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Abstract—This work introduces the particle-intensity channel
(PIC) as a model for molecular communication systems and
characterizes the properties of the optimal input distribution and
the capacity limits for this system. In the PIC, the transmitter
encodes information, in symbols of a given duration, based on
the number of particles released, and the receiver detects and
decodes the message based on the number of particles detected
during the symbol interval. In this channel, the transmitter may
be unable to control precisely the number of particles released,
and the receiver may not detect all the particles that arrive. We
demonstrate that the optimal input distribution for this channel
always has mass points at zero and the maximum number
of particles that can be released. We then consider diffusive
particle transport, derive the capacity expression when the input
distribution is binary, and show conditions under which the
binary input is capacity-achieving. In particular, we demonstrate
that when the transmitter cannot generate particles at a high
rate, the optimal input distribution is binary.

I. INTRODUCTION
Molecular communication (MC) conveys information using

small particles’ time of release, number of release, and/or
type [1]. These particles travel from the transmitter to the
receiver where they are detected and the message decoded.
The transport process is typically random, and introduces
uncertainty about the time of particle release and even the
number of particles released during a given symbol interval.

One approach to understanding the capacity limits of molec-
ular channels investigated in prior work assumes information
is encoded in the time of particle release. Such channels are
called molecular timing channels (MTCs). In particular, the
additive inverse Gaussian noise channel is presented in [2], [3],
and upper and lower bounds on capacity are derived. These
work assumed a system where information is encoded in the
release time of a single particle, while in [4], molecular timing
channels where information is encoded via the release times of
multiple particles are considered, and upper and lower bounds
on capacity presented. Reference [5] presents a MTC, where
particles decay after a finite interval, and derives upper and
lower bounds on the capacity of this channel.

Another approach to MC encodes information through the
number of particles released at the transmitter and decodes
based on the number of particles that arrive at the receiver
during the symbol interval. We focus on this type of modula-
tion scheme and call it particle-intensity modulation (PIM)1.
Different channel coding schemes are compared for the MC

This research was supported in part by the NSF Center for Science of
Information (CSoI) under grant CCF-0939370.

1This has been called the concentration-shift-keying or the amplitude-
modulation in previous work. However, we believe PIM captures the physical
properties of this system and its relation to the optical intensity modulation.

systems that employ PIM in [6]. In [7], [8], this concentration-
based channel is considered with a receiver equipped with
ligand receptors. The process of molecule reception of a ligand
receptor is modeled as a Markov chain and the capacity in
bits per channel use is analyzed. The results are extended to
multiple access channels in [9]. In [10], a binomial distribution
is used to model a system where the transmitter can perfectly
control the release of particles and the receiver can perfectly
detect the number of particles that arrive. It is assumed that the
channel has finite memory and particle transport is assisted by
flow. Using this model, bounds on the capacity are derived,
and the capacity for different memory lengths is analyzed.
Reference [11] assumes that the channel input is the rate
of particle release. The channel is represented as a Poisson
channel with finite memory, and upper and lower bounds on
capacity per channel use are presented.

In this paper, molecular channels with imperfect PIM at
the transmitter and imperfect detection at the receiver are
considered. Specifically, we consider the case where the sender
cannot perfectly control the number of particles that are
released, and the destination may not detect all the particles
that arrive. We assume that the duration of the symbol is long
enough such that particles from one symbol do not impinge on
future symbols. This model is reasonable if particles diffuse
beyond the receptor or disappear in some other fashion, for
instance through degradation [12]. Under this assumption, the
system is memoryless. Finally, we assume that the particles
can be generated at a constant fixed rate at the transmitter.
For this model, we show that the system can be represented
with a channel model similar to the binomial channel [13] with
two differences. Firstly, the channel input is discrete instead of
continuous. Second, the size of the symbol set, which depends
on the maximum number of particles that can be released by
the transmitter, changes as a function of symbol duration. This
is because of the assumption that the particles are generated
at a constant rate at the transmitter. In this work we call this
channel the particle-intensity channel (PIC).

We define the capacity of this channel in bits per second and
as a function of symbol duration. It is shown that the optimal
input distribution, for any symbol duration, always has mass
points at zero and the maximum number of particles that can
be released by the transmitter. This maximum number depends
on the rate of particle generation and the symbol duration.
One of the most prominent modes of particle transport in the
literature is diffusive transport [1]. In this scheme, the released
particles would follow a random Brownian path to the receiver.
For diffusive particle transport, the capacity of the binary input
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PIC is derived, where the 0 is represented by sending nothing
and 1 by sending the maximum number of particles. We show
the conditions under which the binary input is a capacity-
achieving distribution. In particular, for the case where the
transmitter cannot generate particles at a high rate, an optimal
input is binary.

The rest of this paper is organized as follows. In Section II
we present the system model and the capacity expression. Then
in Section III we investigate characteristics of the optimal input
distribution and we derive the capacity of the binary input
diffusion-based PIC. We present numerical results in Section
IV, and in Section V we discuss the results.

II. SYSTEM MODEL AND CAPACITY FORMULATION

A. The Particle Intensity Channel
We consider an MC channel in which information is modu-

lated through the PIM, i.e., the number of particles simultane-
ously released by the transmitter. The particles themselves are
assumed to be identical and indistinguishable at the receiver,
and no other properties (such as the time-of-release) are
used for encoding information. The receiver then counts the
number of particles that arrive during the symbol duration for
decoding the information. The particles that are released by
the transmitter travel to the receiver through some random
propagation mechanism (e.g., diffusion). We assume that the
particles travel independently of each other, and are detected
independently of each other. This is a reasonable model that
has been used in many previous works [1].

The channel is used in a time-slotted fashion, where τ is the
symbol duration. We define a parameter λ as a constant fixed
rate at which the transmitter can generate particles. Note that
in this case the maximum number of particles, mτ , that could
be released by the transmitter in one channel use can change
as a function of symbol duration according to

mτ = bλτc . (1)

We assume that particles are released instantly and si-
multaneously at the beginning of the symbol interval. Let
X ∈X = {0, 1, · · · ,mτ} denote the number of particles the
transmitter intends to release, where X is the input symbol
set. Note that λ constrains the cardinality of the symbol set
|X |. We let Y denote the total number of particles that are
detected at the receiver.

As particles may not dissipate over the symbol duration,
particles left over from prior symbol intervals could interfere
with detection during the current channel use. Such intersym-
bol interference (ISI) must be incorporated into deriving the
channel capacity, which can be quite challenging, particularly
for MC. Therefore, to make the problem more tractable,
we assume that particles with transit times exceeding τ are
somehow inactivated. That is, particles are assumed to have
a finite lifetime of duration τ . This feature seems reasonable
since particles could be rendered undetectable either naturally
or by design (via denaturing or gettering/enzyme reactions
[12]). With this assumption, channel uses become independent
and the maximum mutual information between input and
output during a single channel use defines the channel capacity.
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Fig. 1. The particle intensity channel with imperfect transmitter.

In practice, particle emission at the transmitter may be
stochastic, as we now describe in more detail. Let X be the
number of particles that the transmitter intends to release, and
X ′ be the number of particles that are actually released into
the medium. Moreover, let px,x′ be the probability that x′

particles are actually released when the receiver intended to
release x particles (as illustrated in the left portion of Fig. 1).

We now consider the stochastic particle transport. Each re-
leased particle i will arrive at the receiver at some independent
identically distributed random time Ti ∼ fT (·). Let fT (t)
denote the PDF of the time the particle arrives, and FT (t)
denote its corresponding CDF. Then the probability that a
particle arrives during a symbol duration is given by

ρ = FT (τ), (2)

and the probability that it never arrives (and is by assumption
never detected) is 1− ρ.

If we assume FT (t) is strictly monotone, the symbol
duration can be obtained from ρ by using the inverse CDF
(iCDF) function, i.e., τ = F−1T (ρ). Using the iCDF, we can
also rewrite mτ as a function of ρ:

mρ =
⌊
λF−1T (ρ)

⌋
(3)

Let Y ′ denote the total number of particles that arrive at
the receiver during the symbol duration. Since we assume
the particles propagate independently of each other, given x′

particles were actually released by the transmitter, we have

P (y′|x′; ρ) =

{
qx′,y′ =

(
x′

y′

)
ρy

′
(1− ρ)x′−y′ , y′ ≤ x′

qx′,y′ = 0, y′ > x′
(4)

and in general P (Y ′|X ′ = x′; ρ) ∼ B(x′, ρ), where B(n, q)
indicates the binomial distribution with parameters n and q.

Finally, the receiver may not be able to perfectly detect the
particles that arrive. Let Y ′ be the number of particles that
arrive at the receiver during one symbol duration, and let Y
be the number of particles that are actually detected during the



corresponding symbol duration. Furthermore, let ry,y′ be the
probability that y particles are detected by the receiver, when
y′ particles arrive at the receiver. Note that the receiver may
fail to detect some of particles that arrive due to sensitivity or
uncertainty in the detection process. The end-to-end channel
is then defined as

P (y|x; ρ) =
mρ∑
j=0

mρ∑
i=0

px,iqi,jry,j . (5)

Since {px,i}
mρ
i=0 is a PMF, one can think of the channel input

as actually being this PMF.
In the rest of this work we assume that

px,x′ =

(
mρ

x′

)
( αxmρ )

x′
(1− αx

mρ
)mρ−x

′
, (6)

where 0 < α ≤ 1. Note that here p0,0 = 1, which means
the transmitter can send zero particles with perfect accuracy.
Moreover, for α = 1, the expected number of particles released
by the transmitter is x, and for mρ large, using the Gaussian
approximation to a binomial, it is normally distributed around
x for x not close to 0 and mρ. The particles that arrive at
the receiver are assumed to be detected independently of each
other with probability β and therefore we have

ry,y′ =

(
y′

y

)
(β)y(1− β)y

′−y. (7)

We now present the end-to-end channel characteristic in the
following proposition.

Proposition 1 (Particle-Intensity Channel): For an MC sys-
tem which consists of an imperfect PI transmitter governed
by (6), the PI propagation channel in (4) and an imperfect
receiver governed by (7), the channel is characterized by

P (Y = y|X = x; ρ) =

(
mρ

y

)
(
xθρ
mρ

)y(1− xθρ
mρ

)mρ−y, (8)

where θρ ≡ αρβ.
Proof: Given X = x, X ′ ∼ B(mρ,

xα
mρ

). We can write
this as X ′ =

∑mρ
i=0X

′
i where X ′i ∼ B(1, xαmρ ) is an indicator

that the ithparticle is released by the transmitter. Let Zi ∼
B(1, ρ) be an indicator that the ithreleased particle arrives at
the receiver within the symbol duration, and Y ′i = X ′iZi be the
indicator that the ithparticle is both released and arrives at the
receiver during the symbol interval. Let Z ′i ∼ B(1, β) be the
indicator that the ithreleased particle that arrives at the receiver
is detected, and Yi = Y ′i Z

′
i be the indicator that the ithparticle

is released by the transmitter, arrives at the receiver, and is
detected. Then Yi ∼ B(1, xαρβmρ

), and since Y =
∑mρ
i=0 Yi,

Y ∼ B(mρ,
xαρβ
mρ

).
An important observation here is that as the symbol duration

τ changes, ρ changes, and therefore, the channel changes. In
this work, we incorporate the optimization of the symbol du-
ration into the formulation of capacity, to present the channel
capacity of the memoryless PIC in bits per second. This is
one important distinction between this and previous work [2],
[3], [10], [11] where the channel capacity is typically defined
in bits per channel use.

For the case when mρ is large and θρ is small, the system
can be well approximated by the Poisson distribution [14]

P (y|x; ρ) = (xθρ)
yexθρ

y!
. (9)

We write this as P (y|x; ρ) ∼P(xθρ), where P(a) indicates
the Poisson distribution with parameter a.

Remark 1: Using the Poisson approximation, the PIC in
MC systems can be viewed as a more general formulation
of the discrete-time Poisson channel used to model optical
intensity channels [15]–[17]. The channel input is discrete
here and continuous in the discrete-time Poisson channel.
Another important difference is that the symbol duration is
finite, and the rate of arrival does not scale linearly with the
symbol duration. Note that although here we do not consider
interfering particles, they can be introduced to the Poisson
model in (9) by adding an extra term similar to the dark current
in optical communications [15]–[17].
B. Channel Capacity Formulation

We now characterize the channel capacity of the PIC. Let
PX,ρ = [PX,ρ(0), PX,ρ(1), ..., PX,ρ(mρ)] be the channel input
PMF and let P be the set of all valid PMFs. Then the capacity
of the channel in (8), in bits per second is defined as

C(ρ) = max
PX,ρ∈P

I(X;Y |ρ)
F−1T (ρ)

, (10)

where F−1T (·) is the iCDF of the particle detection time. Since
the channel changes as a function of the symbol duration, the
fundamental limit of this channel is then

C∗ = max
ρ

C(ρ). (11)

Remark 2: Note we define the capacity in terms of bits per
second, as the capacity or the rate of a particle’s arrival typi-
cally does not increase linearly with time. This is in contrast to
the discrete-time Poisson channel in optical communications,
where the rate of photon arrival increases linearly with the
symbol duration [17]. Therefore, in the PIC, symbol duration
can have a significant effect on the information rate. This will
be further demonstrated in Section IV.

III. OPTIMAL INPUT DISTRIBUTION
AND BINARY-INPUT CAPACITY

We now investigate the characteristics of the optimal input
distribution, present capacity when the input is binary, and
investigate settings for which a capacity-achieving distribution
is binary.

Let P∗X,ρ be the optimal input PMF that maximizes the
mutual information in (10), for a given ρ, and let P ∗X,ρ(i) be
the ithelement of P∗X,ρ. The following theorem shows that the
input distribution P∗X,ρ that maximizes the mutual information
in (10) has mass points at 0 and mρ.

Theorem 1: For a given symbol duration τ , and hence a
given ρ, the mutual information given in (10) is maximized
by a PMF P∗X,ρ, where P ∗X,ρ(0) > 0 and P ∗X,ρ(mρ) > 0.

Proof: First, we prove that P ∗X,ρ(0) > 0 by contradiction.
The mutual information in (10) can be written as

I(X;Y |ρ) = H(X|ρ)−H(X|Y, ρ).



Assume that P ∗X,ρ(0) = 0 in P∗X,ρ, and let X∗ be a RV
drawn from this PMF, and Y ∗ the corresponding channel
output. Let 0 < i < mρ be the ith index of P∗X,ρ such
that P ∗X,ρ(i) > 0. Let P†X,ρ be another input distribution
constructed by swapping the ithelement in P∗X,ρ with the
zeroth element. That is P †X,ρ(0) = P ∗X,ρ(i), P

†
X,ρ(i) = 0,

and all the other elements of P†X,ρ are the same as P∗X,ρ. Let
X† be a RV drawn from this PMF, and Y † the corresponding
channel output. Clearly H(X∗|ρ) = H(X†|ρ). Since symbol
0 is always transmitted perfectly, as there is no ISI and
interfering particles, H(X†|Y †, ρ) ≤ H(X∗|Y ∗, ρ). Therefore
we have I(X∗;Y ∗|ρ) ≤ I(X†;Y †|ρ), which contradicts our
assumption that P∗X,ρ is optimal. Therefore, the optimal input
distribution always satisfies P ∗X,ρ(0) > 0. Using the same
reasoning, and the fact that between all the non-zero symbols,
the symbol mρ results in the highest probability that a particle
arrives at the receiver, we can prove that the optimal input
distribution always satisfies P ∗X,ρ(mρ) > 0 as well.

Previous work on MC has considered on-off-keying in
diffusive environments [1]. We now derive the capacity in (10)
as a function of ρ for this particular class of MC systems.

We assume that the particles that arrive at the receiver are
either immediately detected by the receiver with probability
β, or they are never detected, perhaps denatured as part of
misdetection. Let ` be the shortest distance between a point
source transmitter and the surface of a spherical receiver, d be
the diffusion coefficient of particles, and r be the radius of a
spherical receiver. If we assume that the particles diffuse from
the transmitter, located at the origin, to the spherical receiver,
the motion of each particle can be represented using a random
Brownian path in 3D space. Since we assume that the particles
are either detected when they arrive at the receiver or they
are never detectable, the time of arrival is given by the first
time the particle reaches the receiver. For Brownian motion
in 3D space, the first arrival time T , to the spherical receiver,
is a scaled Lévy-distributed random variable where the scale
constant is η = r

`+r [18]. This means that there is a non-zero
probability that a particle never arrives at the receiver. Note
that for Brownian motion in 1D space, η = 1. Using the iCDF
of the scaled Lévy distribution, we obtain

τ = F−1T (ρ) =
c

2 erfcinv2(ρ/η)
. (12)

where c = `2

2d and erfcinv(.) is the inverse of the complemen-
tary error function erfc(.). We call a channel that relies on this
diffusive transport the diffusion-based PIC (DBPIC).

Remark 3: Substituting (12) into (10), we observe that the
diffusion coefficient d has no effect on the optimal input
distribution and the optimal ρ. This is despite the fact that
the capacity increases linearly with d. This means that if the
type of particle is changed, so long as the distance between
the transmitter and the receiver is the same, and the receiver
has the same radius, the optimal distribution and the optimal ρ
values will remain the same. Note that the change in capacity
is due to the fact that a shorter or a longer symbol duration is

required to achieve the same ρ value.
Remark 4: If we consider a 1D environment2 (i.e., η = 1),

we observe that the capacity decreases as 1
l2 , and the distance l

does not affect the optimal input distribution and the optimal
ρ. For a 3D environment however, changing the distance l
and the radius r could affect the optimal ρ and P (x) values
through η.

We now present the channel capacity of the binary-input
DBPIC in the following theorem.

Theorem 2: Let Xb ∈ {0,mρ} be the binary input to the
DBPIC in (8), ξρ be the probability that the symbol mρ is
transmitted, and ϕρ = (1 − θρ)

mρ . Then an optimal input
distribution ξ∗ρ is given by

ξ∗ρ =
1

ϕ

ϕρ
ϕρ−1
ρ − ϕρ + 1

, (13)

and the capacity of (10), in bits per second, is given by

CbDB(ρ) =
2
c erfcinv

2(ρ/η) log

(
1 + (1− ϕρ)ϕ

ϕρ
1−ϕρ
ρ

)
.

(14)

Proof: For the binary input DBPIC, the mutual informa-
tion in (10) can be written as a function of ξρ using

I(Xb;Y |ρ) = I(ξρ) =ξρϕρ log(ϕρ)− ξρ(1− ϕρ) log(ξρ)
− (1− ξρ + ξρϕρ) log(1− ξρ + ξρϕρ).

(15)

Taking the derivative of I(ξρ) with respect to ξρ, setting it
equal to zero, and solving the resulting equation, we obtain
(13). Substituting (13) into (15) and using (12) in (10) we
obtain the capacity expression in (14).

The log expression in the capacity result in Theorem 2 is
similar to the capacity of the z-channel because, for a binary
input, the channel reduces to the z-channel with symbol 0
going to 0 with probability 1, and symbol mρ going to symbol
0 with probability ϕρ [19].

An interesting question that arises here is the following:
when is the binary input optimal for the PIC. In the following
proposition, we provide a guideline for the optimality of the
binary input for a subclass of PICs.

Proposition 2: For the PIC in (8) where mρ is large and θρ
is small such that the Poisson approximation in (9) is accurate,
the binary input distribution given in (13) is optimal if mρθρ <
3.3679.

Proof: Using the same technique presented in [15] for the
optical channels, the proposition can be proved.

Note that this condition may be satisfied in many practical
systems where the radius of the receiver is much smaller
than the distance between the transmitter and the receiver,
hence the probability of particles arriving is small, and the
rate of particle generation is small. Upper bounds on the total
variation between binomial and Poisson distributions can be
used to show that this variation is small for small θρ [14].

2Note that a 1D environment is a good approximation if the system is
confined inside a very narrow and long physical channel.
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IV. NUMERICAL RESULTS

We now numerically compare capacity for an optimal input
distribution against capacity under the binary distribution for
DBPIC. For the comparison, the optimal input distribution
and the capacity are calculated using the Blahut-Arimoto
algorithm [20]. Fig. 2 shows the results for three different
particle generation rates, λ. The scaling factor for the Lévy
distribution η = 0.2, which means the distance between the
transmitter and the receiver is four times the radius of the
receiver. The square markers indicated the C∗ in (11) for the
binary input distribution, and the X-markers indicated C∗ for
the optimal input distribution. Based on the results we observe
that it is only for the case of λ = 1000 that the binary input
distribution does not maximize C∗. The three vertical dashed
lines indicate the ρ value after which mρθρ in Proposition 2 is
greater than 3.3676. We observe that for the ρ values smaller
than this critical value, the binary input is the optimal input
distribution. Fig. 3 shows the optimal input distribution that
maximizes C∗ in (11) for λ = 1000.

V. CONCLUSIONS
We introduce the PIC and show that an optimal input

distribution for this channel always has mass points at zero and
the maximum number of particles that can be released by the
transmitter. Interestingly, it was observed that for diffusion-
based propagation, the diffusion coefficient, and hence the
type of the particles used, does not affect the optimal input
distribution. We then derive capacity for the binary input
diffusion-based PIC and present conditions under which a
binary input is optimal for this channel. Our numerical results
illustrate that a binary input is optimal for systems where
the transmitter cannot generate particles at rates that satisfy
Proposition 2. This can be thought of as the low SNR regime.
As part of future work, we will introduce ISI into our model.
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