(t)|×ωt decoding matrix for a receiver t, then the decoding matrix

of (Kd,e) for t is given by

Dt(CL) · (Iωt
⊗ ĨL), (34)

where ĨL denotes the L× (L− 1) matrix obtained by inserting a row vector of all ones on top

of IL−1.

Proof. The essence of the proof is to make use of the diagonalization manipulation on the local

encoding kernels Kd,e based on Lemma 1, and the fact that the scalar linear code (gd,e(α
j)) is

also a linear solution for all 1 ≤ j ≤ L− 1, which can be proved based on Lemma 3. The

details of the proof are given by Appendix-C.

One may observe that the mapping from gd,e(α) ∈ GF(2L−1) to Kd,e ∈ CL−1

2

used in (33)

for code construction is a one-to-one correspondence. However, such a mapping is not an

isomorphism because CL−1

2

is not closed under matrix addition, and some matrix in CL−1

2

(e.g.,

IL+CL) is not invertible. This makes the established intrinsic connection between circular-shift

LNC and scalar LNC non-trivial.

It turns out that when L is a prime with primitive root 2, as long as a general network has a

scalar linear solution over GF(2L−1), it has an alternative (L−1, L) circular-shift linear solution

of degree (L−1)/2 too. Different from previous studies in [10]-[12], which mainly consider low

complexity encoding operations, the constructed (L − 1, L) circular-shift linear solution builds

up not only local encoding kernels, but also the decoding matrix based on cyclic permutation

matrices.
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IV. DETERMINISTIC CIRCULAR-SHIFT LNC ON MULTICAST NETWORKS

A. Deterministic Construction

In the previous section, we have proved that for a general network, every scalar linear solution

over GF(2L−1), where L is a prime with primitive root 2, can induce an (L− 1, L) circular-shift

linear solution of degree L−1
2

. In this section, we restrict our attention to further investigate

circular-shift LNC on multicast networks. Herein, unless otherwise specified, we still assume

that L is a prime with primitive root 2. Unlike a general network, which may not have a linear

solution over any module alphabet [14], there are various known algorithms, such as the ones

in [7] and [8], to efficiently construct a scalar linear solution for a multicast network. Thus, as

revealed by the next corollary, for a long enough block length L, an (L − 1, L) circular-shift

linear solution of an arbitrary degree can be efficiently constructed for every multicast network.

Corollary 5. Let 1 ≤ δ ≤ L−1
2

. For a multicast network, an (L − 1, L) circular-shift linear

solution of degree δ can be efficiently constructed if the prime L with primitive 2 satisfies
(

L

0

)

+
(

L

1

)

+ . . .+
(

L

δ

)

≥ |T |.

Proof. By Lemma 3.a), GF(2L−1) contains a primitive Lth root of unity, which will be denoted

by α. Let C be a set of elements in GF(2L−1) which can be expressed in the form a0+a1α+ . . .+

aL−1α
L−1 such that at most δ nonzero binary coefficients aj , 0 ≤ j ≤ L−1, are nonzero. Lemma

3.b) implies that C contains
(

L

0

)

+
(

L

1

)

+ . . .+
(

L

δ

)

distinct elements. Then, if |C| is no smaller

than the number of receivers, a scalar linear solution over GF(2L−1) can be efficiently constructed

by the algorithm in [7] with local encoding kernels selected from C. Thus, by Theorem 4, it

directly induces an (L− 1, L) circular-shift linear solution as well as the concomitant decoding

matrix at every receiver.

It is interesting to note that when the prime L with primitive 2 is larger than the number

|T | of receivers, the work in [12] has proved that there exists an (L− 1, L) circular-shift linear

solution of degree 1 for a multicast network. In addition, as the construction of a functional-repair

regenerating code for a distributed storage system is essentially same as the construction of a

scalar linear solution for a special multicast network (See, e.g., [24]), the work (Theorem 7) in

[13] essentially proved the existence of an (L−1, L) circular-shift linear solution of degree L−1
2

for certain multicast networks. However, how to efficiently construct such desired circular-shift
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linear solutions was not known. Corollary 5 unveiled that all such desired circular-shift linear

solutions can be efficiently constructed.

It is well-known (See, e.g., [14]) that LNC over an arbitrary module alphabet is not sufficient

to achieve the exact capacity of some (multi-source multicast) networks. As circular-shift LNC is

a special class of vector LNC, it is not sufficient to achieve the exact capacity of these networks

either. In contrast, for every multicast network, both scalar and vector LNC, over a long enough

block length, can achieve the exact network capacity. Naturally, one may ask whether circular-

shift LNC can achieve the exact capacity of every multicast network too. We next give a negative

answer to it by demonstrating two instances.

Fig. 3 and Fig. 4 respectively depict the classical (n, 2)-Combination Network (See, e.g.,

[25][11]) and the Swirl Network recently designed in [22]. As a generalization of the (4, 2)-

Combination Network depicted in Fig. 2, there are also four layers of nodes in the (n, 2)-

Combination Network, where the first layer consists of the unique source s, the third layer

consists of n nodes, and a bottom-layer receiver is connected from every pair of layer-3 nodes.

It is known (See, e.g., [6][9]) that the (n, 2)-Combination Network has an L-dimensional vector

linear solution over GF(2) if and only if 2L ≥ n− 1. In addition, when L is a prime no smaller

than n, the work in [11] proposed an interesting low-complexity L-dimensional LNC scheme for

the (n, 2)-Combination Network based on circular-shifts together with a bit truncation process.

Essentially, this scheme can be regarded as an (L − 1)-dimensional vector linear solution over

GF(2) with all nonzero local encoding kernels equal to some ÎC
j
LÎ

T , 0 ≤ j ≤ L − 1, where Î

represents the (L−1)×L matrix [IL−1 0] obtained by appending a zero column vector after IL−1,

and CL is the cyclic permutation matrix defined in (16). The Swirl Network with the parameter

ω ≥ 3 consists of five layers of nodes, where the top layer consists of the source node, each of

the second and third layer consists of ω nodes, there are two layer-4 nodes connected from every

layer-3 node, and a bottom-layer receiver is connected from every set N of ω layer-4 nodes with

the maximum flow from the source to N equal to ω. According to [6], for every block length

L ≥ 8, the Swirl Network has an L-dimensional vector linear solution over GF(2). In contrast,

the next proposition shows that if the local encoding kernels are restricted to be chosen from

the set CL of circulant matrices defined in (22), neither the (n, 2)-Combination Network nor the

Swirl Network has an L-dimensional vector linear solution over GF(2) for any L.

Proposition 6. For n ≥ 4, neither the (n, 2)-Combination Network nor the Swirl Network with
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Fig. 3. The classical (n, 2)-Combination Network is known to have an L-dimensional vector linear solution over GF(2) if and

only if 2L ≥ n− 1.
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Fig. 4. The Swirl Network with parameter ω has a non-depicted receiver connected from every set N of ω grey nodes with

the maximum flow from s to N equal to ω. It has an L-dimensional vector linear solution over GF(2) when L ≥ 8.

parameter ω = n is (L, L) circular-shift linearly solvable of degree L for any L ≥ 1.

Proof. As implied from Equation (4) and (6) in [6], when n ≥ 4, a necessary condition for

both the (n, 2)-Combination Network and the Swirl Network with parameter ω = n to have an

L-dimensional vector linear solution over GF(2) is that there are two L× L invertible matrices

A1,A2 over GF(2) such that

rank(Ai +Aj) = L. (35)

Let A1 =
∑L−1

j=0 a1jC
j
L, A2 =

∑L−1
j=0 a2jC

j
L be two invertible matrices in CL. According to

(25) in Section II.B, rank(A1) = L − deg(g1(x)), where g1(x) is the greatest common divisor

of xL − 1 and
∑L−1

j=0 a1jx
j . If there are an even number of nonzero coefficients among a1j ,

0 ≤ j ≤ L− 1, then xL − 1 and
∑L−1

j=0 a1jx
j have a common root 1, so x− 1 divides g1(x) and

rank(A1) < L, a contradiction to that A1 is invertible. Therefore, there are an odd number of

nonzero coefficients among a1j , 0 ≤ j ≤ L− 1. Similarly, there are an odd number of nonzero
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coefficients among a2j , 0 ≤ j ≤ L − 1, too. As a result, the number of nonzero coefficients

among a1j +a2j (∈ GF(2)), 0 ≤ j ≤ L−1 must be even. This in turn implies that x−1 divides

both xL−1 and
∑L−1

j=0 (a1j +a2j)x
j , so A1+A2 =

∑L−1
j=0 (a1j +a2j)C

j
L cannot be full rank. We

can then conclude that neither the (n, 2)-Combination Network nor the Swirl Network is (L, L)

circular-shift linearly solvable of degree L for any L ≥ 1.

Proposition 6 justified the optimality of the (L− 1, L) circular-shift linear solution efficiently

constructed in Corollary 5 for an arbitrary multicast network, in the sense that the 1-bit

redundancy is inevitable.

According to Artin’s conjecture on primitive roots (See, e.g., [23]), there are infinitely many

primes with primitive root 2. While the conjecture is open, there are sufficiently many such

primes L (See the table in [23]) to choose for efficient construction of an (L − 1, L) circular-

shift linear solution for a multicast network.

B. Computational Complexity Comparison

We now compare the encoding and decoding complexity between circular-shift LNC and

scalar LNC, from the perspective of required binary operations. To keep the same benchmark

for complexity comparison, we adopt the following assumptions similar to in [13]. We shall

ignore the complexity of a circular-shift operation on a binary sequence, which can be software

implemented by modifying the pointer to the starting address in the sequence, and we just

consider the standard implementation of multiplication in GF(2L) by polynomial multiplication

modulo an irreducible polynomial, instead of considering other advanced techniques such as the

FFT algorithm [26].

On a multicast network, let v be an intermediate node with indegree η, and t ∈ T be a

receiver. First consider a scalar linear solution over GF(2L). Node v takes η multiplications and

η − 1 additions over GF(2L) to generate the data symbol me =
∑

d∈In(v) mdkd,e ∈ GF(2L)

for an outgoing edge e ∈ Out(v). Receiver t takes ω2 multiplications and ω(ω − 1) additions

over GF(2L) in the decoding process to recover ω source data symbols. When two elements in

GF(2L) are expressed as two polynomials f1(x), f2(x) of degree L− 1 over GF(2), it takes L2

binary multiplications and L(L− 1) binary additions to compute f1(x)f2(x). It takes additional

(L − 1)(κ − 1) binary operations to obtain f1(x)f2(x) modulo g(x), where κ ≥ 3 represents

the number of nonzero coefficients in g(x). In total, node v takes at least η(2L2 + L) binary
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operations to obtain the L-bit data symbol me, and receiver t takes at least ω2L(2L+ 1) binary

operations to recover ω L-bit source data symbols.

Next consider an L-dimensional vector linear solution over GF(2). In order to generate the

data unit me =
∑

d∈In(v) mdKd,e ∈ GF(2)L for an outgoing edge e ∈ Out(v), node v takes

ηL2 binary multiplications and ηL(L − 1) + (η − 1)L = ηL2 − L binary additions. Receiver

t takes ω2L2 binary multiplications and ω2L2 − ωL binary additions in the matrix operation

[me]e∈In(t)Dt to recover the ωL source data units.

Last consider an (L− 1, L) circular-shift linear solution of degree δ constructed by Theorem

4. Node v takes L (δη − 1) binary operations to obtain the L-dimensional binary row vector

me =
∑

d∈In(v) mdKd,e for e ∈ Out(v). For receiver t, recall that the decoding matrix in

Theorem 4 is given by Dt(CL) · (Iω⊗ ĨL), where every block entry in the matrix Dt(CL) can be

written as
∑L−1

j=0 ajC
j
L with at most L−1

2
nonzero coefficients aj . Thus, it takes L

(

L−1
2
ω − 1

)

ω

binary operations to compute [me]e∈In(t) ·Dt(CL) and additional ωL binary operations to further

obtain [me]e∈In(t) ·Dt(CL) · (Iω ⊗ ĨL). In total, the number of binary operations is 1
2
ω2L(L− 1).

To the best of our knowledge, by known efficient algorithms in the literature, for an arbitrary

multicast network, the minimum block length L, as a function of |T |, to respectively construct

a scalar linear solution over GF(2L) and an L-dimensional vector linear solution over GF(2) is

the same ⌈log2(|T |)⌉. In addition, according to Corollary 5, the minimum block length L, which

needs be a prime with primitive root 2, to efficiently construct an (L− 1, L) circular-shift linear

solution of degree 1 and an (L − 1, L) circular-shift linear solution of degree L−1
2

is |T | − 1

and ⌈log2(|T |)⌉+ 1, respectively. Therefore, to make a more transparent and fairer comparison,

consider a scalar linear solution over GF(2m),

an m-dimensional vector linear solution over GF(2), an (m,m+1) circular-shift linear solution

of degree m
2

, and an (L, L + 1) circular-shift linear solution of degree 1, where m + 1, L + 1

are primes with primitive root 2 and 2m ≥ L + 2 ≥ |T |. In this setting, all these four linear

solutions can be efficiently constructed by known algorithms for an arbitrary multicast network.

Table I lists the respective number of binary operations per bit for encoding at v and decoding

at t. so that all these four linear solutions can be efficiently constructed by known algorithms

for an arbitrary multicast network.

It can be seen that for the considered circular-shift linear solution of degree δ = m
2

, the number

of required binary operations per bit for both encoding and decoding can be approximately

reduced by 3/4 compared with the scalar linear solution. When the degree of the circular-shift
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TABLE I

NUMBER OF BINARY OPERATIONS PER BIT FOR ENCODING AND DECODING

Encoding Decoding

Scalar over GF(2m) > 2ηm > ω(2m+ 1)

m-dimensional vector
2ηm− 1 2ωm− 1

over GF(2)

(m,m+ 1) circular-shift
1

2
ηm 1

2
ω(m+ 1)

of degree m
2

(L,L+ 1) circular-shift
η − 1 1

2
ω(L+ 1) < 1

2
ω2m

of degree 1

linear solution decreases from m
2

to 1, the encoding complexity will decrease and the decoding

complexity will increase. To our knowledge, this interesting tradeoff between encoding and

decoding complexities for efficient construction of LNC schemes are new, and it makes circular-

shift LNC more flexible to be applied in networks with different computational constraints.

One may observe that for the two circular-shift linear solutions in Table I, when δ decreases

from m
2

to 1, the increasing rate of the decoding complexity is faster than the decreasing rate of

the encoding complexity. The reason is that for the method proposed in this paper, the necessary

block length m + 1 for efficiently constructing a circular-shift linear solution of degree m
2

is

⌈log2 |T |⌉, but the necessary block length L+1 for efficiently constructing a circular-shift linear

solution of degree 1 is |T |. How to efficiently construct a circular-shift linear solution of degree

1 with a shorter block length deserves further investigation in future work.

V. RANDOM CIRCULAR-SHIFT LNC ON MULTICAST NETWORKS

A. Probabilistic Analysis

As we have not known whether there are infinitely many primes with primitive root 2 yet, the

results established in Theorem 4 and Corollary 5 are insufficient to imply that every multicast

network is asymptotically circular-shift linearly solvable, that is, for any ǫ > 0, it has an

(L′, L) circular-shift linear solution with L′/L > 1 − ǫ. This motivates us to further study

circular-shift LNC by random coding and to show, from a probabilistic perspective, that every

multicast network is asymptotically circular-shift linearly solvable. With this aim, it suffices to

consider circular-shift LNC of degree 1, that is, all local encoding kernels are chosen from
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C1 = {0, IL,CL, . . . ,C
L−1
L }. We first introduce the following lemma that will be useful in the

analysis of the asymptotic linear solvability of random circular-shift LNC.

Lemma 7. For an L×L matrix K uniformly and randomly chosen from {0, IL,CL, . . . ,C
L−1
L },

an arbitrary L× L binary matrix L, and an arbitrary real number ǫ > 0, the probability for the

rank of L+K lower than L(1− ǫ) is upper bounded by

Pr (rank(L+K) < L(1− ǫ)) < 2−Lǫ+log(L+1). (36)

Proof. See Appendix-D.

We next consider the following way to randomly construct an (L′, L) circular-shift linear code:

• The ωL′ × ωL coding matrix Gs operated at source s is uniformly and randomly chosen

from all ωL′ × ωL binary matrices.

• Every local encoding kernel is uniformly and randomly chosen from C1 =

{0, IL,CL, . . . ,C
L−1
L }.

Theorem 8. For every positive integer L, let ǫL > 0 be an associated real number such that

limL→∞ ǫL = 0 and limL→∞ log
2LǫL

L+ 1
= ∞, and let L′ =

ω − |E|ǫL

ω
L. The probability of a

randomly constructed (L′, L) circular-shift linear code to be an (L′, L) linear solution is greater

than 1− 2−LǫL+log(L+1)+log |T ||E|.

Proof. First, observe that for every receiver t, if rank(Gs[Fe]e∈In(t)) ≥ ωL′, then there must

exist an ωL × ωL′ matrix Dt over GF(2) such that Gs[Fe]e∈In(t)Dt = IωL′ , that is, receiver t

can successfully recover the ωL′ source data symbols. Thus, the probability of the randomly

constructed code to be an (L′, L)-fractional linear solution is lower bounded by

Pr(rank(Gs[Fe]e∈In(t)) ≥ ωL′)

≥Pr(rank([Fe]e∈In(t)) ≥ r) · Pr(rank(Gs[Fe]e∈In(t)) ≥ ωL′|rank([Fe]e∈In(t)) ≥ r) (37)

for an arbitrary r ≥ ωL′.

Consider an arbitrary receiver t in the multicast network. As the maximum flow for t is

ω, there are ω edge-disjoint paths from s to t. Let Et ⊂ E denote the set of edges in the

ω edge-disjoint paths and index the edges in Et as e1, e2, . . . , e|Et|. Assume that there is an

upstream-to-downstream order of Et with {e1, . . . , eω} = Out(s) and {e|Et|−ω+1, . . . , e|Et|} =

In(t). Iteratively consider an set Eω, which always consists of ω consecutive edges in Et. Initially,
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Eω = {e1, . . . , eω} and by definition, [Fe]e∈Eω
= IωL. In ith ≥ 1 iteration, based on the current

setting Eω which contains ei+ω−1 as the least ordered edge, define a new set E ′
ω = Eω\{ej} ∪

{ei+ω}, where (ej , ei+ω) forms an adjacent pairs of edges. Based on Lemma 7, it can be deduced

(See Appendix-E for the details) that

Pr(rank([Fe]e∈Eω
)− rank([Fe]e∈E′

ω
) > LǫL) ≤ 2−LǫL+log(L+1). (38)

Then, reset Eω equal to E ′
ω and proceed to the next iteration. In the final iteration, Eω = In(t).

As the number of iterations conducted for Eω to change from Out(s) to In(t) is upper bounded

by |E| − ω, the following can be readily obtained by a union bound on (38):

Pr(rank([Fe]e∈In(t)) ≥ r) ≥ (1− 2−LǫL+log(L+1))|E|−ω > 1− (|E| − ω) · 2−LǫL+log(L+1), (39)

where r is set to be ωL− LǫL(|E| − ω).

Under the condition that rank([Fe]e∈In(t)) ≥ r, it can be further deduced (See Appendix-E for

the details) that

Pr(rank(Gs[Fe]e∈In(t)) ≥ ωL′ | rank([Fe]e∈In(t)) ≥ r) > 1− ωL′2−ωLǫL. (40)

Then, by combining (39) and (40),

Pr(rank(Gs[Fe]e∈In(t) ≥ ωL′) >1− (|E| − ω) · 2−LǫL+log(L+1) − ωL′2−ωLǫL

>1− [(L+ 1)(|E| − ω) + ωL′] · 2−LǫL (41)

>1− (L+ 1)|E|(1− ǫL)2
−LǫL. (42)

By taking a union bound on (42) for all receivers, the desired lower bound for the probability

of the randomly constructed circular-shift linear code to be an (L′, L)-fractional linear solution

can be obtained.

As a result, for an arbitrary multicast network, the probability for random circular-shift LNC

to yield an asymptotic linear solution tends to 1 with block length L increasing to infinity. One

may notice that in the work of [12], it was also proved that on a multicast network, the success

probability of randomly generating an (L − 1, L) circular-shift linear solution (of degree 1) is

lower bounded by (1 − |T |/L)
∑

v:node |In(v)||Out(v)|, the form of which is same as the classical

lower bound (1−|T |/2L)|E| obtained in [27] for the success probability of randomly generating

a scalar linear solution over GF(2L). Compared with the one obtained in [12], when L tends to

infinity, the lower bound obtained in Theorem 8 converges to 1 much faster for L appears as

DRAFT April 26, 2018



23

an exponent parameter instead of as a denominator parameter. In addition, the rate L′/L of the

random code considered in Theorem 8 converges faster to 1 compared with the rate (L− 1)/L

of the random code considered in [12], too.

Moreover, circular-shift LNC of degree 1 can be regarded as a special class of permutation-

based LNC schemes studied in [10], in which the local encoding kernels are chosen from L!

permutation matrices of size L as well as the L × L zero matrix 0. The bound in Theorem 8

is essentially the same as the lower bound obtained in [10] for the probability of a randomly

constructed permutation-based linear code to be a linear solution. This connection is particular

interesting because the coding operations provided by circular-shifts are much fewer than by

permutations. Thus, the asymptotic linear solvability characterization in Theorem 8 is stronger

than the results in [10]. We would remark here that to the best of our knowledge, the known

analyses for random linear coding concentrate on special types of vector LNC, such as the scalar,

the permutation-based, as well as the circular-shift LNC. There is not any more general lower

bound on the success probability of randomly generating an L-dimensional vector linear solution

with local encoding kernels selected from an arbitrary matrix of size L.

B. Circular-shift LNC vs Permutation-based LNC

In the previous subsection, we showed that the circular-shift LNC and permutation-based

LNC essentially share the same lower bound obtained in Theorem 8 on the success probability

of yielding an asymptotic linear solution. However, only when the block length L is sufficiently

long, the bound can start yielding a positive value. Therefore, it does not shed light on the

asymptotic behavior for shorter block lengths. We next attempt to numerically analyze the success

probability of randomly generating a circular-shift and a permutation-based linear solution of the

same rate r = L′/L = 15/16 on the (4, 2)-Combination Network, as shown in Table II. It can be

seen that even though the success probability for permutation-based LNC converges faster than

the one for circular-shift LNC, for moderate block length L = 128, the success probabilities for

both have no big difference and are very close to 1.

Though permutation-based LNC can be regarded as a generalization of circular-shift LNC

(of degree 1), the above numerical result indicates that the much more local encoding kernel

candidates it brings in (L! vs L + 1) do not obviously help increase the success probability of

randomly constructing a solution. In addition, as to be shown in the next proposition, for both the

(n, 2)-Combination Network and the Swirl Network, which do not have an (L, L) circular-shift
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TABLE II

SUCCESS PROBABILITY OF RANDOMLY GENERATING AN (L′, L)-FRACTIONAL LINEAR SOLUTION FOR THE

(4, 2)-COMBINATION NETWORK

(L′, L) Circular-shift Permutation

(15, 16) 0.1055 0.0168

(30, 32) 0.5894 0.3358

(60, 64) 0.7031 0.9349

(120, 128) 0.9996 0.9998

linear solution for any L as proved in Proposition 6, permutation-based LNC is insufficient to

achieve their respective exact multicast capacity either.

Proposition 9. For n ≥ 4, neither the (n, 2)-Combination Network depicted in Fig. 3 nor

the Swirl Network depicted in Fig. 4 with parameter ω = n has an L-dimensional vector linear

solution over GF(2) with local encoding kernels chosen from the L! possible permutation matrices

of size L and the L× L zero matrix 0, for any block length L.

Proof. See Appendix-F.

It turns out that for multicast LNC, compared with permutation operations, circular-shifts

do not lose much in terms of linear solvability, while they have much less implementation

complexity.

C. Overhead Analysis

In the practical implementation of random LNC, every packet transmitted along the network

usually consists of a batch of data units (See, e.g., [28]). All data units belong to the same

alphabet and all data units in the same packet correspond to the same global encoding kernel.

When random LNC is applied to multicast networks, since the network topology is fixed, an

initialization process can be conducted before the packet transmission so that every receiver can

obtain the necessary information of global encoding kernels for decoding. However, in some

other application scenarios of random LNC, such as the Peer-to-Peer networks (See, e.g., the

review article [29]) and the Mobile Ad hoc Networks (MANETs) (See, e.g., [30]), the network

topology is always dynamic. It turns out that the global encoding kernel for a packet will be
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TABLE III

OVERHEADS OF RANDOM LNC SCHEMES UNDER ALPHABET SIZE 2L

Schemes Overheads

Scalar LNC ωL bits

Circular-Shift LNC ωL bits

Permutation-based LNC Ω(ωL log2 L)

Vector LNC ωL2 bits

dynamically updated to indicate how the packet is linearly formed from the source packets, so

its information must be stored as part of the packet header.

For a scalar linear code over GF(2L), as the global encoding kernels are ω-dimensional vectors

over GF(2L), the overhead to store the information of a global encoding kernel is theoretically

ωL bits. On the other hand, for random vector LNC, under the same block length L, the global

encoding kernel becomes an ωL × L matrix over GF(2) and thus the overhead to store the

corresponding information theoretically extends to ωL2 bits. The next proposition considers the

cases for random circular-shift LNC (of degree 1) and random permutation-based LNC, where

the local encoding kernels are respectively randomly chosen from C1 = {0, IL,CL, . . . ,C
L−1
L }

and L× L permutation matrices.

Proposition 10. Under the same block length L, for a random circular-shift linear code and

a random permutation-based linear code, the overheads to store the global encoding kernel

information are ωL and Ω(ωL log2 L) bits, respectively.

Proof. Recall that [Fe]e∈out(s) = IωL, and for an outgoing edge e from a non-source node v,

the global encoding kernel Fe can be expressed as Fe =
∑

d∈In(v) FdKd,e. Then, when Fe is

regarded as an ω-dimensional vector with each component being an L×L matrix, each of these ω

matrices can be recursively written as a function of local encoding kernels, which are randomly

chosen from C = {0, I,CL, . . . ,C
L−1
L }. As C is closed under multiplication by elements in C,

each of the ω components in Fe is a summation of some matrices in C. Thus, the number of

possible L× L matrices to appear in each component of Fe is

(

L
0

)

+

(

L
1

)

+ . . .+

(

L
L

)

= 2L, (43)
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which can be represented by L bits. In all, the total number of bits required to store the

information of Fe is ωL.

For an L-dimensional permutation-based linear code, the number of local encoding kernel

candidates is L! = Ω(ωL log2 L). As the number of possibilities for every block entry in a

global encoding kernel Fe is at least the number of local encoding kernels, the overhead to store

the information of Fe is Ω(ωL log2 L) bits.

Table III summarizes the required overheads for global encoding kernels among the afore-

mentioned four types linear network coding schemes. The table shows that under the same

alphabet size, the overhead required by random circular-shift LNC is as small as that required

by conventional scalar LNC, and is much smaller than that of permutation-based LNC and vector

LNC. The results established in this section show that circular-shift LNC also has advantages of

shorter overheads for random coding and suggest a new direction of practical implementation

of LNC using efficient, randomized circular-shift operations.

VI. CONCLUDING REMARKS

In this work, after formulating circular-shift linear network coding (LNC) as a special type of

vector LNC, we established an intrinsic connection between circular-shift and scalar LNC, for a

general network, so that the construction of a circular-shift linear solution with 1 bit redundancy

is reduced to the construction of a scalar linear solution. The results subsequently obtained for

multicast networks theoretically suggested the potential of circular-shift LNC to be deployed with

lower implementation complexities in both deterministic and randomized manners, compared

with the conventional scalar LNC and permutation-based LNC. In addition, they provided a

method to efficiently construct a BASIC functional regenerating code for a distributed storage

system proposed in [13].

With the aim to investigate LNC schemes with lower encoding and decoding complexities,

the present paper focuses on the study of circular-shift LNC over GF(2). An extension of the

present work to GF(p) with an odd prime p is left as future work. In addition, whether every

multicast network is asymptotically circular-shift linearly solvable remains open and it deserves

further investigation. From a practical point of view, another important future work is to make

a hardware-implemented experimental comparison of the encoding and decoding complexities

between scalar and circular-shift LNC.
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APPENDIX

A. Proof of Lemma 1

First note that the ith row in VL times the jth column in V
−1
L (0 ≤ i, j ≤ L − 1) equals to

∑L−1
i′=0 α

i′(i−j). Since α is a primitive Lth root of unity, αi′ is a root of xL − 1 and not equal to

1 for all 1 ≤ i′ ≤ L− 1. In addition, since xL − 1 = (x− 1)(xL−1 + . . .+1),
∑L−1

i′=0 α
i′(i−j) = 0

when i 6= j. Furthermore, when i = j,
∑L−1

i′=0 α
i′(i−j) = 1 for summation of 1 by (odd) L times

is still equal to 1 over GF(2). In sum, VLV
−1
L = IL.

Next, note that

VL ·Λα =











1 α . . . αL−1

...
... . . .

...

1 αL−1 . . . α(L−1)(L−1)

1 1 . . . 1











= CL ·VL. (44)

As a result,

VL ·Λα ·V−1
L = CL ·VL ·V−1

L = CL, (45)

and thus (21) holds.

B. Proof of Lemma 3

a) As 0 = αL + 1 = (α + 1)(αL−1 + . . . + α + 1) and α 6= 0, f(α) = 0. Consequently,

f(α2j) = f(α)2
j

= 0 for all j ≥ 0. As the multiplicative order of 2 modulo L is L − 1,

α, α2, . . . , α2L−2

are distinct elements, and thus constitute the L−1 roots of f(x). This implies

that f(x) is irreducible over GF(2), so α ∈ GF(2L−1).

b) Because f(x) is irreducible over GF(2) and f(α) = 0, {1, α, . . . , αL−2} is a basis of GF(2L−1)

over GF(2). Thus, every element k ∈ GF(2L−1) can be uniquely written as a0 + a1α+ . . .+

aL−2α
L−2 with the binary coefficients aj , 0 ≤ j ≤ L−2. Additionally set aL−1 to be 0. If the

number of nonzero coefficients aj is no larger than L−1
2

, then g(x) = aL−1x
L−1+. . .+a1x+a0

is a polynomial in the form of (32) with g(α) = k. Otherwise, set a′j = 1 ⊕ aj for all

0 ≤ j ≤ L−1. In this way, g(x) = a′L−1x
L−1+ . . .+a′1x+a′0 is a polynomial in the form of

(32) with at most L−1
2

nonzero terms and g(α) = k. As there are in total 2L−1 polynomials

over GF(2) in the form of (32) with at most L−1
2

nonzero terms, each of the 2L−1 polynomials

has been associated with a distinct element in GF(2L−1).
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c) As the multiplicative order of 2 modulo L is L − 1, for each 1 ≤ j ≤ L − 1, there exists

i ≥ 1 such that αj = α2i . Thus, when g1(α
k1) = g2(α

k2),

g1(α
jk1) = g1(α

2ik1) = g1(α
k1)2

i

= g2(α
k2)2

i

= g2(α
2ik2) = g2(α

jk2). (46)

C. Proof of Theorem 4

For every edge e ∈ E, denote by Fe and fe the global encoding kernels of the considered

(L − 1, L)-fractional linear code (Kd,e) over GF(2) and scalar linear solution (gd,e(α)) over

GF(2L−1), respectively. For brevity, write ES = Out(S) and ESt
= Out(St).

Consider an arbitrary receiver t. Denote by Bt(x) the (|E| − ω) × |In(t)| index matrix of

which the unique nonzero entry x in every column corresponds to an edge in In(t). Thus,

[fe]e∈In(t) = [fe]e/∈ES
Bt(1) and [Fe]e∈In(t) = [Fe]e/∈ES

Bt(IL). Following the classic algebraic

framework of scalar LNC for acyclic multicast networks in [2], the global encoding kernels of

the scalar linear code (gd,e(α)) for edges into t can be expressed as

[fe]e∈In(t) = [gd,e(α)]d∈ES ,e/∈ES
· (I|E|−ω − [gd,e(α)]d,e/∈ES

)−1 ·Bt(1). (47)

Note that (47) is essentially the same as the formula in Theorem 3 of [2]. Write the matrix

[fe]e∈In(t) over GF(2L−1) as M(α), where M(x) is the matrix over GF(2)[x] with every entry to

be a polynomial of at most L−1
2

nonzero terms. Thus,

M(α)Dt(α) = [U1
e]e∈ESt

. (48)

Now consider the (L−1, L)-fractional code with the local encoding kernels Kd,e = gd,e(CL).

According to the framework of vector LNC [4],

[Fe]e∈In(t) = [Kd,e]d∈Es,e/∈Es
·
(

I(|E|−ω)L + [Kd,e]d,e/∈Es
+ . . .+ [Kd,e]

|E|
d,e/∈Es

)

·Bt(IL) (49)

= [Kd,e]d∈Es,e/∈Es
·
(

I(|E|−ω)L − [Kd,e]d,e/∈Es

)−1
·Bt(IL) (50)

By Lemma 1, Kd,e = gd,e(CL) = VL · gd,e(Λα) ·V
−1
L . Thus,

[Kd,e]d∈Es,e/∈Es
= (Iω ⊗VL) · [gd,e(Λα)]d∈Es,e/∈Es

· (I|E|−ω ⊗V
−1
L ) (51)

[Kd,e]
j
d,e/∈Es

= (I|E|−ω ⊗VL) · [gd,e(Λα)]
j
d,e/∈Es

· (I|E|−ω ⊗V
−1
L ) ∀1 ≤ j ≤ |E| (52)

In addition, note that

Bt(IL) = (I|E|−ω ⊗VL) ·Bt(IL) · (I|In(t)| ⊗V
−1
L ). (53)
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Consequently, [Fe]e∈In(t) = (Iω⊗VL) ·M̃ ·(I|In(t)|⊗V
−1
L ), where M̃ represents the ωL×|In(t)|L

matrix

[gd,e(Λα)]d∈Es,e/∈Es
·
(

I(|E|−ω)L + [gd,e(Λα)]d,e/∈Es
+ . . .+ [gd,e(Λα)]

|E|
d,e/∈Es

)

·Bt(IL) (54)

=[gd,e(Λα)]d∈Es,e/∈Es
·
(

I(|E|−ω)L − [gd,e(Λα)]d,e/∈Es

)−1
·Bt(IL) (55)

In the decoding matrix Dt(CL) · (Iωt
⊗ ĨL), note that

Dt(CL) = (I|In(t)| ⊗VL) ·Dt(Λα) · (Iωt
⊗V

−1
L ). (56)

Thus,

[Fe]e∈In(t) ·Dt(CL) = (Iω ⊗VL) · M̃ ·Dt(Λα) · (Iωt
⊗V

−1
L ). (57)

Observe that both M̃ and Dt(Λα) can be respectively regarded as an ω×|In(t)| and an |In(t)|×ωt

block matrix, and every block entry is an L × L diagonal matrix. Hence, M̃ · Dt(Λα) is an

ω×ωt block matrix with every block entry being an L×L diagonal matrix. Define an ωL×ωL

permutation matrix Pj (over GF(2)) as follows. It is an L × ω block matrix

[

J1,1 ... J1,ω

...
.. .

...
JL,1 ... JL,ω

]

in

which the only nonzero entry in the ω × L matrix Ji,j is in row j and column i. Rearrange

the rows and columns in M̃ ·Dt(Λα) by respectively left-multiplying Pω and right-multiplying

P
T
ωt

to it. In this way, Pω

(

M̃ ·Dt(Λα)
)

P
T
ωt

becomes an L× L block diagonal entry. The jth

diagonal block entry, 0 ≤ j ≤ L− 1, in it is an ω × ωt matrix

[gd,e(α
j)]d∈Es,e/∈Es

·
(

I(|E|−ω)L − [gd,e(α
j)]d,e/∈Es

)−1
·Bt(1) ·Dt(α

j) = M(αj) ·Dt(α
j), (58)

where the equality holds because of the definition of M(α) and Lemma 3.c). In total,

Pω

(

M̃ ·Dt(Λα)
)

P
T
ωt

=











M(1)Dt(1) 0 . . . 0

0 M(α)Dt(α)
. . .

...
...

. . .
. . . 0

0 . . . 0 M(αL−1)Dt(α
L−1)











. (59)

By (48), M(α)Dt(α) = [U1
e]e∈ESt

. As a consequence of Lemma 3.c),

M(αj)Dt(α
j) = [U1

e]e∈ESt
∀1 ≤ j ≤ L− 1. (60)

In addition, write M(1)Dt(1) =

[

a11 ... a1ωt

...
. ..

...
aω1 ... aωωt

]

. Note that the entries aij belong to GF(2). Then,

M̃ ·Dt(Λα) =







a11 0

0 J11
. . .

a1ωt 0

0 J1ωt

...
. . .

...
aω1 0

0 Jω1
. . .

aωωt 0

0 Jωωt






, (61)
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where Ji,j , 1 ≤ i ≤ ω, 1 ≤ j ≤ ωt, is set to IL−1 if the (i, j)th entry in [U1
e]e∈ESt

is equal to 1,

and set to the (L− 1)× (L− 1) zero matrix otherwise. Let ÎL denote the L× L matrix which

is identical to IL except for the (1, 1)st entry equal to 0, and 1L denote the L× L matrix with

all entries equal to 1. It can be readily checked that

VL · ÎL · (1L +V
−1
L ) · ĨL = ĨL. (62)

Based on (57), (61) and (62), we have

[Fe]e∈In(t) ·Dt(CL) · (Iωt
⊗ ĨL) (63)

=(Iω ⊗VL) · M̃ ·Dt(Λα) · (Iωt
⊗V

−1
L ) · (Iωt

⊗ ĨL) (64)

=(Iω ⊗VL) · M̃ ·Dt(Λα) · (Iωt
⊗ (ÎL · (1L +V

−1
L ) · ĨL)) (65)

=(Iω ⊗VL) ·







a11 0

0 J11
. . .

a1ωt 0

0 J1ωt

...
. . .

...
aω1 0

0 Jω1
. . .

aωωt 0

0 Jωωt






· (Iωt

⊗ (ÎL · (1L +V
−1
L ) · ĨL)) (66)

=(Iω ⊗VL) · ([U
1
e]e∈ESt

⊗ ÎL) · (Iωt
⊗ (1L +V

−1
L ) · ĨL) (67)

=[U1
e]e∈ESt

⊗ ĨL. (68)

Finally, as for each e ∈ Out(S), the binary sequences transmitted on e is [0 m
′
e], GS = Iω ⊗

[0 IL−1], i.e.,

[me]e∈Out(S) = [m′
e]e∈Out(S) · (Iω ⊗ [0 IL−1]) . (69)

In summary,

GS · [Fe]e∈In(t) ·Dt(CL) · (Iωt
⊗ ĨL) (70)

=(Iω ⊗ [0 IL−1]) · ([U
1
e]e∈ESt

⊗ ĨL) = Ut ⊗ IL−1 = [UL−1
e ]e∈ESt

, (71)

i.e., receiver t can recover (L− 1)-dimensional source row vectors m
′
e, e ∈ Out(St) generated

by sources in St based on the decoding matrix Dt(CL) · (Iωt
⊗ ĨL).

D. Proof of Lemma 7

For a fixed L-dimensional vector v over GF(2), the probability that v is in the null-space of

L+K is

Pr((L+K)v = 0) = Pr(v′ = Kv) =



















1
(

L
wH (v)

), wH(v
′) = wH(v)

0, otherwise

(72)
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where v
′ = Lv, and wH(·) stands for the Hamming weight of a vector. The reason for (72)

to hold is as follows. First, note that since K acts as a random circular-shift operation on v,

v
′ = Kv only if wH(v

′) = wH(v). Next, when K is chosen from {0, IL,CL, . . . ,C
L−1
L },

there are l ≤ L vectors v
′ subject to v

′ = Kv. As it is possible that C
i
v = C

j
v for some

0 ≤ i < j ≤ L − 1, l can be strictly smaller than L. For the ith possible vector v
′ subject to

v
′ = Kv, let ti be the number of matrices C

i
L, 0 ≤ i ≤ L− 1 subject to v

′ = C
i
Lv. Apparently,

∑l
i=1 ti = L. Then,

Pr(Lv = Kv) =

l
∑

i=1

1
(

L
wH(v)

) ×
ti
L

=
1

L
(

L
wH(v)

)

l
∑

i=1

ti =
L

L
(

L
wH(v)

) =
1

(

L
wH (v)

) (73)

Now let v be chosen uniformly and randomly from L-dimensional binary vectors. Then the

probability that v is in the null-space of L+K is

Pr((L +K)v = 0) ≤
1

2L

∑

v

1
(

L
wH(v)

) =
1

2L

L
∑

i=0

(

L

wH(v)

)

1
(

L
wH(v)

) =
L+ 1

2L
, (74)

where the inequality in (74) holds due to the partitioning of the set of all L-dimensional binary

vectors v into L+1 classes of different Hamming weights. Since there are L+1 random choices

for K and 2L random choices for v, the number of (v,K) pairs satisfying Lv = Kv is bounded

by

(L+ 1)× 2LPr((L +K)v = 0) ≤ (L+ 1)2L ×
L+ 1

2L
= (L+ 1)2. (75)

Let k denote the number of choices for K such that

rank(L +K) < L(1− ǫ). (76)

For each K subject to (76), the number of vectors v in the null space of L+K is at least 2L(1−ǫ),

i.e., the number of (v,K) pairs satisfying Lv = Kv is at least 2L(1−ǫ). Thus, as a consequence

of (75),

k <
(L+ 1)2

2L(1−ǫ)
. (77)

Since there are L possible choices for K in total, the desired probability is upper bounded by

[(L+ 1)2/2Lǫ]/L+ 1 = (L+ 1)/2Lǫ = 2−Lǫ+log(L+1).

E. Justification of Bounds (38) and (40)

In this appendix, we provide a detailed proof on obtaining the bounds (38) and (40). Adopt

the same notations as in the proof sketch following Theorem 8.
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First we shall prove inequality (38). Recall that in the ith round of the iterative process, E ′
ω is

formed from Eω via substituting ej by ei+ω, where (ej, ei+ω) forms an adjacent pair of edges.

Let F̂ be any ωL × K submatrix of [Fe]e∈Eω
with rank([Fe]e∈Eω

) = rank(F̂) = K. Write

F̂ = [F̂1 F̂0], where F̂0, F̂1 respectively consist of columns in Fej and [Fe]e∈Eω\{ej} that are

contained in F̂. Because rank([Fe]e∈Eω\{ej}) ≥ rank(F̂1) and [Fe]e∈E′
ω
= [[Fe]e∈Eω\{ej} Fei+ω

],

rank([Fe]e∈Eω
)− rank([Fe]e∈E′

ω
) ≤ rank([F̂1 F̂0])− rank([F̂1 Fei+ω

]). (78)

In order to prove the bound (38) for general cases, it suffices to prove (38) under the assumption

that the columns in Fei+ω
are only linearly dependent on column vectors in F̂. Then, there must

exist L× L matrices L̂1, L̂2, and a randomly generated cyclic permutation matrix Kej ,ei+ω
(the

local encoding kernel for adjacent pair (ej , ei+ω)) such that

[F̂1 Fei+ω
] = [F̂1 F̂0]





IK−L̂ L̂1

0 L̂2 +Kej ,ei+ω



 , (79)

where L̂ refers to the number of columns in F̂0. Subsequently,

Pr(rank([Fe]e∈Eω
)− rank([Fe]e∈E′

ω
) > LǫL)

≤Pr(rank([F̂1 F̂0])− rank([F̂1 Fei+ω
]) > LǫL) (80)

=Pr(rank(L̂2 +Kej ,ei+ω
) < L− LǫL) ≤ 2−LǫL+log(L+1) (81)

where the last inequality is a direct consequence of Lemma 7. The bound (38) is thus established.

Next, we shall prove inequality (40). Assume that r = ωL−LǫL(|E|−ω). Under this condition,

the number of choices for the ωL′ ×ωL binary matrix Gs satisfying rank(Gs[Fe]e∈In(t)) ≥ ωL′

is equal to

(2ωL − 2ωL−r)(2ωL − 2ωL−r+1) . . . (2ωL − 2ωL−r+ωL′−1). (82)

As Gs is uniformly and randomly chosen from all 2(ωL
′)(ωL) possible ωL′×ωL binary matrices,

Pr(rank(Gs[Fe]e∈In(t)) ≥ ωL′ | rank([Fe]e∈In(t)) ≥ r)

=
(2ωL − 2ωL−r) . . . (2ωL − 2ωL−r+ωL′−1)

2(ωL)(ωL′)
(83)

= (1− 2−r)(1− 2−r+1) . . . (1− 2−r+ωL′−1) (84)

> (1− 2−r+ωL′−1)ωL
′

(85)

= (1− 2−ωLǫL−1)ωL
′

(86)

> 1− ωL′2−ωLǫL. (87)
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Inequality (40) has thus been established.

F. Proof of Proposition 9

Same as in the proof of Proposition 6, we start the proof from the following necessary condition

for both the (n, 2)-Combination Network and the Swirl Network with |Out(s)| = n to be L-

dimensional vector linearly solvable over GF(2): there are two L×L invertible matrices Ai,Aj

over GF(2) such that

rank(Ai −Aj) = L (88)

It suffices to show that rank(Ai − Aj) < L for two arbitrary permutation matrices of size

L. First note that each of Ai and Aj has exactly one non-zero entry in every row and every

column. In the case that Ai and Aj have a non-zero entry at a same position, Ai − Aj has

at least one zero row or zero column. Thus, det(Ai − Aj) = 0 and rank(Ai − Aj) < L. It

remains to prove, by induction, that rank(Ai −Aj) < L in the case that Ai −Aj has exactly

two non-zero entries in each row and each column.

When L = 2, there are only 2! permutation matrices to be considered. Obviously, rank(Ai −

Aj) < 2. Assume that when L = m, rank(Ai −Aj) < m. When L = m + 1, assume that the

(i, 1) and (j, 1) entries are 1 in the first column and then add the entire ith row to the jth row

in Ai −Aj . Remove the row and column where (i, 1) entry locates and form a new matrix of

size M of size m. Note that det(Ai −Aj) = det(M). In addition, the jth row in M either has

all zero entries or contains exactly two non-zero entries. In the former case, det(M) = 0. In

the latter case, M has exactly two non-zero entries in each column and each row. By induction

assumption, rank(M) < m, and hence det(M) = 0. We conclude that det(Ai −Aj) = 0 and

(88) does not hold for any L. This completes the proof.

G. List of Notation

S: the set of source nodes.

T : the set of receivers.

St the subset of S corresponding to receiver t.

E: the set of unit-capacity edges, with a topological order assumed.

In(v): the set of incoming edges to node v.

Out(v): the set of outgoing edges from node v.
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In(N): equal to
⋃

v∈N In(v) for node set N .

Out(N): equal to
⋃

v∈N Out(v) for node set N .

ω: the number of data units generated by S, equal to |Out(S)|.

ωt: equal to |Out(St)|.

⊗: the Kronecker product.

Kd,e: the local encoding kernel for adjacent pair (d, e), which is an ωL× ωL matrix,

of an (L′, L)-fractional linear code.

Fe: the global encoding kernel for edge e, which is an ωL× L matrix, of an (L′, L)-

fractional linear code.

Gs: the |Out(s)|L′ × |Out(s)|L encoding matrix at source s of an (L′, L)-fractional

linear code.

me: the data unit transmitted on edge e.

kd,e: the local encoding kernel for adjacent pair (d, e) of a scalar linear code.

fe: the global encoding kernel for edge e of a scalar linear code.

Dt: the decoding matrix at receiver t of a linear solution.

[me]e∈A: the column-wise juxtaposition of me with e orderly chosen from subset A of E.

[Kd,e]d,e∈A: the block matrix consisting of Kd,e with both the rows and the columns indexed

by subset A of E.

In: the identity matrix of size n.

CL: the L× L cyclic permutation matrix defined in (16).

Cδ : the set of circulant matrices defined in (22).
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