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A Practical Approach for Successive Omniscience
Ni Ding, Rodney A. Kennedy and Parastoo Sadeghi

Abstract—The system that we study in this paper contains
a set of users that observe a discrete memoryless multiple
source and communicate via noise-free channels with the aim
of attaining omniscience, the state that all users recover the
entire multiple source. We adopt the concept of successive
omniscience (SO), i.e., letting the local omniscience in some user
subset be attained before the global omniscience in the entire
system, and consider the problem of how to efficiently attain
omniscience in a successive manner. Based on the existing results
on SO, we propose a CompSetSO algorithm for determining a
complimentary set, a user subset in which the local omniscience
can be attained first without increasing the sum-rate, the total
number of communications, for the global omniscience. We also
derive a sufficient condition for a user subset to be complimentary
so that running the CompSetSO algorithm only requires a lower
bound, instead of the exact value, of the minimum sum-rate for
attaining global omniscience. The CompSetSO algorithm returns
a complimentary user subset in polynomial time. We show by
example how to recursively apply the CompSetSO algorithm so
that the global omniscience can be attained by multi-stagesof
SO.

I. INTRODUCTION

The problem of communication for omniscience (CO) was
originally formulated in [1]. It is assumed that there are a
finite number of users in a system. Each of them observes a
distinct component of a discrete multiple correlated source in
private. The users are allowed to exchange their observations
over public authenticated noiseless broadcast channels. The
purpose is to attainomniscience, the state that each user
obtains all the components in the entire multiple source. The
CO problem in [1] is based on anasymptotic modelwhere
the length of observation sequence is allowed to approach
infinity. Whereas the finite linear source model [2] and packet
model in the coded cooperative data exchange (CCDE) [3]–
[5] can be considered as thenon-asymptotic modelwhere the
number of observations is finite and the communication rates
are restricted to be integral.

While, in the majority of the studies, e.g. [1], [5], [6], the
omniscience is attained in a one-off manner, the concept of
successive omniscience (SO) is proposed in [7], [8]. The idea
is to let the omniscience be achieved in a successive manner:
attain the local omniscience in a user subset before the global
omniscience. It is shown in [7] that we can attain the local
omniscience in acomplimentaryset, a user subset that has a
multivariate mutual information (MMI) no less than the MMI
in the entire system, while still keep the overall communication
rates for CO minimized. SO is also an attractive idea when we
want to design a practical method for CO. Firstly, solving the
local omniscience problem (in a user subset) is less complex
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than the global one. Secondly, in a large scale system where
the global omniscience takes a long time, it is practical to
let a small group of users attain the local omniscience first
so that they can be treated as a super user, which reduces
the dimension of the CO problem. Thirdly, when the system
parameters vary, e.g., when some users in the original system
move out of the communication range,1 the solution to SO is
optimal up-to-the-date.

While the implementation of SO boils down to the problem
of how to determine a complimentary user subset, the study
in [7] does not provide a practical solution and the iterative
merging algorithm proposed in [8] only applies to the CCDE
systems. In this paper, we propose an efficient algorithm for
searching the complimentary subset for SO in both asymptotic
and non-asymptotic models. First, the necessary and sufficient
condition for a user subset to be complimentary in [7] is
converted to the one that is conditioned on the value of the
Dilworth truncation. Based on this condition, we propose an
algorithm for searching the complimentary user subset for SO,
which is called the CompSetSO algorithm. While running this
algorithm still requires the value of the minimum sum-rate
in both asymptotic and non-asymptotic models, we derive a
suffient condition for a user subset to be complimentary so
that knowing only the lower bound on the minimum sum-
rate is sufficient. We show that, based on this lower bound,
the CompSetSO algorithm either searches a complimentary
subset or returns a global-omniscience-achievable rate vector
with the minimum sum-rate inO(|V | ·SFM(|V |)) time. Here,
V denotes the user set and SFM(|V |) denotes the complexity
of minimizing a submodular set function that is defined on
2V . Finally, an example is presented to show how to attain
omniscience in multi-stages of SO in a CCDE system by
adopting random linear network coding (RLNC) scheme [9].

II. SYSTEM MODEL

Let V with |V | > 1 be a finite set that contains the indices
of all users in the system. We callV theground set. Let ZV =
(Zi : i ∈ V ) be a vector of discrete random variables indexed
by V . For eachi ∈ V , useri privately observes ann-sequence
Z
n
i of the random sourceZi that is i.i.d. generated according

to the joint distributionPZV
. We allow the users exchange

their sources directly so as to let all users inV recover the
source sequenceZn

V . The state that each user obtains the total
information in the entire multiple source is calledomniscience,
and the process that users communicate with each other to
attain omniscience is calledcommunication for omniscience
(CO) [1]. For X ⊆ V , the (local) omnisciencein X refers to
the state that all usersi ∈ X recover the sequenceZn

X . The

1This could happen in a large scale CCDE system where the usersare
mobile clients.
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global omnisciencein the ground setV is a special case of
the local omniscience whenX = V .

A. Minimum Sum-rate

Consider the local omniscience problem inX ⊆ V . Let
rX = (ri : i ∈ X) be a rate vector indexed byX . We call
rX an achievable rate vectorif the omniscience inX can be
attained by letting users communicate with the rates designated
by rX . Let r be the function associated withrX such that

r(C) =
∑

i∈C

ri, ∀C ⊆ X

with the conventionr(∅) = 0. We call r(X) the sum-rateof
rX . For C ⊆ X , let H(ZC) be the amount of randomness
in ZC measured by Shannon entropy andH(ZX\C |ZC) =
H(ZX) −H(ZC) be the conditional entropy ofZX\C given
ZC . In the rest of this paper, without loss of generality, we
simplify the notationZC by C.

It is shown in [1] that an achievable rate vectorrX must
satisfy the Slepian-Wolf (SW) constraints:r(C) ≥ H(C|X \
C), ∀C ⊂ X . The interpretation is: To attain the omniscience
in X , the total amount of information sent from user setC

should be at least equal to what is missing inX \C. We have
the set of all achievable rate vectors being

RCO(X) = {rX ∈ R
|X| : r(C) ≥ H(C|X \ C), ∀C ⊂ X}.

In an asymptotic model, we study the CO problem by
considering the asymptotic limits as theblock lengthn goes
to infinity so that the communication rates could be real or
fractional; In a non-asymptotic model, the block lengthn is
restricted to be finite and the communication rates are required
to be integral.RACO(X) = min{r(X) : rX ∈ RCO(X)}
and RNCO(X) = min{r(X) : rX ∈ RCO(X) ∩ Z

|X|}
are the minimum sum-rates for attaining omniscience inX

in the asymptotic and non-asymptotic models, respectively.
R∗

ACO(X) = {rX ∈ RCO(X) : r(X) = RACO(X)} and
R∗

NCO(X) = {rX ∈ RCO(X) ∩ Z
|X| : r(X) = RNCO(X)} are

the corresponding optimal rate vector sets for the asymptotic
and non-asymptotic models, respectively.

For X ⊆ V , let Π(X) be the set of all partitions ofX and
Π′(X) = Π(X) \ {X}. It is shown in [1], [10], [11] that

RACO(X) = max
P∈Π′(X)

∑

C∈P

H(X)−H(C)

|P| − 1
(1)

andRNCO(X) = ⌈RACO(X)⌉. The maximization problem (1)
can be solved and an optimal rate vector inR∗

ACO(X) or
R

∗
NCO(X) can be determined inO(|X |2 · SFM(|X |)) time

[11].2

Example II.1. Consider the system whereV = {1, . . . , 5}

2O(SFM(|X|)) is the complexity of solving the problemmin{f(C) : C ⊆
X} for submodular set functionf , which is strongly polynomial [12].

and each user observes respectively

Z1 = (Wa,Wb,Wc,Wd,Wf ,Wg,Wi,Wj),

Z2 = (Wa,Wb,Wc,Wf ,Wi,Wj),

Z3 = (We,Wf ,Wh,Wi),

Z4 = (Wb,Wc,We,Wj),

Z5 = (Wb,Wc,Wd,Wh,Wi),

whereWj is an independent uniformly distributed random bit.
In the corresponding CCDE system, eachWj represents a
packet andZi denotes the packets received by mobile client
i from a base station. The mobile clients inV transmit
linear combinations ofZis by some network coding scheme,
e.g., [3], over noiseless peer-to-peer channels in order to
recover all packets inZV . In this system,RACO(V ) = 13

2
and RNCO(V ) = 7. We have(92 , 0,

1
2 ,

1
2 , 1) ∈ R∗

ACO(V ) and
(5, 0, 1, 1, 0) ∈ R∗

NCO(V ) being one of the optimal rate vectors
in the asymptotic and non-asymptotic models, respectively.3

III. SUCCESSIVEOMNISCIENCE

The idea of successive omniscience (SO) is proposed in
[7], [8], which allows the omniscience to be achieved in a
successive manner: first attain the local omniscience in a user
subsetX ; then solve the global omniscience problem inV
by assuming that all the usersi ∈ V \ X have obtained
the information in the communications for achieving the local
omniscience inX .

A. Complimentary User Subset

Let X ⊆ V such that |X | > 1 be a non-singleton
user subset.X is called acomplimentarysubset (for SO)
if the local omniscience inX can be achieved first without
increasing the minimum sum-rate,RACO(V ) andRNCO(V ) in
the asymptotic and non-asymptotic models, respectively, for
the global omniscience inV [7]. To be more specific, take
the asymptotic model for example. For a non-singleton subset
X ⊆ V , let rX ∈ R∗

ACO(X) be an optimal rate vector for
attaining the local omniscience inX . Let r′V = (r′i : i ∈ V )
wherer′i = ri if i ∈ X and r′i = 0 otherwise. If there exists
a rate vectorr′′V ∈ R

|V |
+ such thatr′V + r

′′
V ∈ R∗

ACO(V ), then
local omniscience inX is complimentary. Similarly, in the
non-asymptotic model, letr′V be constructed in the same way
by rX ∈ R∗

NCO(X) for X ⊆ V . X is complimentary if there
exists a rate vectorr′′V ∈ Z

|V |
+ such thatr′V +r

′′
V ∈ R∗

NCO(V ).

Example III.1. Consider the asymptotic model for the sys-
tem in Example II.1. The minimum sum-rate for achieving
the local omniscience in{1, 2} is RACO({1, 2}) = 2 and
r{1,2} = (r1, r2) = (2, 0) ∈ R∗

ACO({1, 2}) is an optimal rate
vector. In this case, we haver′V = (2, 0, 0, 0, 0). After the users
transmitr′V for achieving the local omniscience in{1, 2}, we
can let them transmitr′′V = (52 , 0,

1
2 ,

1
2 , 1), which attains the

global omniscience inV = {1, . . . , 5}. Therefore,{1, 2} is a
complimentary user subset. Here,r

′
V + r

′′
V = (92 , 0,

1
2 ,

1
2 , 1) ∈

R∗
ACO(V ) is an optimal rate vector as shown in Example II.1.

3The optimal rate vector is not unique, i.e.,R∗
ACO(V ) and R∗

NCO(V ) are
not singleton, in general.



In other words, the optimal rate vector(92 , 0,
1
2 ,

1
2 , 1) for the

omniscience inV = {1, . . . , 5} can be implemented in an SO
manner so that the local omniscience in{1, 2} can be achieved
before the global omniscience.

For the non-asymptotic model,{1, 2} is also a compli-
mentary user subset since SO can be done by rate vectors
r
′
V = (2, 0, 0, 0, 0) andr′′V = (3, 0, 1, 1, 0), which first achieve

local omniscience in{1, 2} and then global omniscience in
V = {1, . . . , 5}. Here, r′V + r

′′
V = (5, 0, 1, 1, 0) ∈ R∗

NCO(V )
is an optimal rate vector as shown in Example II.1.

1) necessary and sufficient condition:The necessary and
sufficient condition for a user subsetX to be complimentary is
derived in [7] for both asymptotic and non-asymptotic models,
which is stated as follows.

Theorem III.2 (necessary and sufficient condition [7, Theo-
rems 4.2 and 5.2]). In an asymptotic model, a non-singleton
user subsetX ⊂ V is complimentary if and only ifH(V ) −
H(X) + RACO(X) ≤ RACO(V ); In a non-asymptotic model,
a non-singleton user subsetX ⊂ V is complimentary for SO
if and only ifH(V )−H(X) +RNCO(X) ≤ RNCO(V ).4

Here,H(V ) −H(X) is the amount of information that is
missing in user subsetX , the omniscience of which only relies
on the transmissions from the users inV \ X . If we let the
users inX attain local omniscience with the minimum sum-
rate RACO(X), the users inV \ X are required to transmit
at leastH(V ) −H(X) for attaining the global omniscience.
Then, the total number of transmissions is no less thanH(V )−
H(X)+RACO(X). If H(V )−H(X)+RACO(X) > RACO(V ),
the global omniscience is not achievable by the minimum sum-
rateRACO(V ) if we allow the users inX to attain the local
omniscience first. The conditionH(V )−H(X)+RNCO(X) ≤
RNCO(V ) for the non-asymptotic model in Theorem III.2 can
be interpreted in the same way.

However, Theorem III.2 cannot be directly applied for
determining a complimentary subset since the power set2V is
exponentially large in|V |. In the following context, we convert
Theorem III.2 to the conditions on the Dilworth truncation
and propose a polynomial time algorithm for searching a
complimentary user subset for SO.

For 0 ≤ α ≤ H(V ), let

f#
α (X) =

{

0, if X = ∅

α−H(V ) +H(X), otherwise.

f̂#
α (X) = minP∈Π(X)

∑

C∈P f#
α (C), ∀X ⊆ V is the Dil-

worth truncationof f#
α [14].

Corollary III.3. In an asymptotic model, a non-singleton
user subsetX ⊂ V is complimentary for SO if and only if
f
#
RACO(V )(X) = f̂

#
RACO(V )(X); In a non-asymptotic model, a

4Let I(X) denote the multivariate mutual information (MMI) inX. In [7,
Theorems 4.2 and 5.2], the necessary and sufficient condition for X to be
complimentary isI(X) ≥ I(V ) and ⌊I(X)⌋ ≥ ⌊I(V )⌋ for the asymptotic
and non-asymptotic models. They can be converted to the conditions in
Theorem III.2 via the dual relationships:RACO(V ) = H(V ) − I(V ) and
RNCO(V ) = H(V ) − ⌊I(V )⌋ [10], [13]. Also, since the ground setV is
always a complimentary subset, we restrict our attention tothe non-singleton
proper subsetsX of V that are complimentary.

Algorithm 1: complimentary subset for SO (CompSetSO)

input : the ground setV , an oracle that returns the value of
H(X) for a givenX ⊆ V andα, which is determined
based on Theorem III.5 or Theorem III.8.

output: X̂ which is a complimentary user subset for SO

1 r1 ← f#
α ({1}) andri ← α−H(V ),∀i ∈ V \ {1};

2 for i = 2 to |V | do
3 if there exists a non-singleton minimizer̂X of

minX⊆Vi : i∈X{f
#
α (X) − r(X)} such thatX̂ ⊂ V then

4 terminate iteration and return̂X;
5 else
6 ri ← ri +minX⊆Vi : i∈X{f

#
α (X)− r(X)};

7 endif
8 endfor

non-singleton user subsetX ⊂ V is complimentary for SO if
and only iff#

RNCO(V )(X) = f̂
#
RNCO(V )(X).

The proof of Corollary III.3 is in Appendix A

Example III.4. For the system in Example II.1, we have

{X ⊂ V : |X | > 1, H(V )−H(X) +RACO(X) ≤ RACO(V )}

= {X ⊂ V : |X | > 1, f#
RACO(V )(X) = f̂

#
RACO(V )(X)}

=
{

{1, 2}, {1, 5}, {1, 2, 5}, {1, 3, 4, 5}
}

,

being all complimentary subsets in the asymptotic model and

{X ⊂ V : |X | > 1, H(V )−H(X) +RNCO(X) ≤ RNCO(V )}

= {X ⊂ V : |X | > 1, f#
RNCO(V )(X) = f̂

#
RNCO(V )(X)}

=
{

{1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {1, 2, 4},

{1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},

{2, 3, 5}, {2, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5},

{1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}
}

,

being all complimentary subsets in the non-asymptotic model.

Then, the task reduces to finding a subsetX such that
f#
α (X) = f̂#

α (X), whereα = RACO(V ) andα = RNCO(V )
for the asymptotic and non-asymptotic models, respectively. It
can be converted to a minimization problem

min
X⊆Vi : i∈X

{f#
α (X)− r(X)}, (2)

wherei ∈ V andVi = {1, . . . , i}, based on which, we propose
an algorithm for searching for the complimentary subset for
SO (CompSetSO) in Algorithm 1.

Theorem III.5. For the CompSetSO algorithm in Algorithm 1,
the outputX̂ is a complimentary user subset for the asymptotic
and non-asymptotic models if the inputα = RACO(V ) and
α = RNCO(V ), respectively; If there is no output, there does
not exist a complimentary subset for SO.

The proof of Theorem III.5 is in Appendix B.

Example III.6. We apply the CompSetSO algorithm to the
asymptotic model of the system in Example II.1 by inputting
α = RACO(V ) = 13

2 . It can be shown that fori = 2, X̂ =



{1, 2} is returned as a complimentary subset. For the non-
asymptotic model, by inputtingα = RNCO(V ) = 7, we get
X̂ = {1, 2} returned as a complimentary subset fori = 2.

2) Sufficient Condition: In Theorem III.5, knowing the
value of the minimum sum-rate,RACO(V ) or RNCO(V ), is
a prerequisite. However, if we obtain the value ofRACO(V )
or RNCO(V ), say, by the modified decomposition algorithm in
[11] or the deterministic algorithms in [5], [6], we necessarily
know an optimal rate vector inR∗

ACO(V ) or R∗
NCO(V ) for the

global omniscience, in which case solving a local omniscience
problem in a user subset may not be necessary. It is also not
consistent with the advantage of SO that the local omniscience
problem is less complex than the global one. So, the question
is: Can we find a complimentary user subset for SO without
knowing the minimum sum-rate? The answer is yes. In this
section, we derive the sufficient conditions for a subset to be
complimentary such that the value ofα in the CompSetSO
algorithm can be relaxed from the exact value ofRACO(V ) or
RNCO(V ) to a lower bound onRACO(V ) or RNCO(V ) that can
be obtained inO(|V |) time.

Lemma III.7. In an asymptotic model, a non-singleton user
subsetX ⊂ V is complimentary iff#

α (X) = f̂#
α (X) for

α =
∑

i∈V
H(X)−H({i})

|V |−1 ; In a non-asymptotic model, a non-
singleton user subsetX ⊂ V is complimentary iff#

α (X) =

f̂#
α (X) for α =

⌈
∑

i∈V
H(X)−H({i})

|V |−1

⌉

.

The proof of Lemma III.7 is in Appendix C. The values
of α in Lemma III.7 are the lower bounds onRACO(V )
and RNCO(V ) for asymptotic and non-asymptotic models,
respectively [11, Theorem IV.1].

Theorem III.8. The CompSetSO algorithm in Algorithm 1
returns a complimentary user subsetX̂ for the asymptotic and
non-asymptotic models if the inputα =

∑

i∈V
H(V )−H({i})

|V |−1

and α =
⌈
∑

i∈V
H(V )−H({i})

|V |−1

⌉

, respectively; If there is no
output, there does not exist complimentary subset for SO.

The proof of Theorem III.8 is in Appendix D. The case
when there is no complimentary subset in both Theorems III.5
and III.8 is given in Appendix E.

Example III.9. For the asymptotic model of the system in Ex-
ample II.1, by inputtingα =

∑

i∈V

H(X)−H({i})
|V |−1 = 23

4 in the

CompSetSO algorithm, we get outputX̂ = {1, 2} as a compli-
mentary subset. By inputtingα =

⌈
∑

i∈V
H(X)−H({i})

|V |−1

⌉

= 6

in the CompSetSO algorithm, we get outputX̂ = {1, 2} as a
complimentary subset for the non-asymptotic model.

3) Complexity: In the CompSetSO algorithm, (2) is a sub-
modular function minimization (SFM) problem,5 which can
be solved inO(SFM(|V |)) time. Letα be initiated according
to Theorem III.8. Then, in an asymptotic or non-asymptotic
model, if there exists a complimentary user subsetX̂ for SO,
it can be found inO(|V | · SFM(|V |)) time. Consider the
situation when there is no complimentary user subset for SO.
The CompSetSO algorithm completes inO(|V | · SFM(|V |))

5The submodularity of (2) is proved in [11] based on the submodularity of
the entropy functionH.

time without any output. But, in this case, according to
[11, Theorem V.1],rV is updated to an optimal rate vector
in R∗

ACO(V ) and R∗
NCO(V ) for the asymptotic and non-

asymptotic models, respectively. In summary, the CompSetSO
algorithm determines either a complimentary user subset for
SO or an optimal rate vector inO(|V | · SFM(|V |)) time.

IV. M ULTI -STAGE SUCCESSIVEOMNISCIENCE

We show an example of multi-stage SO in a CCDE system.

Example IV.1. Consider the system in Example II.1 as a
CCDE system where the linear combinations of packets are
transmitted by random linear network coding (RLNC) scheme
[9]. For example, ifri = 2, then useri broadcasts the linear
coding Si = γ⊺

zi =
∑

j∈zi
γjWj twice. Here,γ = (γj :

Wj ∈ zi) and, at each broadcast,γj is randomly chosen from
a Galois fieldFq with q > H(V ) · |V |. If ri = 3

2 , then each

packetWj ∈ Zi is broken into two chunks:W(1)
j and W

(2)
j

and useri broadcastSi =
∑

j∈Zi
(γ

(1)
j W

(1)
j + γ

(2)
j W

(2)
j ) for

six times. At each broadcast, eachγ(1)
j andγ(2)

j are randomly
chosen from a Galois fieldFq with q > 2 ·H(V ) · |V |.

For the asymptotic model, the global omniscience can be
achieved by three stages of SO: By transmitting the ratesr

′
V =

(2, 0, 0, 0, 0), r′′V = (2, 0, 0, 0, 1) and r
′′′
V = (12 , 0,

1
2 ,

1
2 , 0), the

omniscience is achieved in{1, 2}, {1, 2, 5} and {1, 2, 3, 4, 5}
in sequence. Here, we haver′V + r

′′
V + r

′′′
V = (92 , 0,

1
2 ,

1
2 , 1) ∈

R∗
ACO(V ), which also means that the optimal rate vector

(92 , 0,
1
2 ,

1
2 , 1) can be implemented by three stages of SO. We

have shown how to find the complimentary user subset{1, 2}
by the CompSetSO algorithm in Examples III.6 and III.9. The
complimentary subset{1, 2, 5} is determined as follows.

Since local omniscience in{1, 2} is attained after the
transmission ofr′V , we can treat{1, 2} as a super user
and assign a user index12′. For each useri ∈ V \ {1, 2},
we assign a new indexi′ with Zi′ = Zi ∪ Γ, where Γ
contains all the transmissions that is received by useri in
the first stage of SO, i.e., all the broadcasts for achieving
the local omniscience in{1, 2}. For the super user12′, we
haveZ12′ = Z1 ∪ Z2. We construct the ground set of the new
system asV ′ = {12′, 3′, 4′, 5′} with the observationsZi′ for
all i ∈ V ′. By applying the CompSetSO algorithm to the new
system, we get{12′, 5′} as a complimentary subset, which
corresponds to{1, 2, 5} in the original system.

In the same way, for the non-asymptotic model, it can be
shown that the global omniscience can be achieved by three
stages of SO: By transmitting the ratesr′V = (2, 0, 0, 0, 0),
r
′′
V = (3, 0, 0, 1, 0) andr′′′V = (0, 0, 1, 0, 0), the omniscience is

achieved in{1, 2}, {1, 2, 4} and{1, . . . , 5} in sequence. And,
r
′
V + r

′′
V + r

′′′
V = (5, 0, 1, 1, 0) ∈ R∗

NCO(V ), which also means
that the optimal rate vector(5, 0, 1, 1, 0) can be implemented
by three stages of SO.

V. CONCLUSION

We studied the problem of how to efficiently search a com-
plimentary user subset so that the omniscience of a discrete
multiple random source among a set of users can be attained
in a successive manner. Based on the existing necessary and



sufficient condition for a user subset to be complimentary, we
proposed a CompSetSO algorithm, which searches a compli-
mentary subset for SO in both asymptotic and non-asymptotic
models. We showed that inputting a lower bound, instead of
the exact value, of the minimum sum-rate is sufficient for
the CompSetSO algorithm to return either a complimentary
subset or an optimal rate vector inO(|V | · SFM(|V |)) time.
The CompSetSO algorithm can be implemented recursively so
that the omniscience can be attained in multi-stages of SO.

For the future research work, it is worth studying how
to implement the SO more efficiently than the CompSetSO
algorithm. Also, for the CCDE problem, it would be of interest
if the multi-stage SO can be implemented by network coding
schemes other than RLNC.

APPENDIX A
PROOF OFCOROLLARY III.3

Based on Theorem III.2, we haveRACO(X) ≤ RACO(V )−
H(V ) + H(X) = f

#
RACO(V )(X) being the necessary

and sufficient condition forX to be complimentary in
the asymptotic model. On the other hand,RACO(X) ≥
∑

C∈P
H(X)−H(C)

|P|−1 , ∀P ∈ Π′(X). Then, we have in-

equality
∑

C∈P
H(X)−H(C)

|P|−1 ≤ RACO(V ) − H(V ) +

H(X), ∀P ∈ Π′(X), which is equivalent tof#
RACO(V )(X) ≤

∑

C∈P f
#
RACO(V )(C), ∀P ∈ Π′(X), i.e., f

#
RACO(V )(X) =

f̂
#
RACO(V )(X). In the same way, we can prove thatX is

complimentary in the non-asymptotic model if and only if
f
#
RNCO(V )(X) = f̂

#
RNCO(V )(X).

APPENDIX B
PROOF OFTHEOREM III.5

For α = RACO(V ), let X̂ be the user subset returned by
the CompSetSO algorithm, i.e., we find a non-singleton user
subsetX̂ ⊂ V that minimizesmin{f#

α (X) − r(X) : î ∈
X ⊆ Vî}, for some î ∈ {1, . . . , |V |}. It also means that
we have not found any non-singleton proper subset ofV that
minimizesmin{f#

α (X)− r(X) : i ∈ X ⊆ Vi}, i.e., {i} is the
only minimizer, for all i ∈ {1, . . . , î − 1}. In each iteration
of the CompSetSO algorithm, we haverV ∈ P (f#

α ,≤),
where P (f#

α ,≤) = {rV ∈ R
|V | : r(X) ≤ f#

α (X)} is
the polyhedron off#

α [11]. Then, for all X ⊆ Vî−1, we
have

∑

i∈X f#
α ({i}) = r(X) ≤ f#

α (X), i.e., f̂#
α (X) =

∑

i∈X f#
α ({i}) ≤

∑

C∈P f#
α (C) for all P ∈ Π(X).

On the other hand, sincêX ⊂ V is a non-singleton
minimizer of min{f#

α (X) − r(X) : î ∈ X ⊆ Vî}, we have
f#
α (X̂)− r(X̂) ≤ f#

α (C) − r(C), ∀C ⊆ X̂ : î ∈ C. Then,

f#
α (X̂) ≤ f#

α (C) + r(X̂ \ C)

= f#
α (C) +

∑

i∈X̂\C

f#
α ({i})

≤ f#
α (C) +

∑

C′∈P

f#
α (C′),

for all C ⊆ X̂ such that̂i ∈ C and allP ∈ Π(X̂). Therefore,
f#
α (X̂) ≤

∑

C∈P f#
α (C) for all P ∈ Π(X̂). Then,f#

α (X̂) =

f̂#
α (X̂). According to Corollary III.3.X̂ is a complimentary

user subset in the asymptotic model. In the same way, we
can prove the statement for the non-asymptotic model when
α = RNCO(V ).

APPENDIX C
PROOF OFLEMMA III.7

We have0 ≤ α =
∑

i∈V
H(X)−H({i})

|V |−1 ≤ RACO(V ). If

f#
α (X) = f̂#

α (X), then
∑

C∈P

f
#
RACO(V )(C)−f

#
RACO(V )(X) ≥

∑

C∈P

f#
α (C)−f#

α (X) ≥ 0,

for all P ∈ Π(X), i.e., f#
RACO(V )(X) = f̂

#
RACO(V )(X). Ac-

cording to Corollary III.3,X is a complimentary subset in the
asymptotic model. In the same way, we can prove thatX ⊂ V

such that|X | > 1 is complimentary in the non-asymptotic
model if f#

α (X) = f̂#
α (X) for α =

⌈
∑

i∈V
H(X)−H({i})

|V |−1

⌉

.

APPENDIX D
PROOF OFTHEOREM III.8

According to Lemma III.7 and by using the same way as
in the proof in Theorem III.5, we can show that the output
X̂ is complimentary. Forα =

∑

i∈V
H(V )−H({i})

|V |−1 , we have
∑

i∈V H({i}) = |V |H(V )− (|V | − 1)α. If there is no output
of the CompSetSO algorithm, it means

∑

i∈V

f#
α ({i})−

∑

C∈P

f#
α (C)

=
∑

i∈V

(

α−H(V ) +H({i})
)

−
∑

C∈P

(

α−H(V ) +H(C)
)

= (|V | − |P|)
(

α−H(V )
)

+
∑

i∈V

H({i})−
∑

C∈P

H(C)

=
∑

C∈P

(

H(V )−H(C)
)

− (|P| − 1)α < 0, ∀P ∈ Π′(V ),

which is equivalent to

α >
∑

C∈P

H(V )−H(C)

|P| − 1
, ∀P ∈ Π′(V ),

i.e., α = RACO(V ). Also, we have

f#
α (X)−

∑

i∈X

f#
α ({i})

= α−H(V ) +H(X)−
∑

i∈X

(

α−H(V ) +H({i})
)

= H(X)−
∑

i∈X

H({i})− (|X | − 1)
(

α−H(V )
)

=
∑

i∈X

(

H(X)−H({i})
)

− (|X | − 1)
(

α−H(V ) +H(X)
)

> 0, ∀X ⊂ V : |X | > 1,

which is equivalent to

RACO(V ) =
∑

i∈V

H(X)−H({i})

|X | − 1

> RACO(V )−H(V ) +H(X), ∀X ⊂ V : |X | > 1,

i.e., there is no complimentary user subset for SO in the
asymptotic model. In the same way, we can prove the state-
ment for the non-asymptotic model.



APPENDIX E
NONEXISTENCE OFCOMPLIMENTARY SUBSET

In a system, either asymptotic or non-asymptotic model,
if there does not exist a complimentary subset for SO,
it means the omniscience can not be attained with the
minimum sum-rate in a manner such that the local om-
niscience in some non-singleton subsetX ⊂ V can be
attained first. According to Corollary III.3, it happens when
the {{i} : i ∈ V } and {{V }} are the only minimiz-
ers of f̂#

α (V ) = minP∈Π(V )

∑

C∈P f#
α (C), i.e., when

{{i} : i ∈ V } is the only maximizer ofRACO(V ) =

maxP∈Π′(V )

∑

C∈P
H(V )−H(C)

|P|−1 . This is the case when the
components inZV are mutually independent. But, it is not
necessary that a system with mutually independentZV does
not have a complimentary subset.

Example E.1. Consider the system whereV = {1, 2, 3} and
each user observes respectively

Z1 = (Wa,Wb),

Z2 = (Wb,Wc),

Z3 = (Wa,Wc),

whereWj is an independent uniformly distributed random bit.
It can be shown thatRACO(V ) = 3

2 , R∗
ACO(V ) = {(12 ,

1
2 ,

1
2 )}

and all the components inZV are mutually independent. In
this case,{{1}, {2}, {3}} and {{1, 2, 3}} are the minimizers
of minP∈Π(V )

∑

C∈P f#
α (C) and {{1}, {2}, {3}} is the only

maximizer ofRACO(V ) = maxP∈Π′(V )

∑

C∈P
H(V )−H(C)

|P|−1 . In
this system, there is no complimentary user subset for SO, i.e.,
the optimal rate vector(12 ,

1
2 ,

1
2 ) cannot be implemented in a

way such that the local omniscience in some non-singleton
proper subset ofV is attained before the global omniscience
in V .

Consider the system whereV = {1, 2, 3} and each user
observes respectively

Z1 = (Wa),

Z2 = (Wb),

Z3 = (Wc),

where Wj is an independent uniformly distributed random
bit. It can be shown thatRACO(V ) = 3, R∗

ACO(V ) =
{(1, 1, 1)} and all the components inZV are mutually in-
dependent. In this case, all partitionsP ∈ Π(V ) are
the minimizers ofminP∈Π(V )

∑

C∈P f#
α (C) and all parti-

tions in P ∈ Π′(V ) are the maximizers ofRACO(V ) =

maxP∈Π′(V )

∑

C∈P
H(V )−H(C)

|P|−1 . In this system, all non-
singleton subsetX ⊂ V are complimentary.

Based on the proof of Theorem III.8 in Appendix D, when
the CompSetSO algorithm does not return a complimentary
user set for an asymptotic and non-asymptotic models when
α =

∑

i∈V
H(V )−H({i})

|V |−1 and α =
⌈
∑

i∈V
H(V )−H({i})

|V |−1

⌉

,
respectively, we haveα = RACO(V ) andα = RNCO(V ), which
necessarily means that the omniscience cannot be attained in
a successive manner.
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