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Abstract

Motivated by the question of whether the recently introduced Reduced Cutset Coding
(RCC) [1, 2] offers rate-complexity performance benefits over conventional context-based
conditional coding for sources with two-dimensional Markov structure, this paper compares
several row-centric coding strategies that vary in the amount of conditioning as well as
whether a model or an empirical table is used in the encoding of blocks of rows. The
conclusion is that, at least for sources exhibiting low-order correlations, 1-sided model-based
conditional coding is superior to the method of RCC for a given constraint on complexity,
and conventional context-based conditional coding is nearly as good as the 1-sided model-
based coding.

1 Introduction

Lossless coding of an image involves blocking (equivalently, grouping) and ordering
the pixels in some way, and feeding them, together with a corresponding set of coding
distributions, to an encoder, which without loss of optimality we can assume to be
an Arithmetic Encoder. The coding distribution for a given pixel, or block of such, is
conditioned on some subset of the pixels, referred to as its context, that have already
been encoded.

This paper considers how various coding strategies effect coding rate and com-
plexity. Strategies considered include different ways of blocking and ordering pixels,
different contexts, and two different ways of producing coding distributions: model-
based and empirical, i.e., parametric and nonparametric.

For simplicity we focus on bilevel images. To provide a well-founded testing ground
with interesting correlation structure, we focus on images produced by a simple, uni-
form, Ising Markov Random Field (MRF) model [3], with each pixel having four
neighbors (N , E , S, W), and positive, row-stationary edge correlations. MRF mod-
els have seen widespread application in image processing, in large part due to the
reasonable assumption that pixels in an image are dependent on some small sur-
rounding region rather than on pixels from the entire rest of the image. In particular,
the Ising model has been proposed as a model for bilevel images [4] called scenic,
which are complex bilevel images, such as landscapes and portraits, having numer-
ous black and white regions with smooth or piecewise smooth boundaries between
them. The model-based coding distributions are based explicitly on this model. The
empirical methods simply use tables of conditional frequencies.
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We focus on what we call row-centric schemes, which are schemes in which rows are
grouped into blocks and within each block, columns are sequentially encoded from left
to right. These include both the recently introduced Reduced Cutset Coding (RCC)
[1, 2], as well as conventional context-based conditional coding, such as in [5, 6, 7].
It excludes coding techniques such as when image pixels are coded in Hilbert scan
order [8, 7].

By the Markov property, no coding scheme could attain lower rate than the scheme
that encodes each row with coding distribution equal to the row’s conditional distri-
bution given the previous row as context, which has rate equal to the entropy-rate
H∞ = 1

W
H(Xr1|Xr0), where W is the width of the image, and Xr0 and Xr1 denote

successive rows. An equivalent row-centric scheme will sequentially encode each pixel
in a given row with context equal to the pixel to the left, the one above, and all pixels
to the right of the one above. While it is easy to say this is optimal, it is compu-
tationally infeasible to attain this rate exactly. On the one hand, with model-based
coding distributions, due to need for marginalizing over the pixels below the block, the
conditional distribution of one pixel given the aforementioned context is exorbitantly
complex to compute in real time, and exorbitantly expensive to store even if it were
computed in advance. On the other hand, with empirical-distribution-based coding,
the distribution is again exorbitantly expensive to store. Thus, the real question is
how to approach rate H∞ with computationally efficient coding techniques. With this
in mind, this paper explores the merits of several row-centric strategies – some us-
ing model-based coding distributions and some using empirically-based distributions.
From now on, we call these model-based and empirically-based schemes, respectively.

Model-based

Let G = (V,E) denote a grid-graph underlying the MRF. For the given Ising model,
one can encode an Nb ×W block Xb consisting of Nb rows with complexity per pixel
that increases exponentially with Nb and with storage that increases exponentially
with Nb and linearly with W . This is done by lumping the i-th column Xb,i into
one super-pixel, and computing the coding distribution of each column in turn using
Belief Propagation on the resulting line graph. This is feasible for moderate Nb, e.g.,
10 or so, and as described below, such coding distributions can be computed with
conditioning/context from the row above, the row below, both the row above and row
below, or from neither, without any appreciable increase in complexity.

If the coding distributions within a block are conditioned on just the row above,
then to avoid an exorbitantly complex marginalization, all edges running South from
the block must be cut. This means that the computed coding distribution pC(xb,i)
will not be the true conditional distribution for the i-th column – the result being
that the overall coding rate will be larger than H∞ due to the divergences between
the true and computed conditional distributions for the columns. Similarly, if the
coding distributions within a block are computed without conditioning on either the
row above or the row below, then all edges running both South and North from the
block must be cut. This again means that the computed coding distributions pC(xb,i)
will not be the true distributions for the columns – the result being that the overall



coding rate will exceed H∞ due both to the divergences between true and computed
distributions for the columns, and the blocks being encoded independently of one
another. We refer to these methods as 1-sided and 0-sided model-based coding,
respectively. In each of these, the excess rate, i.e., redundancy, decreases as Nb

increases, and for each of these, the divergence can be minimized by choosing an
appropriate moment-matching correlation for the truncated model.

Two-sided model-based coding of a block of rows is also possible, but unlike 0- and
1-sided coding, this cannot be applied to the entire image. For example in RCC, blocks
are alternately 0-sided coded and 2-sided coded. On the one hand, the blocks that are
0-sided coded suffer the sources of redundancy mentioned previously. On other hand,
the blocks that are 2-sided coded are coded precisely at rate 1

WNb
H(Xb|XS,XN),

where XS and XN denote the rows just North and just South of Xb, respectively.
While this was called RCC in [1, 2], here we refer to it as 0/2-sided coding.

Empirically-based

With empirically-based coding, there could again be 0-, 1- or 2-sided coding. How-
ever, in this paper we only consider 1-sided coding, where the pixels in a row are
sequentially coded from left to right with context consisting of the pixel to the left
and some number of pixels in the row above, beginning with the pixel directly above
and extending some number of pixels to the right. (This is conventional context-based
coding.) While H∞ could be attained if all pixels to the right of the current pixel
in the row above were in the context, the storage required for the empirical coding
distribution increases exponentially with the size of the context, so the size of the
context must be limited to a moderate amount, for example 10. And assuming a suf-
ficient amount of training data that the empirical conditional distributions are very
close to the true conditional distributions, the resulting redundancy is the average of
the divergences of the true conditional distribution of a pixel given all values on the
previous and the true conditional distribution given the moderately sized context.

Summary of main results

In regard to trying to attain H∞ with 1-sided row-centric coding, we note that
empirically-based coding uses a true distribution with a truncated context, whereas
model-based coding uses an approximate distribution with full context. Moreover,
1-sided model-based coding uses an approximate distribution on all blocks, while the
0/2-sided coding of RCC uses a more severe approximation on half the blocks and an
optimal distribution on the other half. Consequently, we are interested in the relative
performances of these three approaches in achieving rate as close to H∞ as possible.

In this paper, we first compare 0/2-sided model-based coding with 1-sided model-
based coding, and then 1-sided model-based coding with 1-sided empirical-based cod-
ing. 1-sided model-based coding has rate decreasing monotonically with Nb. For a
given complexity, i.e., Nb, 1-sided model-based coding outperforms 0/2-sided model-
based coding. Moreover, 1-sided model-based coding outperforms 1-sided empirical-
based coding, though not by much. In summary, at least for Markov models exhibit-



ing low-order correlations, there are both model-based and empirically-based 1-sided
schemes with good performance and low complexity.

The remainder of the paper is organized as follows. In Section 2 we cover back-
ground on the Ising model, Arithmetic Encoding, model- and empirical-based coding
distributions and Reduced Cutset Coding. In Section 3, we discuss 0-, 1-, and 2-sided
coding, and in Section 4 we discuss numerical results.

2 Background

In this section we introduce notation and background concepts and results.

2.1 MRF Source Model

The specific information source that we consider in the present paper is a uniform
Ising model on a square grid graph G = (V,E), whose nodes V are the sites of an
M ×W rectangular lattice and whose edges E are pairs of horizontally and vertically
adjacent nodes. The random variable Xi associated with each node i assumes values
in the alphabet X = {−1, 1} and a configuration x = (xi : i ∈ V ) has probability

p(x; θ) = exp{ θ
∑
{i,j}∈E

xixj − Φ(θ)}, (1)

where Φ(θ) is the log-partition function and θ > 0 is the positive edge correlation
parameter of the model.

2.2 Row-Centric Arithmetic Coding

As mentioned in the introduction, in row-centric coding, rows are grouped into Nb×W
blocks and then within a block Xb, columns of pixels are encoded from left to right.
Let r1 and rNb

denote the first and last rows, respectively, of a block. Similarly, let
r0 and rNb+1 indicate, respectively, the row preceding and row succeeding the block.

When coding column configuration xb,i, a coding distribution is passed, together
with the configuration xb,i, to an Arithmetic Encoder. In 0-sided coding pC(xb,i) is
conditioned only on xb,i−1, the configuration of the the i− 1-st column of the block.
In 1-sided model-based coding, pC(xb,i) is conditioned on xb,i−1 and xr0,i:W , the i-th
through final pixels of the previous row. In 1-sided empirical-based coding, pC(xb,i)
is conditioned on xb,i−1 and xr0,i:i+c−2, the i-th through i + c − 2-th pixels of the
previous row, where c is the size of the context. In 2-sided model-based coding,
pC(xb,i) is conditioned on xb,i−1, xr0,i:W , and xrb+1,i:W , the i-th through final pixels of
the next row. The contexts for these schemes can be visualized with Figure 1.

The approximate number of bits produced by the AC encoder when encoding the
i-th column is − log pC(xbi). The rate Rb,i of encoding the i-th column of block b
is the expected number of bits produced, divided by Nb. If the p(xbi) is the true
(conditional) distribution of column i given the context, then the rate of encoding
the i-th column is

Rb,i =
1

Nb

[H(Xb,i|Cb,i) +D(p(xb,i)||pC(xb,i))] .



where D denote divergence. From this, the rate of encoding block b is

Rb =
1

WNb

[
H(Xb|Cb) +D

]
,

where D is the sum of the per-column divergences.

2.3 Model and empirical based coding distributions

For model-based methods, the coding distribution is computed by running BP on the
Ising model restricted to the subgraph induced by the block of rows, with a possibly
modified correlation parameter. In the 0- and 1-sided cases, the edge correlation
parameter is adjusted to account for the truncated edges (on both sides of the block
or below the block, respectively). In the case of 1- and 2-sided coding, in which
conditioning on either the upper or both the upper and lower boundaries is part of the
coding distribution, this conditioning is incorporated by introducing self correlation
on the bottom and top rows of the block that bias those sites toward the value of
their boundary neighbor.

Let θ∗0,Nb
and θ∗1,Nb

denote the parameters used for encoding a block with 0-,
respectively, 1-sided coding. For 2-sided, the block is encoded using the original
parameter θ, and the model becomes

p(xb|xr0 ,xrb+1
; θ∗2,Nb

) =

exp{ θ∗2,Nb

∑
{i,j}∈Eb

xixj + θ∗2,Nb

∑
{i}∈r1∪rb

sixi − Φ(θ∗2,Nb
)},

where Eb is the set of edges both of whose endpoints are in b, and si is the self-
correlation on pixel i corresponding to the value of its neighbor on the boundary of
b.

For 1-sided coding, the model is

p(xb|xr0 ; θ∗1,Nb
) =

exp{ θ∗1,Nb

∑
{i,j}∈Eb

xixj + θ∗1,Nb

∑
i∈r1

sixi − Φ(θ∗1,Nb
)}

For 0-sided coding, the model is

p(xb; θ
∗
0,Nb

) = exp{ θ∗0,Nb

∑
{i,j}∈Eb

xixj − Φ(θ∗0,Nb
)},

In each of these cases, the coding distribution p(xb,i) for the i-th column within the
block is computed using Belief Propagation [2]. Messages are first passed from right
to left on the resulting line-graph of superpixels (columns) in such a way that after the
messages are received at the first column, encoding can proceed from left to right with
the coding distributions being computed as they are needed. The (column) coding



Figure 1: Context sets in 0-sided, 1-sided empirical-based, 1-sided model-based, and 2-sided
model-based coding. The pixel being encoded is indicated with an X while the context pixels
are depicted with a blue circle.

distributions for 0-, 1-, and 2-sided model-based coding are denoted p(xb,i|xb,i−1; θ∗0),
p(xb,i|xb,i−1,xr0,i:W ; θ∗1), and p(xb,i|xb,i−1,xr0,i:W ,xrb+1,i:W ; θ∗2), respectively.

Empirical coding distributions are based on a table of the frequencies of differ-
ent configurations of a column for all possible configurations of the context. Letting
xT denote the configuration being encoded and xC denote the configuration of the
context, the table consists of values of the form p∗(xT ,xC), from which the cod-
ing distribution p∗(xb,i|xb,i−1,xr0,i:i+c−2) can be computed, where c is the size of the
context.

There are 1-pass and 2-pass methods. In this paper we consider only the 2-pass
method in which the relevant frequencies are collected from a set of training images,
and then, in a second pass, the rows of the image are encoded using the collected
frequencies as coding distributions.

2.4 Reduced Cutset Coding [1, 2]

In the Reduced Cutset Coding (RCC) method introduced in [1] and further analyzed
in [2], an image is divided into alternating blocks of rows XL and XS of sizes NL×W
and NS ×W , called lines and strips, respectively. Lines are encoded first in a 0-sided
manner, i.e., with no conditioning. The parameter θ∗0,NL

used for the coding distri-
butions of columns is chosen to be the one that minimizes divergence with the true
distribution of lines. It is referred to as the moment-matching correlation parameter.
The coding rate for lines is

RL
NL

=
1

WNL

[
H(XL; θ∗0,NL

+D)
]
,

where D is the divergence between p(xb; θ) and p(xb; θ
∗
0,NL

).
Strips are subsequently encoded in a 2-sided manner, i.e., conditioned on the

immediately preceding and immediately succeeding rows. The coding rate for a strip



is

RS
NS

=
1

WNS

H(XS | Xr0 ,XrNb+1
; θ∗2,NS

).

For a large image, the overall rate of RCC is then

RNS ,NL
≈ NS

NS +NL

RS
NS

+
NL

NS +NL

RL
NL

≈ H∞

+
NL

NL +NS

D +
NS

NL +NS

I(Xr0 ;XrNL+1
)

where D is the divergence between p(xb; θ) and p(xb; θ
∗
0,NL

), and I(Xr0 ;XrNL+1
) is

the information between the row immediately preceding and the row immediately
following a strip.

3 Row-Centric Coding Redundancy

In this section we return to the question posed in Section 1, that of attaining rate as
close as possible to the entropy rate H∞ = H(Xr1|Xr0), and discuss the redundancies
associated with the different coding strategies considered in this paper. While we
cannot analytically evaluate the rate of decrease of the redundancies, by performing
numerical experiments as in the next section, we can gain a sense of the relative rates
of decrease.

We let R0E
Nb

and R0M
Nb

denote the rate for coding Nb rows with 0-sided empirical-
and model-based coding, respectively. Likewise for R1E

Nb
, R1M

Nb
, and R2M

Nb
. We focus

here on the coding of a single row, i.e., Nb = 1. Moreover, let I(Xr1 ;Xr0) be the
mutual information between rows 0 and 1. Some of the results in this section make
use of Lemma 6.1 in Section 6.

Proposition 3.1 The rate for encoding a row with 0-sided model-based coding is

R0M
1 = H∞ +

1

W

[
D

0M

1 + I(Xr1 ;Xr0)
]

where D
0M

1 is the sum of divergences between p(xb,i|xb,i−1; θ) and p(xb,i|xb,i−1; θ∗0) over
all columns.

Proof

R0M
1 =

1

W

[
H(Xb) +D(Xb||X̃b)

]
=

1

W

[
H(Xb|Xr0) + I(Xr1 ;Xr0) +D(Xb||X̃b)

]
= H∞ +

1

W

[
I(Xr1 ;Xr0) +D(Xb||X̃b)

]
,

which shows the proposition. �



Proposition 3.2 The rate for coding a row with 0-sided empirical-based coding is

R0E
1 = H∞ +

1

W
[I(Xr1 ;Xr0)] .

Proof

R0E
1 =

1

W
H(Xb)

=
1

W
[H(Xb|Xr0) + I(Xr1 ;Xr0)]

= H∞ +
1

W
I(Xr1 ;Xr0),

which shows the proposition. �

Note that both 0-sided methods suffer the information penalty for independently
encoding rows of the image. However, we do not include a divergence term in R0E

1

because given enough training data, the empirical coding distribution p∗(xb,i|xb,i−1)
for the i-th column will well-approximate the true distribution p(xb,i|xb,i−1; θ). Thus
one could estimate D̄0M

Nb
by encoding the source with both 0-sided model-based coding

and 0-sided empirical-based coding and forming the estimate R0M
Nb
−R0E

Nb
.

Proposition 3.3 The rate for coding a row with 2-sided model-based coding is

R2M
1 = H∞ −

1

W
I(Xr1 ;Xr2|Xr0)

< H∞,

Proof

R2M
1 =

1

W
H(Xb|Xr0 ,Xr2)

=
1

W
[H(Xb|Xr0)− I(Xb;Xrw |Xr0)]

= H∞ +
1

W
I(Xr1 ;Xr2|Xr0)

This, of course, is not an actual coding rate, but it can be shown that when
combined with R0M

1 gives the performance of RCC with NL = NS = 1.

Proposition 3.4 Encoding every other row with 0-sided model-based coding and 2-
sided model-based coding gives rate

1

2

[
R0M

1 +R2M
1

]
= H∞ +

1

2W
D̄0M

1 +
1

2W
I(Xr2 ;Xr0)



Proof

1

2

[
R0M

1 +R2M
1

]
=

1

2
H∞ +

1

2W

[
I(Xr1 ;Xr0) +D(Xb||X̃b)

]
+

1

2

[
H∞ −

1

W
I(Xr1 ;Xr2|Xr0)

]
= H∞ +

1

2W
D̄0M

1 +
1

2W
[I(Xr1 ;Xr0)− I(Xr1 ;Xr2|Xr0)] .

Therefore, to show the proposition we need to show that I(Xr1 ;Xr0)−I(Xr1 ;Xr2|Xr0) =
I(Xr2 ;Xr0). To do this, we note that under a row stationary Markov model such as
the one considered in this paper, we have

I(Xr1 ;Xr0)− I(Xr1 ;Xr2|Xr0) = H(Xr1)−H(Xr1|Xr0)−H(Xr2|Xr0) +H(Xr2|Xr0 ,Xr1)

= H(Xr1)−H(Xr1|Xr0)−H(Xr2|Xr0) +H(Xr2|Xr1) (2)

= H(Xr2)−H(Xr2|Xr1)−H(Xr2|Xr0) +H(Xr2|Xr1) (3)

= H(Xr2)−H(Xr2|Xr0)

= I(Xr2 ;Xr0)

where (2) is from the Markov property and (3) is from row stationarity. This com-
pletes the proof. �

By estimating D̄0M
Nb

using the rates R0M
Nb

and R0E
Nb

from 0-sided model-based and
0-sided empirical-based coding, we can then subtract this from the rate of RCC and
obtain an estimate of the shape of I(Xr0 ;XrNb+1

).
Using the above notation, we can restate Proposition 3.1 of [2], for all N0 and N2,

as

Proposition 3.5 RCC

R0M
N0+1 < R0M

N0
, R2M

N2+1 > R2M
N2
, R0M

N0
> R2M

N2
.

Proof The proofs can be found in [9].

We now consider rates of 1-sided coding.

Proposition 3.6 The rate for encoding a row with 1-sided model-based coding is

R1M
1 = H∞ +

1

W
D

1M

1

where D
1M

1 is the sum of divergences between p(xb,i|xb,i−1,xr0,i:W ; θ) and p(xb,i|xb,i−1,xr0,i:W ; θ∗1)
over all columns.



Proof

R1M
1 =

1

W

[
H(Xr1 |Xr0) +D(Xr1|Xr0||X̃r1|Xr0)

]
,

where D(Xr1|Xr0||X̃r1|Xr0) is the divergence between the true conditional distribution
of a row conditioned on the previous row and the conditional distribution of a row
conditioned on the previous row using the 1-sided model, which can be expressed
as the sum of divergences between p(xb,i|xb,i−1,xr0,i:W ; θ) and p(xb,i|xb,i−1,xr0,i:W ; θ∗1).
This shows the proposition. �

Similarly, the rate of encoding a row with 1-sided empirical-based coding is

Proposition 3.7 The rate for encoding a row with 1-sided empirical-based coding is

R1E
1 = H∞ +

1

W
D

1E

1

where D
1E

1 is the sum of divergences between p(xb,i|xb,i−1,xr0,i:W ; θ) and p∗(xb,i|xb,i−1,xr0,i:i+c−2)
over all columns.

Proof

R1M
1 =

1

W

[
H(Xr1 |Xr0) +D(Xr1|Xr0||X̃r1|Xr0)

]
,

where D(Xr1|Xr0||X̃r1|Xr0) is the divergence between the true conditional distribu-
tion of a row conditioned on the previous row and the conditional distribution of
a row conditioned on the previous row using the 1-sided empirical distributions,
which can be expressed as the sum of divergences between p(xb,i|xb,i−1,xr0,i:W ; θ)
and p∗(xb,i|xb,i−1,xr0,i:i+c−2). This shows the proposition. �

Note that the two 1-sided coding scemes do not suffer an explicit information
penalty because there is conditioning on the previous row. On the other hand, if the
context size c could be chosen as c = W +2− i for each column i, then the divergence

term D
1E

1 would vanish. Thus D
1E

1 is really a sum of conditional information terms.

However, both D
1M

1 and D
1E

1 are less than D
0M

1 , so it is of interest how these smaller
divergences on all blocks compare with the 0/2-sided scheme of RCC in which half
the blocks have a larger divergence, plus an information penalty, while the other half
actually receive a coding rate reduction.

Analogous to the results of [2], 1-sided model-based coding can be shown to have
the following properties.

Proposition 3.8 For all Nb and N2,

R1M
Nb+1 < R1M

Nb
R1M

Nb
< R0M

Nb
R1M

Nb
> R2M

N2



Figure 2: Parameters used for 0-, 1-, and 2-sided model-based coding.

4 Numerical Results and Comparisons

Using Gibbs sampling, we generated configurations x(1), . . . ,x(17) of a 200×200 mod-
eled by an Ising MRF with θ = .4. On this dataset we tested three strategies: 0/2-
sided model-based coding, 1-sided model-based coding, and 1-sided empirical-based
coding. The estimates θ∗0,n, θ∗1,n, and θ∗2,n were found as in [2] and are shown in Figure
2.

Figures 3 and 4 show the rates attained by the various row-centric coding schemes
considered in this paper, as a function of block size parameter n. These rates were
computed by averaging the negative logarithm of the coding distributions evaluated
at the actual pixel/super-pixel values. In [2] we observed that for a given complexity,
i.e., given the maximum of NL and NS, the best performance of 0/2-sided coding was
found when lines and strips have the same size, i.e., NL = NS = Nb. Thus in the
model-based comparison, our 0/2-sided method uses lines and strips of equal height.

As predicted by Proposition 3.8, Figure 3 shows that R1M
Nb

is decreasing in Nb,
R1M

Nb
< R0M

Nb
and R1M

Nb
> R2M

N ′b
for all Nb and N ′b. Also in Figure 3, we observe that for

a given block size Nb, 1-sided model-based coding achieves lower rate than 0/2-sided
model-based coding. Indeed, 1-sided model-based coding with Nb = 1 nearly as good
as 0/2-sided coding with Nb = 7. Moreover, using the 2-sided coding rate as a lower
bound for H∞, we can say that with Nb = 3, 1-sided model-based coding comes to
within 3.5% of H∞.

Figure 4 shows the rate of 1-sided model-based coding with Nb = 1, and 1-sided
empirical-based coding for varying sizes of context. Note that context size c = 1
actually corresponds to 0-sided empirical-based coding, since in this scheme, only the
pixel to the left is used as context. We observe that 1-sided model-based coding with
Nb = 1 achieves lower rate than 1-sided empirically-based coding with all context
sizes we considered. The difference between the rates of 1-sided model-based and
1-sided empirical-based coding shrinks with context size and when the context size is



Figure 3: 0-, 0/2-, 1-, and 2-sided coding rates for model-based methods.

Figure 4: Empirical- and model-based coding rates for 1-sided coding.

5, the difference is about .0025 bpp or .4%. Improvements after that are very slow.
Again using the rate of 2-sided model-based coding as a lower bound for H∞, we
observe that 1-sided empirically-based coding with context size 5 comes with 4% of
entropy-rate.

Another interesting observation is made by recalling from the previous section that
while both 0-sided model-based and 0-sided empirical-based coding methods suffer an
information penalty, the model-based scheme suffers an additional divergence penalty

D
0M

Nb
. Therefore, by comparing the n = 1 point on the 0-sided rate curve of Figure 3

with the c = 1 point on the empirical-based rate curve of Figure 4, we can estimate
that the normalized divergence between p(xb; θ) and p(xb; θ

∗
0) for a single row is about

.1 bits per pixel. Moreover, by again using the 2-sided model-based rate curve as a
lower bound for H∞, we can bound the normalized information I(X2;X1) between
successive rows by .041 bits per pixel.



5 Concluding Remarks

In this paper we posed the problem of considering different approaches to what are
called row-centric coding. We presented the problem in the context of a standard
MRF image model in order to provide a well-founded testing ground in which model-
based and empirical-based approaches can be compared, and moreover, 1-sided coding
can be compared to the tradeoffs in 0/2-sided coding.



6 Appendix

Lemma 6.1 For random variables X1, . . . ,XN , N ≥ 2, let pi|Ci
be the probability

of Xi given XCi
, where Ci ⊂ {1, . . . , i − 1} is the context for Xi and let qi|C̄i

be the
coding distribution for Xi, where C̄i ⊂ {1, . . . , i − 1} is the context for Xi under the
q distribution. Then,

D(
N∏
i

pi|Ci
||
∏
i

qi|C̄i
) =

N∑
i=1

∑
xCi∪C̄i

pCi
D(pi|Ci

||qi|C̄i
)

Proof First consider the case where Ci = C̄i = {1, . . . , i − 1}. We will prove it by
induction. Letting N = 2 we have that

D(p1p1|2||q1q1|2) =
∑
x1x2

p1p2|1 log
p1p2|1

q1q2|1

=
∑
x1,x2

p1p2|C2

[
log

p1

q1

+ log
p2|C2

q2|C̄2

]
=

∑
x1,x2

p1p2|C2 log
p1

q1

+
∑
x1,x2

p1p2|C2 log
p2|C2

q2|C2

=
∑
x1

p1 log
p1

q1

∑
x2

p2|C2 +
∑
x1

p1

∑
x2

p2|C2 log
p2|C2

q2|C̄2

=
∑
x1

p1 log
p1

q1

+
∑
x1

p1

∑
x2

p2|C2 log
p2|C2

q2|C̄2

=
2∑

i=1

∑
x1,...,xi−1

p1,...,i−1

∑
xi

pi|Ci
log

pi|Ci

qi|C̄i

=
2∑

i=1

∑
x1,...,xi−1

p1,...,i−1

∑
xi

D(pi|Ci
||qi|C̄i

),

which shows that the lemma holds for some N = k ≥ 2. Now letting N = k + 1, we



see that

D(
k+1∏
i

pi|Ci
||
∏
i

qi|C̄i
) =

∑
x1,...,xk,xk+1

k∏
i=1

pi|Ci
pk+1|Ck+1

log

k∏
i=1

pi|Ci
pk+1|Ck+1

k∏
i=1

qi|C̄i
qk+1|Ck+1

=
∑

x1,...,xk

k∏
i=1

pi|Ci
log

k∏
i=1

pi|Ci

k∏
i=1

qi|C̄i

+
∑

x1,...,xk

k∏
i=1

pi|Ci

∑
xk+1

pk+1|Ck+1
log

pk+1|Ck+1

qk+1|C̄k+1

=
∑

x1,...,xk

k∏
i=1

pi|Ci
log

k∏
i=1

pi|Ci

k∏
i=1

qi|C̄i

+
∑

x1,...,xk

k∏
i=1

pi|Ci
D(pk+1|Ck+1

||qk+1|C̄k+1
)

=
k∑

i=1

∑
xCi∪C̄i

pCi
D(pi|Ci

||qi|C̄i
)

+
∑

x1,...,xk

k∏
i=1

pi|Ci
D(pk+1|Ck+1

||qk+1|C̄k+1
) (4)

=
k+1∑
i=1

∑
xCi∪C̄i

pCi
D(pi|Ci

||qi|C̄i
)
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