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Abstract

A concatenated coding scheme over binary memoryless symmetric (BMS) channels using a polarization transformation

followed by outer sub-codes is analyzed. Achievable error exponents and upper bounds on the error rate are derived. The first

bound is obtained using outer codes which are typical linear codes from the ensemble of parity check matrices whose elements

are chosen independently and uniformly. As a byproduct of this bound, it determines the required rate split of the total rate to

the rates of the outer codes. A lower bound on the error exponent that holds for all BMS channels with a given capacity is then

derived. Improved bounds and approximations for finite blocklength codes using channel dispersions (normal approximation), as

well as converse and approximate converse results, are also obtained. The bounds are compared to actual simulation results from

the literature. For the cases considered, when transmitting over the binary input additive white Gaussian noise channel, there was

only a small gap between the normal approximation prediction and the actual error rate of concatenated BCH-polar codes.

I. INTRODUCTION

Polar coding, introduced by Arikan [1], is an exciting development in coding theory. Arikan showed that, for a sufficiently

large blocklength, polar codes can be used for reliable communications at rates arbitrarily close to the symmetric capacity of an

arbitrary binary-input channel. Various decoding algorithms that improve Arikan’s successive cancellation (SC) decoder were

shown since then. A notable example is list SC decoding [2] with the possible incorporation of CRC bits. Various architectures

have been considered for parallel efficient implementation of SC and list SC decoding with improved throughput, e.g. [3], [4],

[5], [6]. Those architectures involve decomposing the overall polar code into an inner code and an outer code, and using SC

to decode the inner code and maximum-likelihood (ML) to decode the outer code.

Using other outer codes such as powerful algebraic codes with approximated ML decoding is also possible. Interleaved

concatenation of inner polar codes with outer Reed-Solomon (RS) and Bose Chaudhuri and Hocquenghem (BCH) outer codes

was studied in [7] and [8], respectively, and further studied in [9], that also proposed using convolution outer codes. In

this work, we study the interleaved concatenated scheme of polar codes with good outer codes [7], [8], [9]. This scheme is

described in Fig. 1. The encoding is performed from right to left as follows. First, we use 2λ outer codes with rates Ri,

i = 0, . . . , 2λ − 1, to encode the information bits, creating 2λ codewords, each of length N1. The resulting codewords are

interleaved and processed by N1 polar encoders of length 2λ as shown in Fig. 1. We obtain a code with blocklength N = N1 ·2λ

and rate R =
∑2λ−1
i=0 Ri/2

λ.

The decoding can also be described using Fig. 1. However it is performed from left to right. As described in [9], the first

information bit of each of the N1 polar codes is decoded in parallel, using a soft-decision algorithm that produces log-likelihood

ratio (LLR) values. These LLRs are used as the input of the decoder of the code A0, and the decisions of that decoder are
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Fig. 1. Concatenation of N1 polar codes of length 2λ with 2λ outer codes of length N1

passed back to the polar decoders, and used in calculating the LLR of the second information bit of each polar code. These

LLRs are then used as the input of the decoder of A1, etc. In general, when the LLRs of the i-th information bits of the N1

polar codes are calculated, the previous i − 1 information bits of these codes are available from decoding A0, A1, . . . , Ai−2.

We described this coding scheme as a combination of block SC decoding and optimal (ML), or non-optimal decoding of

sub-codes with blocklength N1 in [10]. If the outer codes are polar as well, this is the scheme proposed in [4] for efficient

parallel decoding of polar codes. If the outer codes are Reed-Solomon, BCH or convolutional codes, this is the scheme studied

in [7], [8], [9]. Note that unlike standard polar codes, in the concatenated polar coding scheme there are no frozen bits, unless

Ri = 0, when the whole block Ai is frozen. We also note that a close to ML, computationally efficient decoding of short

outer codes can be realized using various algorithms such as the ordered statistics decoder (OSD) [11], the box-and-match

decoder [12], used in [8], or the recent machine learning-based schemes presented in [13], [14], [15], [16] and references

therein, that may be efficient for small blocklength codes (especially when using hardware implementations). The decoder of

the concatenated coding scheme may possess an improved throughput compared to list SC decoding of polar codes, provided

the outer codes can be decoded efficiently.

In this work we analyze the performance of the concatenated polar coding scheme. Our main interest is in the case where

λ is small (e.g., λ = 1, 2, 3), and the blocklength of each outer code, N1, is also relatively small (e.g., of order 100) such

that the OSD algorithm or the other methods mentioned above, can be used to decode the outer codes with a reasonable

computational effort. As a motivating example, suppose we need to design an error correcting code with blocklength which

is about N = 256, and rate which is about 1/2. As will be described in detail later in the paper, in order to closely approach

the error rate of the best code under these conditions, as predicted by the normal approximation in [17], one may apply the

OSD algorithm to a BCH code with blocklength 255 and rate R = 131/255 ≈ 1/2. However, the resulting computational

complexity would be prohibitive for actual, real time, low cost and low power applications. Alternatively, as will be shown in

Section V, one may construct a BCH-polar concatenated scheme with λ = 1 and N1 = 128. The total blocklength is N = 256,

and the total rate is R = 1/2. The first outer code is a BCH code with rate R1 = 36/128. The second outer code is a BCH

code with rate R2 = 92/128 (these rates were determined from our analysis in Section IV). In order to decode the scheme,
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one needs to apply the OSD algorithm twice, first to the lower rate code, and then to the higher rate code. As Fig. 7 shows,

the computational complexity of the decoder of the first scheme (BCH with blocklength 255) is larger by about three orders

of magnitude compared to the BCH-polar concatenated scheme. On the other hand, as Fig. 6 shows, the resulting performance

degradation, when using the BCH-polar concatenated code, for frame error rate of 10−3, is only about 0.6dB in the signal to

noise ratio. Fig. 6 also shows that our prediction to the performance of the BCH-polar concatenated scheme is very accurate.

In Section II we provide some brief background on polar codes, and fix the notations. In Section III we obtain achievable

error exponents and upper bounds on the error rate for the concatenated polar coding scheme. Our first lower bound on the

error exponent (upper bound on the error rate) can be achieved using outer codes which are typical linear codes from the

ensemble of parity check matrices whose elements are chosen independently and uniformly (i.e., they are set to {0, 1} with

probabilities {1/2, 1/2}). As a byproduct of this bound, we determine the required rate split of the total rate to the rates of

the outer codes. We then obtain a lower bound on the error exponent that holds for all binary memoryless symmetric (BMS)

channels with capacity I . In Section IV we derive improved bounds and approximations using channel dispersions (normal

approximation) for finite blocklength codes. We also derive converse and approximated converse results. In Section V we

compare our bounds to actual simulation results. For the cases considered, when transmitting over the binary input additive

white Gaussian noise channel (BIAWGNC), there was only a small gap between the normal approximation prediction and the

actual error rate of concatenated BCH-polar codes. Section VI concludes the paper.

II. BACKGROUND ON POLAR CODES

Consider a BMS W : X → Y with input alphabet X = {0, 1} and output alphabet1 Y . The capacity of the channel, I(W ),

is2

I(W )
∆
=
∑
x∈X

∑
y∈Y

0.5W (y | x) log
W (y | x)∑

x′∈X 0.5W (y | x′) .

Channel polarization [1] is based on mapping two identical copies of the channel W into the pair of BMS channels W− :

X → Y2 and W+ : X → X × Y2 defined as

W− (y1, y2 | u1) =
∑
u2∈X

0.5W (y1 | u1 ⊕ u2)W (y2 | u1)

W+ (y1, y2, u1 | u2) = 0.5W (y1 | u1 ⊕ u2)W (y2 | u2)

Recalling that the channels W+ and W− can be defined using density evolution operators, W− = W ∗�W and W+ = W ~W

[18], [19], and applying [20, Theorem 4.141], yields I2(W ) ≤ I (W−) ≤ 1− h2
{

2h−12 [1− I(W )] ·
[
1− h−12 [1− I(W )]

]}
with h2(x)

∆
=−x log x−(1−x) log(1−x), and h−12 is the inverse of h2 with values in [0, 0.5]. In addition, I(W+)+I(W−) =

2I(W ) [20, Lemma 4.41]. This means I (W+)− I(W ) = I(W )− I (W−) ∈ [εl (I(W )) , εh (I(W ))], where εh(x) = x− x2

and εl(x) = x− 1 + h2
{
h−12 (1− x)

[
2− 2h−12 (1− x)

]}
.

This procedure can now be reapplied to W− and W+, creating W−−, W−+, W+− and W++. Repeating the procedure λ

times we obtain 2λ BMS sub-channels, whose average capacity is I(W ). It was shown [1] that these channels are polarized,

i.e. for all δ ∈ (0, 1)

lim
λ→∞

|{s ∈ {+,−}n : I (W s) ∈ (0, δ)}| /2λ = 1− I(W )

1The assumption that the channel is discrete is made for notational convenience only. For continuous output channels, sums should be replaced by integrals.
2The default basis of logarithms in this paper is 2
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lim
λ→∞

|{s ∈ {+,−}n : I (W s) ∈ (1− δ, 1)}| /2λ = I(W )

Those 2λ sub channels, denoted W0,W1, . . . ,W2λ−1, are the channels that the outer codes in the scheme described in Fig. 1

see. Each outer code Ai sees the channel Wi, and is designed to operate over this channel.

III. BOUNDS ON THE ERROR EXPONENT

Consider the concatenated, polarization based code that was described above. The blocklength of the code is N and it uses

outer sub-codes with blocklength N1. The number of polarization steps is λ = log(N/N1). We derive a lower bound on the

error exponent (upper bound on the error rate) of the scheme by choosing the elements of the generating matrices of the linear

sub-codes, Ai, uniformly at random, as described in [21, Section 6.2]. We can obtain an upper bound on the average error

probability of the ensemble of codes that we have just defined, Pe, using the successive decoding method outlined in Section

I, when transmitting over a given BMS channel, W (y|x), as follows. We first compute the distributions (given that the zero

codeword was transmitted) of the LLRs of the sub-channels after λ polarization steps, using density evolution (DE) for polar

codes as in [18], [19]. Denote these distributions by aWi
(x), i = 0, 1, . . . , 2λ − 1. By [21, Sections 5.6 and 6.2], when using

successive cancellation to decode the polar concatenated scheme described in Fig. 1,

Pe ≤
2λ−1∑
i=0

e−N1Er(Wi,Ri)

where Wi is the ith sub-channel, Ri is the rate of the corresponding outer sub-code, and Er(W,R) is the error exponent,

given by3

Er(W,R) =

 max0≤ρ≤1E0(W,ρ)− ρR· ln 2 R 6= 0

∞ R = 0
(1)

where

E0(W,ρ) = − ln
∑
y

(
0.5
[
W (y|0)

1
1+ρ +W (y|1)

1
1+ρ

])1+ρ
= (1 + ρ) ln 2− ln

∑
l

[
aW (l)

1
1+ρ + aW (−l) 1

1+ρ

]1+ρ
The second equality follows by modifying the original channel as in [20, Lemma 4.35]: We add a processing block that

computes the LLR from the original channel output. The new channel is also a BMS, and is operationally equivalent to the

original channel.

According to [21, Chapter 5.7], for low rates the average error probability is different from the typical error probability,

since poor codes in the ensemble, although quite improbable, have a very high error probability. Using the expurgated error

exponent provides a tighter estimate of the error probability of good codes than the random-coding exponent. This improved

bound is [21, Theorem 5.7.1]. It asserts that the average error probability of the ensemble of typical codes with rate R is upper

bounded by exp
[
−NEex

(
W,R+ 2

N

)]
, where

Eex(W,R) = sup
ρ≥1

Ex(W,ρ)− ρR · ln 2

3By [21, Section 5.6] Er(W,R) = max0≤ρ≤1 E0(W,ρ)− ρR, where the rate R is defined using natural logarithms, and measured in nats per channel

use [21, Paragraph after Equation (5.1.2)]. In order to use the more widespread notation, by which R is the number of bits per channel use, we substitute R

with R ln 2. In order to further improve the bound on Pe, we define Er(W, 0) =∞ instead of the actual error exponent, since there cannot be errors if no

information bits were transmitted.
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and

Ex(W,ρ) = −ρ ln

1 +
(∑

y

√
W (y | 0)W (y | 1)

) 1
ρ

2


= −ρ ln

1 +

(∑
l

√
aW (l)aW (−l)

) 1
ρ

+ ρ ln 2

Therefore, in our polar concatenated scheme, we obtain the following upper bound on Pe, the ensemble average error probability

when using only typical outer codes,

Pe ≤
2λ−1∑
i=0

e−N1E(Wi,Ri,N1) (2)

where

E (W,R,N1) = max [Er(W,R), Eex(W,R+ 2/N1)]

This construction is called expurgated random code. Define also

E(W,R) , lim
N1→∞

E (W,R,N1) = max [Er(W,R), Eex(W,R)] (3)

For the binary symmetric channel (BSC), the true error exponent of a typical linear code with rate R, transmitted over W , is

E(W,R) [22]. It is conjectured to be the true exponent for other BMS channels as well. By (2), the error exponent, Eλ(W,R),

of the polarization-based code of blocklength N with λ polarization steps followed by 2λ typical random linear codes of

blocklength N1 = N/2λ, with the best rate split, is lower bounded by, and conjectured to be equal to,

1

2λ
max

R0,...,R2λ−1

min
i,Ri 6=0

E (Wi, Ri)

where the maximization is over all possible combinations of rates R0, . . . , R2λ−1 with total code rate R. In [10] we calculated

this error exponent by searching for those values of Ri for which E(Wi, Ri) are equal. We now present an improved approach

that yields an explicit recursive expression for Eλ(W,R) and produces the maximizing rates as a byproduct. Denote the

minimal value of the right hand side (RHS) of (2) by exp {−NEλ(W,R,N1)} such that (s.t.)

Eλ(W,R,N1) =
1

N1 · 2λ
max

R0,...,R2λ−1

− ln

2λ−1∑
i=0

e−N1E(Wi,Ri,N1) (4)

where the maximization is over all possible combinations of rates, R0, . . . , R2λ−1, s.t.
∑2λ−1
i=0 Ri = 2λ · R, and for all i,

Ri ·N1 is an integer.

Lemma 1: Define

A ,
{
x|x ∈ [max(0, 2R− 1),min(1, 2R)], x ·N12λ−1 ∈ Z

}
For any positive integers, λ, N1 and RN12λ,

Eλ (W,R,N1) = max
R1∈A

− ln
(
e−N12

λ−1Eλ−1(W−,R1,N1) + e−N12
λ−1Eλ−1(W+,2R−R1,N1)

)
/
(
N12λ

)
(5)

where E0(W,R,N1) = E (W,R,N1).

Proof: For λ = 1 the claim follows immediately from (4) for λ = 1. The condition R1 ∈ [max(0, 2R − 1),min(1, 2R)]

follows from R1, 2R−R1 ∈ [0, 1].
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For λ > 1, note that Wi are sub-channels of W− for i = 0, . . . , 2λ−1−1, and sub-channels of W+ for i = 2λ−1, . . . , 2λ−1.

(4) can be rewritten as

Eλ (W,R,N1) =
1

N12λ
max
R′∈A

max
R0...R2λ−1∑2λ−1−1

i=0 Ri=R
′·2λ−1∑2λ−1

i=2λ−1 Ri=(2R−R′)·2λ−1

− ln

2λ−1∑
i=0

e−N1E(Wi,Ri,N1)

=
1

N12λ
max
R′∈A

− ln

 min
R0,...,R2λ−1−1∑
Ri=R

′·2λ−1

2λ−1−1∑
i=0

e−N1E(Wi,Ri,N1) + min
R

2λ−1 ,...,R2λ−1∑
Ri=(2R−R′)·2λ−1

2λ−1∑
i=2λ−1

e−N1E(Wi,Ri,N1)


=

1

N12λ
max
R′∈A

− ln
(
e−N1·2λ−1Eλ−1(W−,R′,N1) + e−N1·2λ−1Eλ−1(W+,2R−R′,N1)

)
where the first equality follows from rewriting (4), the second one follows from splitting the inner maximization into two

separate ones and inserting them into the monotonic decreasing function − ln(), and the third equality follows from applying

(4) for λ− 1 instead of λ.

We conjecture that the condition R1 ∈ [max(0, 2R−1),min(1, 2R)] in (5) can be replaced by R1 ∈ [max(0, 2R−1), R]. This

is due to the fact that, compared to W−, W+ is a better channel. Hence the information rate of the sub-code corresponding

to W+ should be larger than the rate of the sub-code corresponding to W−.

Denote

B , [max(0, 2R− 1),min(1, 2R)]

Lemma 2: Define E0(W,R) = E(W,R) (defined in (3)), and for λ ≥ 1 define recursively,

Eλ(W,R) = 0.5 max
R1∈B

Em,λ (W,R,R1) (6)

where

Em,λ (W,R,R1) , min[Eλ−1
(
W−, R1

)
, Eλ−1

(
W+, 2R−R1

)
] (7)

Then for λ ≥ 0,

Eλ (W,R)−Θ

(
1

N1

)
≤ Eλ (W,R,N1) ≤ Eλ(W,R)

The bound shows that for large N1, Eλ(W,R,N1) approaches Eλ(W,R).

Proof: We prove by induction that Eλ (W,R,N1) ≤ Eλ (W,R), with Eλ (W,R) defined recursively in (6). This claim is

true for λ = 0 since

E0 (W,R,N1) = E (W,R,N1) = max [Er(W,R), Eex (W,R+ 2/N1)]

≤ max [Er(W,R), Eex (W,R)] = E(W,R) = E0(W,R)

where the inequality is due to the fact that Eex(W,R) is a decreasing function of R. For shortness of notation, define

Em,λ (W,R,R1, N1) , min
[
Eλ−1

(
W−, R1, N1

)
, Eλ−1

(
W+, 2R−R1, N1

)]
Assuming the claim is true for λ− 1, we have

Eλ (W,R,N1) ≤ 1

N12λ
max
R1∈A

− ln
(
e−N1·2λ−1Em,λ(W,R,R1,N1)]

)
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= 0.5 max
R1∈A

Em,λ (W,R,R1, N1) ≤ 0.5 max
R1∈A

Em,λ (W,R,R1)

≤ 0.5 max
R1∈B

Em,λ (W,R,R1) = Eλ(W,R)

where the first inequality follows from (5), and the induction assumption yields the second inequality.

Similarly, we can prove that Eλ (W,R)−Θ
(

1
N1

)
≤ Eλ (W,R,N1) using induction: The claim is true for λ = 0 since

Eex (W,R+ 2/N1) ≥ Eex (W,R)− 2

N1

∣∣∣∣∂Eex(W, r)

∂r

∣∣∣∣
r=R

= Eex (W,R)−Θ

(
1

N1

)
where the inequality follows from the fact that Eex(W,R) is a convex and decreasing function of R. This yields

E0 (W,R,N1) = max [Er(W,R), Eex (W,R+ 2/N1)]

≥ max [Er(W,R), Eex (W,R)]−Θ

(
1

N1

)
= E0(W,R)−Θ

(
1

N1

)
Assuming that the claim is true for λ− 1, we have

Eλ (W,R,N1)

≥ 1

N12λ
max
R1∈A

− ln
(

2e−N1·2λ−1Em,λ(W,R,R1,N1)
)

= 0.5 max
R1∈A

Em,λ (W,R,R1, N1)− ln 2/
(
N12λ

)
≥ 0.5 max

R1∈A
Em,λ (W,R,R1)−Θ (1/N1) (8)

where the first inequality follows from (5), and the second follows from the induction assumption.

Define

R̂1 , argmax
R1∈B

Em,λ(W,R,R1)

Since Eλ−1 (W−, R1) and Eλ−1 (W+, 2R−R1) are convex functions of R1 (see Lemma 3 below, Appendix A and Fig. 10),

Em,λ(W,R,R1) = min
[
Eλ−1

(
W−, R1

)
, Eλ−1

(
W+, 2R−R1

)]
≥


Eλ−1

(
W−, R̂1

)
−
∣∣∣∣∂Eλ−1(W−,r)

∂r

∣∣∣∣
r=R̂1

(R1 − R̂1) R1 > R̂1

Eλ−1
(
W+, 2R− R̂1

)
+

∣∣∣∣∂Eλ−1(W+,2R−r)
∂r

∣∣∣∣
r=R̂1

(R1 − R̂1) R1 < R̂1

= 2Eλ (W,R)−


∣∣∣∣∂Eλ−1(W−,r)

∂r

∣∣∣∣
r=R̂1

(R1 − R̂1) R1 > R̂1∣∣∣∣∂Eλ−1(W+,2R−r)
∂r

∣∣∣∣
r=R̂1

(R̂1 −R1) R1 < R̂1

Maximizing this expression over R1 ∈ [max(0, 2R − 1),min(1, 2R)] s.t. R1 · N12λ−1 ∈ Z yields a result for R1 − R̂1 =

Θ
(

1
N12λ−1

)
= Θ

(
1
N1

)
. Therefore, the result of the maximization is 2Eλ (W,R)−Θ

(
1
N1

)
. Combining this with (8) yields

Eλ (W,R,N1) ≥ Eλ (W,R)−Θ
(

1
N1

)
.

Lemma 3: For any integer λ ≥ 0, and any BMS W , Eλ(W,R) is a finite, decreasing and convex function of R for R > 0.

Furthermore, for R > 0, |∂Eλ(W,R)/∂R| <∞.
We prove the lemma in Appendix A.

In Fig. 2 we plot the resulting error exponent Eλ(W,R) for a code with rate R = 1/2 and λ = 1, 2, 3 as a function of the

SNR when transmitting over a BIAWGNC. This is compared to a naive approach where we simply use 2λ codewords of a

code with blocklength N1 = N/2λ (without using the polar transformation at all). Denote the error exponent of the polar-based

(naive, respectively) approach by Eλ and En,λ. We also plot the error exponent of an optimal code, E, corresponding to λ = 0.
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Fig. 2. Error exponents of codes created by λ polar transforms followed by 2λ codewords of outer codes with blocklength N/2λ and optimal rate-splitting,

and naively using 2λ codewords of a code with blocklength N/2λ. The channel is BIAWGNC, and the total rate is 1/2.

Note that En,λ = E/2λ. As expected, polarization is useful, i.e. Eλ ≥ En,λ. All the plots in Fig. 2 have an asymptote at the

SNR corresponding to the capacity C = R = 1/2, which equals 0.19dB, since for this SNR, E, Eλ and En,λ approach zero.

This explains why in all the discussed codes, the gap to the optimal error exponent plot is small for low SNR.

Although as the channel capacity increases (as in the case of high SNR), polarization is less effective (because for

high capacity, the polarization gap, I(W+) − I(W ) = I(W ) − I(W−), approaches zero, and therefore polarization has

almost no affect on the channel), En,λ/Eλ 9 1 for high SNR. This is due to the fact, that for expurgated ensembles

limSNR→∞E(W,R) = ∞, so En,λ and Eλ approach infinity for high SNR. It should be noted, that for the random coding

ensemble limSNR→∞Er(W,R) = ln 2(1 − R), so if we have not considered expurgated ensembles (i.e., ensembles with

typical outer codes only), we would have obtained En,λ/Eλ → 1 for high SNR. It should also be noted that the error

exponent improvement increases with λ, i.e, for a desired error exponent, the SNR improvement by applying λ polarization

steps, compared to the naive approach, increases with λ. For example, for desired error exponent of 0.01, the SNR gain for

λ = 1, 2, 3 is 0.2dB, 0.5dB and 0.95dB respectively.

Fig. 2 demonstrates that polarization improves the error exponent compared to the naive approach. In the following we

provide some partial theoretical justification. Define Er,λ(W,R) the same way as Eλ(W,R) in Lemma 2, except that

Er,0(W,R) = Er(W,R). That is, we only consider a random coding (non-expurgated) error exponent analysis. Similarly, define

En,r,λ(W,R) , Er(W,R)/2λ. Using the results in [23], we claim that under certain conditions, Er,λ(W,R) ≥ En,r,λ(W,R).

We demonstrate this for the case λ = 1, although the argument may be extended to larger values of λ. The combination of

2E0(W,ρ) ≤ E0

(
W+, ρ

)
+ E0

(
W−, ρ

)
[23] and (1) yields that for R 6= 0 and all R1:

2Er(W,R) = max
ρ∈[0,1]

2 [E0(W,ρ)− ρR ln 2] ≤ max
ρ∈[0,1]

[
E0(W+, ρ)− ρR1 ln 2 + E0

(
W−, ρ

)
− ρ (2R−R1) ln 2

]
(9)

≤ max
ρ∈[0,1]

[
E0

(
W+, ρ

)
− ρR1 ln 2

]
+ max
ρ∈[0,1]

[
E0

(
W−, ρ

)
− ρ (2R−R1) ln 2

]
= Er

(
W−, R1

)
+ Er

(
W+, 2R−R1

)
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This is true in particular for R1 = R̂1, defined by

R̂1 , argmax
R1∈B

min
[
Er
(
W−, R1

)
, Er

(
W+, 2R−R1

)]
Now, Er (W−, R1) is decreasing in R1, and Er (W+, 2R−R1) is increasing in R1. If the following condition (which parallels

(25) in Appendix A)  Er (W−, 0+) ≥ Er (W+, 2R)

Er (W−, 2R) ≤ Er (W+, 0+)
(10)

holds (where for any W and R > 1 we define Er(W,R) ≡ 0), then Er (W−, R1) and Er (W+, 2R−R1) intersect at R̂1 (see

Fig. 10 in Appendix A with Er(W−, r) replaced by Eλ−1(W−, r) and Er(W+, 2R − r) replaced by Eλ−1(W+, 2R − r)).

In this case

Er

(
W−, R̂1

)
+ Er

(
W+, 2R− R̂1

)
= 2 max

R1

min
[
Er
(
W−, R1

)
, Er

(
W+, 2R−R1

)]
= 4Er,1(W,R)

But the LHS of (9) equals 4En,r,1(W,R). We conclude that if (10) holds then Er,1(W,R) ≥ En,r,1(W,R). However, if (10)

does not hold then either R̂1 = max(0, 2R− 1) or R̂1 = min(1, 2R) and the argument fails.

We now obtain a lower bound on the achievable error exponent Eλ(W,R) that depends on the channel, W , only through

its capacity, I(W ). By [24, Equation (26)], for a given channel capacity I(W ),

Er,BSC (I(W ), R) ≤ Er (W,R) ≤ Er,BEC (I(W ), R)

where Er,BEC (I(W ), R) (Er,BSC (I(W ), R), respectively) is the error exponent corresponding to random codes of rate R

over a binary erasure channel (binary symmetric channel) of capacity I(W ). By [24, Equation (27), Theorem 2] this is also

true for expurgated error exponents. Therefore,

EBSC (I(W ), R) ≤ E (W,R) ≤ EBEC (I(W ), R)

is also true for expurgated random codes and their error exponents as defined in (3). Recalling that

I
(
W+

)
− I(W ) = I(W )− I

(
W−

)
∈ [εl (I(W )) , εh (I(W ))]

(see Section II), we define

Êλ (I(W ), R) , 0.5 min
ε∈[εl,εh]

max
R1∈B

Êm,λ (I(W ), ε, R,R1)

where εl = εl(I(W )), εh = εh(I(W )),

Êm,λ (I(W ), ε, R,R1) = min
[
Êλ−1 (I(W )− ε, R1) , Êλ−1 (I(W ) + ε, 2R−R1)

]
and Ê0 (I(W ), R) = EBSC (I(W ), R) Note that Êλ (I(W ), R) does not depend on the channel W , but only on its capacity.

Theorem 1: For any BMS channel W with capacity I(W ), any desired code rate R, and a concatenated code with λ ≥ 0

polarization steps for the inner polar code and (randomly generated linear) outer codes with blocklength N1 → ∞, the best

achievable error exponent Eλ (W,R) is lower bounded by Eλ (W,R) ≥ Êλ (I(W ), R).

Proof: We will prove the theorem using induction. The claim is trivial for λ = 0. We will prove it for λ assuming it is

true for λ− 1.

Eλ(W,R) = 0.5 max
R1∈B

Em,λ (W,R,R1)

≥ 0.5 max
R1∈B

min
[
Êλ−1

(
I
(
W−

)
, R1

)
, Êλ−1

(
I
(
W+

)
, 2R−R1

)]
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Fig. 3. Lower bounds for error exponents of codes created by λ polar transforms followed by 2λ outer codes of blocklength N/2λ and rate R = 1/2 with

optimal rate-splitting, and naively using 2λ outer codes of blocklength N/2λ, for a general BMS channel with capacity I(W ) and total rate R = 1/2.

≥ 0.5 min
ε∈[εl,εh]

max
R1∈B

Êm,λ (I(W ), ε, R,R1) = Êλ (I(W ), R)

where the first equality follows from (6), the first inequality follows from the induction assumption, and the second one follows

from the fact that there exists εl (I(W )) ≤ ε ≤ εh (I(W )) s.t. I(W )− I (W−) = I (W+)− I(W ) = ε.

We thus showed that Êλ (I(W ), R) is a lower bound on the error exponent Eλ(W,R) for all BMS channels with a given

capacity I(W ). In Fig. 3, we plot the asymptotic lower bound for the error exponent, Êλ (I(W ), R), for a code with rate

R = 1/2 and λ = 1, 2, 3 as a function of I(W ). This is compared to the lower bound for the naive approach, where we use 2λ

codewords with blocklength N1 = N/2λ, without using the polar transformation. This lower bound is EBSC (I(W ), R) /2λ.

As expected, the lower bound for the scheme with polarization is higher, i.e. Êλ ≥ Ên,λ. All the plots in Fig. 3 have an

asymptote at I(W ) = R = 1/2, since when the rate approaches capacity, EBSC , Êλ and Ên,λ approach zero. We also see

that Êλ and Ên,λ have an asymptote at I(W ) = 1. This asymptote follows from using expurgated codes, and since it is

a lower bound on the error exponent, it follows that Eλ and En,λ approach infinity as SNR → ∞ (I(W ) → 1) in Fig.

2 for the BIAWGNC. It should also be noted that the difference between the lower bounds on the error exponents of the

polarization-based and naive schemes increases with λ.

IV. IMPROVED BOUNDS AND APPROXIMATIONS

A. Achievable bound for BEC

[17, Theorem 37] provides an upper bound on the achievable frame error rate (FER) of an error-correcting code with

blocklength N and rate R for the binary erasure channel (BEC) with erasure probability ε. Combining this upper bound with

(2), we obtain that for a polar-concatenated code with outer codes of length N1, and rates Ri, i = 0, . . . , 2λ−1, an achievable

upper bound is

Pe ≤
2λ−1∑
i=0

min

{
N1∑
t=0

(
N1

t

)
(1− I(Wi))

tI(Wi)
N1−t2

−
[
N1−t−log

(
2N1Ri−1

2

)]+
, e−N1E(Wi,Ri,N1)

}
(11)

∆
=

2λ−1∑
i=0

γi(Ri)
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where x+ , max(x, 0). We compute an upper bound on the achievable FER for polar codes of length 2λ concatenated with

codes of length N1 and the best rate division between sub-codes given the total code rate R, by minimizing the RHS of

(11) given
∑2λ−1
i=0 Ri = 2λR (which can also be written as

∑2λ−1
i=0 RiN1 = RN ) using the following efficient dynamic

programming algorithm. Denote

δl(ρ)
∆
= min

R0,...,Rl

l∑
i=0

γi(Ri)

for integer ρ ∈ [0, RN ]. The minimization is under the constraint that N1Ri are all positive integers, satisfying
∑l
i=0RiN1 = ρ.

For each l = 0, 1, . . . , 2λ − 1, and each integer value of ρ ∈ [0, RN ], the algorithm computes δl(ρ) recursively using

δl(ρ) = min
Rl
{δl−1(ρ−N1Rl) + γl(Rl)}

subject to the constraint that N1Rl is an integer and N1Rl ∈ [0, ρ]. The recursion is initialized using

δ0(ρ) = γ0(ρ/N1)

The output of the algorithm is δ2λ−1(RN), which is the minimum of the RHS of (11). The minimizing rates, R0, . . . , R2λ−1,

can be easily obtained as a byproduct of this recursive algorithm.

B. Dispersion-based (normal) approximation

Consider transmission over a BMS channel, W , with capacity I(W ) and dispersion V (W ), defined as

V (W )
∆
=
∑
x∈X

∑
y∈Y

1
2W (y | x)

(
log W (y | x)∑

x′∈X
1
2W (y | x′)

)2
− I(W )2. By [17], the maximal rate of transmission at error

probability ε and blocklength N is closely approximated by I(W ) −
√

V (W )
N Q−1(ε) where Q() is the complementary

Gaussian cumulative distribution function. The approximation improves as N gets larger, but is known to be tight already

for N as short as about 100. The error probability of the best code with blocklength N and rate R can be approximated by

Q
{√

N
V (W )

[
I(W )−R+O

(
logN
N

)]}
[17] (this is sometimes referred to as the normal approximation in the literature).

However, for some channels this expression can be improved. For BIAWGNC [25] and BSC [17, Theorem 52], Pe ≈
Q
{√

N
V (W )

[
I(W )−R+ logN

2N +O
(
N−1

)]}
, and for BEC it is the same expression without 0.5 logN/N [17, Theorem

53]. Therefore, for the BEC and for general channels we approximate the error probability as Q
(√

N
V (W ) (I(W )−R)

)
,

while for the BIAWGNC and BSC we use

Q

[√
N

V (W )

(
I(W )−R+

logN

2N

)]
(12)

The smallest achievable error probability of our concatenated polar coding scheme is thus approximated by

Pe ≈ min
R0...R2λ−1

Ri∈[0,I(Wi)]∑2λ−1
i=0 Ri=2λR

2λ−1∑
i=0

Q

(
(I (Wi)−Ri + C(N1))

√
N1

V (Wi)

)
(13)

≤ 2λ min
R0...R2λ−1

Ri∈[0,I(Wi)]∑2λ−1
i=0 Ri=2λR

max
i
Q

(
(I (Wi)−Ri + C(N1))

√
N1

V (Wi)

)
(14)

where C(N1) is a correction term. For the BIAWGNC and BSC, C(N1) = logN1/(2N1), and for other channels C(N1) = 0.

Note that Pe is also approximately lower bounded by the same expression in (14) without the multiplying 2λ term.

In the simulations section it will be shown that (13) provides a tight approximation to the actual performance of concatenated

BCH-polar codes over the BIAWGNC. The minimization in (13) is computed efficiently using a dynamic programming
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Fig. 4. The minimal rate for which (17) holds compared to the channel capacity for the BIAWGNC

algorithm, similarly to the algorithm that was described in Section IV-A. The algorithm also provides the rates R0, . . . , R2λ−1

as a byproduct.

To gain insight on the min-max problem (14), we first look at the simpler problem

min
R0...R2λ−1∑2λ−1
i=0 Ri=2λR

max
i
Q

(
(I (Wi)−Ri)

√
N1

V (Wi)

)
(15)

This problem is solved when I(Wi)−Ri√
V (Wi)

, i = 0, . . . , 2λ − 1 are equal and
∑2λ−1
i=0 Ri = 2λR. Hence, I (Wi) − Ri =

2λ[I(W )−R]
√
V (Wi)∑2λ−1

j=0

√
V (Wj)

, and the solution of (15) is Q
(

[I(W )−R]
√

N
Vλ(W )

)
where

Vλ(W )
∆
=

(∑2λ−1
i=0

√
V (Wi)

)2
2λ

(16)

Since (15) is a relaxed version of the min-max problem in (14), if the solution of (15) obeys all the constraints of the min-max

problem in (14), then it is the solution of this problem as well. Therefore, if ∀i = 0, . . . , 2λ − 1

Ri = I (Wi)−
2λ[I(W )−R]

√
V (Wi)∑2λ−1

j=0

√
V (Wj)

≥ 0 (17)

then

Pe ≈ 2λQ

(
[I(W )−R]

√
N

Vλ(W )

)
(18)

For R sufficiently close to I(W ) the condition (17) is guaranteed to hold. The minimal R, for which (17) holds is

Rmin = I(W )−min
i

(
I (Wi)

√
Vλ (W )

2λV (Wi)

)
(19)

Fig. 4 shows Rmin for different values of λ for the BIAWGNC. Fig. 4 suggests that limSNR→∞Rmin = 1− 1/2λ. This will

be proved theoretically later. In this entire derivation, we ignore the requirement that Ri · N1 ∈ Z, since this requirement

becomes redundant as N1 increases. For the same reason, we also ignore the correction term. This is compared to a naive
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Fig. 5. Vλ(W ) and Vn,λ(W ) for a BIAWGNC

approach where we simply use 2λ codewords with blocklength N1 = N/2λ (without using the polar transformation at all). In

this approach,

Pe ≈ 2λQ

(
[I(W )−R]

√
N1

V (W )

)
= 2λQ

(
[I(W )−R]

√
N

Vn,λ(W )

)
(20)

where Vn,λ(W ) , 2λV (W ). Showing that Vλ(W ) ≤ Vn,λ(W ) would mean that polarization is helpful. As can be seen in Fig.

5, for codes of rate R > Rmin, transmitted over the BIAWGNC, Vλ(W ) < Vn,λ(W ), so polarization helps. For high SNR,

Fig. 5 suggests that Vλ(W ) ≈ V (W ). This can be proved theoretically, but it requires the following lemma first.

Lemma 4: If R is sufficiently large, s.t. (17) holds, i.e. R > Rmin, then, for λ ≥ 1, Vλ(W ) can be calculated recursively

using Vλ(W ) = 0.5
(√

Vλ−1 (W−) +
√
Vλ−1 (W+)

)2
where V0(W ) , V (W ).

Proof: For λ > 1, note that Wi are sub-channels of W− for i = 0, . . . , 2λ−1 − 1, and sub-channels of W+ for i =

2λ−1, . . . , 2λ − 1.

Vλ(W ) = 0.5

(∑2λ−1−1
i=0

√
V (Wi)√

2λ−1
+

∑2λ−1
i=2λ−1

√
V (Wi)√

2λ−1

)2

= 0.5
(√

Vλ−1 (W−) +
√
Vλ−1 (W+)

)2
where the first equality follows from rewriting (16), and the second one follows from applying (16) for λ− 1 instead of λ.

We now consider the case of I(W ) close to 1 (the high SNR case) and claim the following.

Lemma 5: Consider a BMS channel W and suppose that V (W ) can be linearly approximated as4 V (W ) = αδ(W )+o(δ(W ))

where α is some constant and δ(W )
∆
= 1 − I(W ). Also assume that W+ and W− satisfy the same property (with the same

value of α). Then Vλ(W ) = V (W ) + o (δ(W )) for λ ≥ 1. Furthermore, under our assumptions, limI(W )→1Rmin = 1− 1/2λ.

We prove the Lemma in Appendix B

The conditions of Lemma 5 hold in particular for the BEC. The condition regarding W holds with α = 1 since V (W ) =

I(W ) [1− I(W )]. The conditions regarding W+ and W− hold since by [1, Proposition 6], if W is a BEC, so are W+ and

W−. For the BIAWGNC, [24, Fig. 4] suggests that the condition on W is valid. Furthermore, if W is a BIAWGNC, then W+

4o(δ) denotes a term which is negligible in its absolute value compared to δ for sufficiently small δ
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and W− can be approximated as BIAWGNCs as well [8]. These arguments suggest that the conditions of Lemma 5 are also

valid for the BIAWGNC. Fig. 5 supports this conjecture.

Consider transmission over a BMS channel W with code rate R > Rmin, where I(W ) is sufficiently close to 1. One could

think that under the conditions of Lemma 5 on W , W− and W+, and the normal approximation to the error probability, the best

achievable error probability of the polar concatenated coding scheme, (18), is larger only by a factor of 2λ compared to the best

achievable error probability of an arbitrary code with the same total blocklength and rate, i.e. Q(x/
√
V (W ))/Q(x/

√
Vλ(W )) ≈

1 for x ,
√
N [I(W )−R] and I(W ) close to 1.

Unfortunately, this is not true. Since Q(u) ∼ exp
(
−0.5u2

)
for large u, and, according to the conditions and claims of

Lemma 5, limI(W )→1 V (W ), Vλ(W ) = 0, we have

Q
(
x/
√
V (W )

)/
Q
(
x/
√
Vλ(W )

)
≈ exp

[
−x

2

2

(
1

V (W )
− 1

Vλ(W )

)]
(21)

for I(W ) sufficiently close to 1. The condition

lim
I(W )→1

1

V (W )
− 1

Vλ(W )
= 0

is required for claiming that the RHS of (21) approaches one for I(W )→ 1. This condition is stronger than the one proved in

Lemma 5, and it does not necessarily hold, since 1/V (W )− 1/Vλ(W ) = o(δ)
α2δ2+αo(δ2) does not necessarily approach zero for

δ → 0. I removed the example illustrated in the previous Fig. 6 in order to focus on our main contributions. As an example,

it is easy to prove using Lemma 4, that for the BEC and I(W ) = 1 − δ, V (W ) = δ(1 − δ), but V1(W ) = δ + Θ
(
δ1.5
)
, so

1/V (W )− 1/V1(W ) = Θ
(
δ−0.5

)
and the RHS of (21) approaches zero for I(W )→ 1.

Suppose that the condition R > Rmin holds. Then the error rate of the polar concatenated (naive) scheme is given by (18)

((20), respectively). Hence, comparing Vλ(W ) to Vn,λ(W ), we can assess the usefulness of polarization compared to the naive

approach with the same value of λ. The following result shows that for large N , Vλ(W ) and Vn,λ(W ) can be used to compare

between schemes with different values of λ. Define V̂λ(N,W ) as the solution to

2λQ

(
[I(W )−R]

√
N

Vλ(W )

)
= Q

(
[I(W )−R]

√
N

V̂λ(N,W )

)
(22)

for given I(W )−R, λ and N . Also define V̂n,λ(N,W ) as the solution of

2λQ

(
[I(W )−R]

√
N

Vn,λ(W )

)
= Q

(
[I(W )−R]

√
N

V̂n,λ(N,W )

)

Lemma 6: V̂λ(N,W ) − Vλ(W ) = Θ
(

1
N

)
, so limN→∞ V̂λ(N,W ) = Vλ(W ). The same claim also holds for V̂n,λ(N,W )

and Vn,λ(W ).

We prove the lemma in Appendix C.

For asymptotically large blocklengths the error probabilities predicted by Gallager’s error exponents are more accurate

(the error exponents are conjectured to be the correct ones under our sub-optimal decoding scheme). However, in the finite

blocklength regime, the normal approximation is better. In our setting, we target the case of N1 values which are not very large

(e.g., of order 100). In the following section we show a very good match between the normal approximation and simulation

results, using close to ML decoded, powerful outer algebraic codes.
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C. Approximated converse for BIAWGNC

In [26], a lower bound on the optimal FER of optimal spherical codes over additive white Gaussian noise channels (AWGNCs)

is provided. Since the BIAWGNC is a constrained version of a AWGNC with the same SNR, this bound can be treated as a lower

bound on the FER for a BIAWGNC as well, i.e. for the same SNR = 1/σ2, rate R and block size N , Pe,BIAWGNC (σ,R,N) ≥
Pe,AWGNC (σ,R,N). We obtain the following approximated lower bound on the achievable frame error rate after λ polarization

steps.

Pe ≥ 1−
2λ−1∏
i=0

[1− Pe (Wi, Ri, N1)] (23)

≈ 1−
2λ−1∏
i=0

[1− Pe,BIAWGN (σi, Ri, N1)]

≥ 1−
2λ−1∏
i=0

[1− Pe,AWGN (σi, Ri, N1)]

≥ min
Ri

1−
2λ−1∏
i=0

[1− Pe,AWGN (σi, Ri, N1)]


The first inequality is under the assumption that each outer code Ai is ML decoded given the channel observations and the

previously decoded codewords of the outer codes A0, . . . , Ai−1. We bound the error rate from below by assuming a genie aided

decoder: the genie informs us what was the actual transmitted codeword of the outer code, Ai, immediately after we decode

it (so that it can be used for decoding the codewords of the following outer codes, Ai+1, Ai+2, . . .). The approximation in the

second line follows from the approximation of the sub-channels Wi as BIAWGNCs, when W is a BIAWGNC [8, Equations

(7)-(8)]. The second inequality follows from the explanation above. The term Pe,AWGN (σ,R,N) is calculated using [26]

Pe,AWGN (σ,R,N) ≈ 1√
Nπ

1√
1 +G2 sin θ

·
[
G sin θ exp

(
− 1

2σ2 + G cos θ
2σ

)]N
G sin2 θ/σ − cos θ

where G = 0.5
(

cos θ/σ +
√

cos2 θ/σ2 + 4
)

and θ is computed by solving 2NR ≈
√
2πN sin θ cos θ

sinN θ
. The two approximations

above are extremely accurate for N ≥ 100.

D. Converse for the BEC

Combining (23) with [17, Theorem 38] and the fact that the sub-channels of a BEC are also BEC, yields that for all polar

concatenated codes over the BEC with capacity I(W ), λ polarization steps, and blocklength N1

Pe ≥ 1−
2λ−1∏
i=0

[1− Pe (Wi, Ri, N1)]

≥ 1−
2λ−1∏
i=0

[1− Pc,BEC (I (Wi) , Ri, N1)]

≥ min
Ri

1−
2λ−1∏
i=0

[1− Pc,BEC (I (Wi) , Ri, N1)]

 (24)

where

Pc,BEC (I(W ), R,N)
∆
=

N∑
l=bN(1−R)c+1

(
N

l

)
[1− I(W )]

l
I(W )N−l

(
1− 2N(1−R)−l

)
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TABLE I

RATES OF OUTER CODES IN THE (λ,N1, R) = (1, 64, 1/2) SCHEME FOR THE BIAWGNC

SNR[dB] N1 ·R0 N1 ·R1

1 17 47

1.5 16 48

2 16 48

2.5 16 48

3 15 49

3.5 15 49

4 14 50

TABLE II

RATES OF OUTER CODES IN THE (λ,N1, R) = (1, 128, 1/2) SCHEME FOR THE BIAWGNC

SNR[dB] N1 ·R0 N1 ·R1

0.5 34 94

1 33 95

1.5 33 95

2 32 96

2.5 31 97

3 31 97

3.5 30 98

V. COMPARISON WITH SIMULATION RESULTS

We start by comparing the actual performance of BCH-polar codes, for short blocklengths and one polarization step (λ = 1)

transmitted over a BIAWGNC, with the normal approximation-based expression (13), for the best polar-concatenated code

with these parameters using the dynamic programming algorithm described in Section IV. The total code rate was R = 1/2.

We used two setups. In the first, N1 = 64 and N = 128. In the second setup, N1 = 128 and N = 256. We also calculated the

normal approximation (12) to the best achievable error probability when using a (128, 64) ((256, 128)) code. For each SNR,

the outer code rates that minimize (13) were calculated as a by-product of the dynamic programming algorithm, and are shown

in Tables I and II.

Due to the results in Table I, we used (64,18,22) and (64,45,8) extended BCH codes, whose generator matrices appear in

[27], as outer codes in the simulated BCH-polar coding scheme for N = 128, and decoded them using OSDs of order 5 [27].

The total rate of the scheme is R = 63/128, which is close to the planned rate. The (128,64,22) BCH code was decoded using

OSD of order 5 as well. The consumed processor time (measured in clock ticks) normalized by the number of information

bits of the decoders of BCH-polar and BCH codes were compared as well. The error rates and decoding times of the various

schemes are shown in Figs. 6 and 7. Fig. 6 suggests that the normal approximation we use is accurate in the SNR range

examined. We also see that the BCH-polar code suffers a loss of 0.7dB compared to the BCH code (Fig. 6), but is about 25

to 1000 times faster, depending on the SNR (Fig. 7). Compared to the (128,64) list SC decoder with CRC (with list size 32),

whose FER results were taken from [28], the BCH-polar code suffers a loss of only 0.25dB.

For extended BCH with N = 128 and R = 1/2 we see in Fig. 6 that the normal approximation is accurate for low SNR, but

for high SNR it slightly underestimates the FER. We conjecture the same behavior for other blocklengths and rates. Therefore,
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Fig. 6. FER normal approximations and simulation results for BCH-polar codes with λ = 1, and BCH codes with different blocklengths and rates close to

1/2 for the BIAWGNC, compared with (128,64) List decoder with CRC from [28]

using (13) to estimate the optimal rates for BCH-polar codes would be accurate for low SNR (considering that not all BCH

rates are feasible), but for high SNR it would overestimate the rates of the good sub-channels. That’s why we pick slightly

lower R1 and slightly higher R0 than the ones in Table I while designing the BCH-polar codes.

The results for N = 256 show a similar trend. Due to the rates in Table II, and since R1 should be slightly lowered (and

R0 slightly increased) the chosen extended BCH codes were (128,36,32) and (128,92,12), whose generator matrices appear

in [27]. For comparison, we have taken the FER results of the (255,131) BCH code from [29], and measured the average

processing time of the OSD of order 5 of this code. This time, the BCH-polar code suffers a loss of only 0.5dB compared to

the BCH code (Fig. 6), but is about 1000 times faster (Fig. 7). Figs. 6 and 7 also show the following:

1) For SNR < 2dB, the (256,128) BCH-polar code has a higher FER compared to the (128,64) BCH code, but it requires

a lower processing time per information bit.

2) For 2dB < SNR < 3dB, the (256,128) BCH-polar code has a lower FER and lower processing time per information bit

compared to the (128,64) BCH code.

3) For SNR > 3dB, the (256,128) BCH-polar code has a lower FER than the (128,64) BCH code, but it requires higher

processing time per information bits.

Note that when decoding a (256,128) BCH-polar code, we need to decode two BCH codes of blocklength 128. However,

the rate of the first is lower than 1/2 while the rate of the second is higher than 1/2. Also, the required complexity of the

OSD algorithm is maximal for rate 1/2 codes. Therefore, it is usually more efficient to decode a (256,128) BCH-polar code

compared to the decoding of two (128,64) BCH codes. However, the decoding of the (256,128) BCH-polar code also requires

some handling of soft information due to the polar transformation. We did not attempt to implement this part in our algorithm

efficiently.

We also compared our results to simulation results from the literature. First, we considered the setup in [9, Section VIII.A],

where λ = 3, N1 = 128, N = 1024, and the channel is a BEC. The overall rate of the code is R = 0.4. We calculated the

achievable upper bound on the FER, with typical random (the expurgated random ensemble) outer codes, using the recursive

algorithm from Lemma 1. We then computed an upper bound on the achievable FER by finding the best rate division between
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the BIAWGNC.
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Fig. 8. FER upper bounds for concatenated polar codes with outer code length N1 = 128 and inner polar code length 8, compared with BCH-polar code

results from [9, Fig. 5].

sub-codes given the total code rate 2λR, that brings the RHS of (11) to a minimum as described in Section IV-A. Our upper

bounds were computed twice. Once by optimizing the rate division for a fixed BEC, W , with erasure rate 0.4 as in [9], and once

by optimizing the rate division for the actual BEC we are transmitting over, for each point in the graph. The corresponding

graphs are denoted by “BEC(0.4)” and “opt.” in Fig. 8. We have also plotted the normal approximation (13) to the best

achievable error probability, and the converse bound in Section IV-D.

The graphs show small gaps between the achievable bound, Equation (11), and the actual results with BCH codes. The

normal approximation (13) has a somewhat lower FER, while the bound based on Lemma 1 is less tight. The converse (24) is

close to the normal approximation. For comparison, note that a standard SC decoded polar code of length N = 1024, yields

FER ≈ 2 · 10−3 for I(W ) = 0.6 [9].

The second setup we considered is taken from [8, Section IV], where λ = 3, N1 = 127, N = 1016, and the channel is a
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Fig. 9. FER upper bounds for concatenated polar codes with outer random code length N1 = 127, inner polar code length 8, compared with BCH-polar

code from [8]

BIAWGNC. The overall rate of the code is R = 1/2. We first calculated the achievable upper bound on the FER from Lemma

1. Then we calculated the normal approximation (13) to the best achievable error probability. Both graphs were obtained by

optimizing over the best rate split for each SNR point in the graph. We also plot the normal approximation given optimal rate

division for fixed SNR = 3dB. We compared these bounds with a simulation of the BCH-polar code in [8] using an outer

OSD of order 5. Note that in [8] the outer code rates were optimized only for SNR = 3dB. As can be seen, the normal

approximation is close to the performance of the scheme with outer BCH codes and almost not affected by using a fixed rate

division. The figure also shows the performance of a standard polar code with N = 1024 and R = 1/2. Finally, we have

plotted the converse for polar concatenated scheme as was described in Section IV-C, Equation (23). We see that for a desired

FER of ≈ 2 · 10−4 the BCH-polar code is only 0.75dB worse than the converse, so under the given λ, N1 and R, we cannot

gain more than 0.75dB by smartly choosing the outer codes. Finally note that the normal approximation for the best (1016,508)

code at SNR = 1.25dB shows only 1dB improvement compared to the BCH-polar code.

VI. CONCLUSION

We studied the properties of a concatenated scheme of polar codes with good outer codes. We obtained an upper bound on

the error exponent using the corresponding expurgated random coding ensemble, and calculated a lower bound on the error

exponent, which is valid for all channels with a given capacity. We obtained converse and approximated converse results,

as well as a dispersion-based normal approximation to the performance for finite length codes, which can also be used to

determine the required rate split between the outer codes. We showed good agreement between this prediction and simulation

results for BCH-polar codes, when transmitting over the BIAWGNC.

APPENDIX A

PROOF OF LEMMA 3

We first prove by induction that Eλ(W,R) is finite for all integer λ and R > 0. Eλ(W,R) is finite for λ = 0 and R > 0, since

both Er(W,R) and Eex(W,R) are finite: Er(W,R) ≤ E0(W, 1), and for binary-input channels (except for a perfect channel

for which the two inputs can never be confused at the receiver), Eex(W,R) is finite for R > 0, which can be derived from [21,
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Equations (5.7.14)-(5.7.16)]. Now, assume Eλ−1(W,R) is a finite function of R for R > 0. Then, Em,λ(W,R,R1) defined in

(7) is finite, since Eλ−1 (W−, R1) can be infinite only for R1 = 0, but then 2R − R1 = 2R > 0 and Eλ−1 (W+, 2R−R1)

is finite, so Em,λ(W,R,R1) is finite too. This also means that Eλ(W,R) = 0.5 maxR1 Em,λ(W,R,R1) is finite. This shows

that Eλ (W,R) is finite for all integer λ and R > 0. Note however that Eλ(W, 0) = ∞ for all integer λ and any channel

W . This can be shown by induction, since for R = 0 (6) yields Eλ(W, 0) = 0.5 min [Eλ−1 (W+, 0) , Eλ−1 (W−, 0)] and

Eλ(W, 0) =∞ for λ = 0 due to (1).

Next, we prove by induction that Eλ(W,R) is decreasing in R. The claim is trivial for λ = 0 since E0(W,R) = E(W,R) is

defined in (3) as a maximum between two continuous, decreasing functions. Hence it is decreasing whether it equals Eex(W,R)

or Er(W,R). Now assume that Eλ−1(W,R) is decreasing in R for any W . First consider rates R for which Eλ−1 (W−, 0+) ≥ Eλ−1 (W+, 2R)

Eλ−1 (W−, 2R) ≤ Eλ−1 (W+, 0+)
(25)

(for rates R > 1 we define for all λ, Eλ(W,R) ≡ 0). This case is depicted in Fig. 10. By (6) and Fig. 10,

2Eλ(W,R) is the height of the intersection point of Eλ−1 (W−, R1), which is a decreasing function of R1, and

Eλ−1 (W+, 2R−R1), which is an increasing function of R1. Therefore, increasing R would move Eλ−1 (W+, 2R−R1)

to the right, as can be seen in Fig. 10, thus decreasing the intersection point height, 2Eλ(W,R), and increasing

R̂1 = argmaxR1
min [Eλ−1 (W−, R1) , Eλ−1 (W+, 2R−R1)]. This means Eλ(W,R) is decreasing, and R̂1 = R̂1(R) is

an increasing function of R, as can be seen in Fig. 10: R̂2 , R̂1(R+ ∆R) > R̂1(R) for ∆R > 0.

If (25) does not hold, i.e., Eλ−1 (W−, 0+) < Eλ−1 (W+, 2R) (Eλ−1 (W+, 0+) < Eλ−1 (W−, 2R), respectively), R̂1 =

max(0, 2R− 1) (R̂1 = min(1, 2R)) and Eλ (W,R) = 0.5Eλ−1 (W−,max(0+, 2R− 1)) (0.5Eλ−1 (W+, 2R−min(1, 2R))).

Trivially, Eλ (W,R) is decreasing in this case as well. Thus we have shown that Eλ(W,R) is decreasing in R for all integer

λ, and that R̂1 is an increasing (but not strictly increasing) function of R.

We proceed by proving by induction that Eλ(W,R) is convex. The claim is trivial for λ = 0 since E0(W,R) = E(W,R) is

defined in (3) as a maximum between two continuous, convex functions, Er(W,R) and Eex(W,R), and since maximization

preserves convexity. Now assume that Eλ−1(W,R) is convex in R for all BMS channels W . Since it was already shown

that Eλ−1(W,R) is also decreasing for all BMS channels W , it follows that |∂Eλ−1 (W−, r) /∂r|r=R̂1(R) is decreasing

in R (recalling that R̂1(R) is an increasing function of R). Since Eλ−1
(
W+, 2R− R̂1

)
= 2Eλ(W,R), and Eλ(W,R)

is a decreasing function of R, Eλ−1
(
W+, 2R− R̂1(R)

)
is also decreasing in R. But Eλ−1 (W+, r) is decreasing in

r. Thus 2R − R̂1(R) is increasing in R. Since in addition Eλ−1(W+, r) is convex and decreasing, it follows that

|∂Eλ−1 (W+, 2R− r) /∂r|r=R̂1(R) is decreasing in R. We proceed by claiming that

|∂Eλ (W,R) /∂R| =
(

1

|∂Eλ−1 (W−, r) /∂r|r=R̂1(R)

+
1

|∂Eλ−1 (W+, 2R− r) /∂r|r=R̂1(R)

)−1
(26)

Assume that (26) holds. Since both |∂Eλ−1 (W−, r) /∂r|r=R̂1(R) and |∂Eλ−1 (W+, 2R− r) /∂r|r=R̂1(R) decrease with R, it

follows that |∂Eλ (W,R) /∂R| is also decreasing in R. Since, in addition, ∂Eλ (W,R) /∂R < 0 (due to the fact that Eλ(W,R)

is decreasing in R), this means Eλ (W,R) is convex.

It remains to prove (26). First assume that (25) holds. Consider Fig. 10, which shows Eλ−1 (W−, r), Eλ−1 (W+, 2R− r)
and Eλ−1 (W+, 2(R+ ∆R)− r) (∆R is small fixed value) as a function of r, together with intersection points standing for

2Eλ(W,R) and 2Eλ(W,R+ ∆R). Now, 2∆E , 2Eλ(W,R)− 2Eλ(W,R+ ∆R) is the height of the triangle formed by the
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Fig. 10. Functions required to calculate Eλ (W,R) and its derivative.

vertices (R̂1, 2Eλ(W,R)), (R̂2, 2Eλ(W,R+ ∆R)) and (R̂1 + 2∆R, 2Eλ(W,R)) in Fig. 10. For ∆R→ 0, the slopes of this

triangle’s edges are approximated as

a , 2∆E/(R̂2 − R̂1) ≈
∣∣∂Eλ−1 (W−, r) /∂r∣∣r=R̂1

b , 2∆E/(R̂1 + 2∆R− R̂2) ≈
∣∣∂Eλ−1 (W+, 2R− r

)
/∂r
∣∣
r=R̂1

It can be easily verified that 2∆E = 2∆R(1/a + 1/b)−1, and together with ∆E/∆R → |∂Eλ (W,R) /∂R|,
the approximations above yield (26). Now, if (25) does not hold, then as was noted above, either Eλ (W,R) =

0.5Eλ−1 (W−,max(0+, 2R− 1)) or Eλ (W,R) = 0.5Eλ−1 (W+, 2R−min(1, 2R)). In both cases Eλ (W,R) is convex.

Finally, the claim that for R > 0, |∂Eλ (W,R) /∂R| < ∞ is due to the fact that Eλ(W,R) is a finite, convex, decreasing

function for all R > 0.

APPENDIX B

PROOF OF LEMMA 5

We first prove by induction on λ that Vλ(W ) = V (W ) + o (δ(W )). This claim is trivial for λ = 0. Now assume it holds

for λ− 1. By the induction assumption,

Vλ−1(W ) = V (W ) + o (δ(W )) = αδ(W ) + o (δ(W ))

Now, εl() and εh(), defined in Section II, satisfy

εl(I(W )) = δ(W ) + o(δ(W )) , εh(I(W )) = δ(W )− δ(W )2

(the claim on εl(I(W )) follows by a first order Taylor expansion of εl(1− δ) for small δ). Hence, recalling Section II,

I(W )− I
(
W−

)
= I(W+)− I (W ) = δ(W ) + o (δ(W ))
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so that

I(W−) = 1− 2δ(W ) + o (δ(W )) , I(W+) = 1 + o (δ(W ))

By the assumption of the theorem regarding W− and W+,

V (W−) = αδ(W−) + o(δ(W−)) = 2αδ(W ) + o(δ(W )) , V (W+) = αδ(W+) + o(δ(W+)) = o(δ(W ))

Applying the induction assumption to W− and W+, we know that

Vλ−1
(
W−

)
= V (W−) + o(δ(W−)) = 2αδ(W ) + o (δ(W )) , Vλ−1

(
W+

)
= V (W+) + o(δ(W+)) = o (δ(W ))

By Lemma 4,

Vλ(W ) = 0.5
(√

2αδ(W ) + o (δ(W )) +
√
o (δ(W ))

)2
= αδ(W ) + o (δ(W )) = V (W ) + o (δ(W ))

This concludes the proof of the first part of the lemma.

We proceed by proving by induction on λ that after 2λ polarization steps of the channel W ,

I (W0) = I
(
W−···−

)
= 1− 2λδ(W ) + o(δ(W )) (27)

and

I (Wi) = 1 + o(δ(W )) i 6= 0 (28)

This claim is trivial for λ = 0. Assuming it holds for λ− 1, we note that if I (Wi) = 1 + o(δ(W )), then, using essentially the

same arguments that were used in the beginning of the proof

I (Wi)− I
(
W−i

)
= I

(
W+
i

)
− I (Wi) = o(δ(W )) i 6= 0

Therefore, for i 6= 0,

I
(
W−i

)
= 1 + o(δ(W )) , I

(
W+
i

)
= 1 + o(δ(W ))

In addition, by the induction assumption,

I (W0)− I
(
W−0

)
= I

(
W+

0

)
− I (W0) = 2λ−1δ(W ) + o(δ(W ))

Hence, reapplying the induction assumption,

I
(
W−0

)
= 1− 2λδ(W ) + o(δ(W )) , I

(
W+

0

)
= 1 + o(δ(W ))

This concludes the proof of (27) and (28). Thus, after λ polarization steps, V (W0) = 2λαδ(W ) + o(δ(W )) and V (Wi) =

o(δ(W )) for i 6= 0. We conclude that

lim
I(W )→1

I (W0)

√
Vλ (W )

2λV (W0)
= lim
δ(W )→0

[
1− 2λδ(W ) + o(δ(W ))

]√ αδ(W ) + o(δ(W ))

22λαδ(W ) + o(δ(W ))
= 1/2λ

and for i 6= 0,

lim
I(W )→1

I (Wi)

√
Vλ (W )

2λV (Wi)
= lim
δ(W )→0

[1 + o(δ(W ))]

√
αδ(W ) + o(δ(W ))

2λo(δ(W ))
=∞

Therefore,

lim
I(W )→1

min
i

(
I (Wi)

√
Vλ (W )

2λV (Wi)

)
= 1/2λ

Thus, by (19), limI(W )→1Rmin = 1− 1/2λ.
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APPENDIX C

PROOF OF LEMMA 6

For shortness of notation, define x , I(W ) − R. Also denote V̂ = V̂λ(N,W ) and V = Vλ(W ). First, we will find a

sufficient condition for

2λQ

(
x

√
N

V

)
≤ Q

(
x

√
N

V̂

)
(29)

Recall that for u > 0 the complementary Gaussian cumulative distribution function, Q(), satisfies,

1√
2πu

(
1− 1

u2

)
e−u

2/2 ≤ Q(u) ≤ 1√
2πu

e−u
2/2 (30)

The left hand side (LHS) of (30) implies that√
V̂

x
√

2πN

(
1− V̂

x2N

)
e−

x2N
2V̂ ≤ Q

(
x

√
N

V̂

)
while the RHS of (30) implies that

2λQ

(
x

√
N

V

)
≤ 2λ

√
V

x
√

2πN
e−

x2N
2V

Therefore, √
V̂

(
1− V̂

x2N

)
e−

x2N
2V̂ ≥ 2λ

√
V e−

x2N
2V (31)

is a sufficient condition for (29). But (31) is equivalent to

ln V̂

2
+ ln

(
1− V̂

x2N

)
− x2N

2V̂
≥ λ ln 2 +

lnV

2
− x2N

2V
(32)

Since

ln

(
1− V̂

x2N

)
= − V̂

x2N
+ Θ

(
1

N2

)
the inequality (32) can be written as

ln V̂

2N
− V̂

x2N2
+ Θ

(
1

N3

)
− x2

2V̂
≥ λ ln 2

N
+

lnV

2N
− x2

2V

That is,
1

V
− 1

V̂
≥ Θ

(
1

N

)
which leads to

V̂ − V ≥ Θ

(
1

N

)
Now, we will find a sufficient condition for

2λQ

(
x

√
N

V

)
≥ Q

(
x

√
N

V̂

)
(33)

The LHS of (30) implies that

2λQ

(
x

√
N

V

)
≥ 2λ

√
V

x
√

2πN

(
1− V

x2N

)
e−

x2N
2V

while the RHS of (30) implies that

Q

(
x

√
N

V̂

)
≤

√
V̂

x
√

2πN
e−

x2N
2V̂

Therefore, √
V̂

x
√

2πN
e−

x2N
2V̂ ≤ 2λ

√
V

x
√

2πN

(
1− V

x2N

)
e−

x2N
2V
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is a sufficient condition for (33). This condition is equivalent to

ln V̂

2
− x2N

2V̂
≤ lnV

2
+ λ ln 2 + ln

(
1− V

x2N

)
− x2N

2V

which means
ln V̂

2N
− x2

2V̂
≤ lnV

2N
+
λ ln 2

N
− V

x2N2
+
V 2

x4
Θ

(
1

N3

)
− x2

2V

Therefore,
1

V
− 1

V̂
≤ Θ

(
1

N

)
and

V̂ − V ≤ Θ

(
1

N

)
Summarizing, for some constants κ1 and κ2 (both independent of N ) and N sufficiently large, we have shown that if

V̂λ(N,W ) − Vλ(W ) ≥ κ1/N (V̂λ(N,W ) − Vλ(W ) ≤ κ2/N , respectively) then the LHS of (22) is smaller (larger) than the

RHS. In addition, note that the RHS of (22), that defines V̂λ(N,W ), is monotonically increasing in V̂λ(N,W ). This proves

our claim.

The proof for Vn,λ(W ) and V̂n,λ(N,W ) is identical to the proof for Vλ(W ) and V̂λ(N,W ), and is therefore omitted.
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