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Abstract: We consider explicit polar constructions of block-

length n → ∞ for the two extreme cases of code rates

R → 1 and R → 0. For code rates R → 1, we design

codes with complexity order of n logn in code construction,

encoding, and decoding. These codes achieve the vanishing

output bit error rates on the binary symmetric channels with

any transition error probability p → 0 and perform this task

with a substantially smaller redundancy (1 − R)n than do

other known high-rate codes, such as BCH codes or Reed-

Muller (RM). We then extend our design to the low-rate codes

that achieve the vanishing output error rates with the same

complexity order of n logn and an asymptotically optimal

code rate R → 0 for the case of p→ 1/2.
Keywords: Polar codes; Reed-Muller codes; Boolean polynomials;

successive cancellation decoding.

I. INTRODUCTION

Below we consider the Plotkin recursive construction

u,u+ v that repeatedly combines shorter codes to construct

and decode the longer ones. RM codes R(r,m) represent one

Plotkin-type construction [1] of length n = 2m and dimension

k(r,m) =
∑r

0 (
m
i ) with parameters 0 ≤ r ≤ m. Polar codes

[3] introduce another recursive design. Both codes originate

from the same full–space code R(m,m) and filter it in two

different ways. Namely, a code R(r,m) maximizes the code

rate among all codes that have the same distance 2m−r and

are generated by the m-variate Boolean monomials. Polar

codes use a more intricate optimization. First, the successive-

cancellation decoding (SCD) of [2]-[6] performs step-by-step

retrieval of information bits of code R(m,m). Analysis of

SCD [6] shows that it yields both high and low-fidelity infor-

mation bits for RM codes. Therefore, removing low-fidelity

bits (by setting them as zeros) gives the better-performing

subcodes of RM codes. For relatively short lengths of 512

or less, this was done in [5], [6]. In particular, it turns out that

these subcodes achieve a nearly optimal (ML) performance

on these lengths if SCD is combined with list decoding. For

long codes with m → ∞, the major breakthrough achieved

in [3] shows that the subcodes of R(m,m) that keep Rn
most reliable bits are capacity achieving (CA) codes under

SCD for any binary symmetric memoryless channel U and

any code rate R ∈ (0, 1). These polar codes also achieve a

polynomial complexity of construction. Namely, for a channel

U with capacity C, polar codes of code rate R > C − ǫ have

complexity [11] of order poly(aǫ−µ) for any ǫ > 0, where

a = a (U) and µ are some constants.
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Below, we extend the above results for the special cases of

R → 1 and R → 0. In both cases, we consider code families

that achieve a vanishing output bit error rate on a binary

symmetric channel BSC(p) with a transition error probability

p and capacity C = 1− h(p), where h(p) is a binary entropy.

We say that a family of codes with n → ∞ and R → 1
is strongly optimal if the fraction ρ = 1 − R of redundant

(parity-check) bits has the smallest possible order

1−R ∼ h(p) = p log2(
e/p ) +O(p2)

A family of long codes is called weakly optimal if probability

p→ 0 and redundancy ρ have a similar decline rate

log2(1 −R) ∼ log2 h(p) ∼ log2 p (1)

Our main result is as follows.

Theorem 1. For any p→ 0, there exist weakly optimal codes

of length n→ ∞ that have a relative redundancy

ρ ≤ p
(
log2

1/p
)log2 log2

1/p
(2)

and achieve a vanishing error probability on a binary symmet-

ric channel BSC(p). These codes can be constructed, encoded,

and decoded with complexity of order n lnn.

Similarly, long codes of rate R → 0 are called strongly

optimal if they achieve a vanishing output error rate on a

BSC(p) with p→ 1/2 and have the maximum possible order

of code rate R ∼ 1 − h(p) ∼ (1 − 2p)2/ ln 4. We extend

Theorem 1 and design strongly optimal codes of rate R → 0
and complexity n lnn.

For a wide range of error probabilities p, codes of Theorem

1 outperform known codes of code rate R → 1. For example,

long primitive BCH codes require redundancy p log2 n to

achieve a vanishing output error rate under the bounded-

distance decoding on a BSC(p) if p = o(log2 n) [1]. However,

R → 0 if p log2 n → ∞. The recent breakthrough of [12]

also shows that high-rate RM codes R(m − 2r − 1,m) can

correct the fraction of errors p ∼ (mr ) /2
m with polynomial

complexity and low redundancy ρ ∼
(
m
2r+1

)
/2m if r =

o(
√
m/ logm). This algorithm is still limited to the rapidly

vanishing probabilities p unlike any p → 0 in Theorem 1.

Note, however, that Theorem 1 achieves no improvements over

BCH codes if probability p has an exponentially declining

order p ≤ 2−m
c

for any c > 0, nor does it give strongly

optimal codes for R→ 1.
Sections II and III provide some background and address

the common properties of RM and polar codes. Sections IV-

VI introduce polarized design with a single boundary. We first

design the weakly optimal codes of rates R → 1 and then

extend them to the strongly optimal codes of rate R → 0.
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Fig. 1. Decomposition (c0; c0 + c1) of RM code R(4; 4)
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II. RECURSIVE DESIGN OF RM AND POLAR CODES

Consider boolean polynomials f(x) of degree r or less in

m binary variables x1, . . . , xm, where r ≤ m. Vectors x =
(x1, ..., xm) will mark the positions of our code. Each map

f(x) : F
m
2 → F2 generates a codeword c = c(f) of code

R(r,m). We also use short notation xi | j = (xi, ..., xj) for

i ≤ j. Consider recursive decomposition

f(x) = f0(x2 |m) + x1f1(x2 |m) = ...

=
∑

i1,...,iℓ
xi11 · ... · xiℓℓ fi1,...,iℓ(xℓ+1 |m)

= ... =
∑
i1,...,im

fi1,...,im xi11 · ... · ximm

(3)

The first step decomposes polynomial f(x) into polynomials

f0 and f1 of degrees deg f0 ≤ min{r,m− 1} and deg f1 ≤
r − 1. Then the codewords c0 = c(f0) and c1 = c(f1)
belong to the codes R(r,m−1) and R(r−1,m−1) and form

the codeword c = c0, c0+c1 of code R(r,m). Similarly, any

subsequent step ℓ decomposes each polynomial with respect

to xiℓℓ as follows

fi1,...,iℓ−1
(xℓ |m) =

∑
iℓ=0,1

fi1,...,iℓ(xℓ+1 |m) · xiℓℓ

We then say that the ℓ-level binary paths ξ1 | ℓ = i1, ..., iℓ de-

compose the original polynomial f(x) into sums of monomials

xi11 ·...·xiℓℓ fi1,...,iℓ(xℓ+1 |m). Finally, full paths ξ = i1, ..., im
of step m define monomials xξ ≡ xi11 · ... · ximm with

coefficients fξ = fi1,...,im = 0, 1. Note that each monomial

xξ gives a codeword c(xξ) of weight 2m−w(ξ), where w(ξ)
is the Hamming weight of the string ξ. RM codes R(r,m)
include only k(r,m) paths of weight w(ξ) ≤ r.

In Fig. 1 we use this representation for the full code

R(4, 4). Each decomposition step ℓ = 1, ..., 4 is marked by the

splitting monomial xiℓℓ . For example, path ξ = 0110 gives the

coefficient f0110 associated with the monomial xξ ≡ x2x3.

Fig. 2 depicts code R(2, 5). Here we only include all paths

ξ of weight w(ξ) ≤ 2. Note that any two paths ξ1 | ℓ entering

some node have the same weight w and generate the same

code R(r −w,m− ℓ) on their extensions. For example, path

ξ = 01100 proceeds from R(2, 5) to the single bit R(0, 0) via

codes R(2, 4), R(1, 3), R(0, 2), and R(0, 1).
This design can be reformulated using a 2× 2 matrix

G =

[
1 1
0 1

]

Then code R(m,m) is generated by the Kronecker product

G(m,m) = G⊗m. Each row of G⊗m is the map of the

monomial xξ for some path ξ. Similarly, matrix G(r,m) is

2,5

2,41,4

0,3 1,3 2,3

0,2

0,1

1,2

1,1

2,2

1,1

0,0 0,0 0,0

Fig. 2. Paths and nodes of RM code R(2; 5)

the map of all monomials xξ with paths ξ = i1, ..., im of

weight w(ξ) ≤ r.
Now consider a single path ξ that ends with an information

bit fi1,...,im = 1. Encoding proceeds in the reverse order ℓ =
m, ..., 1. We begin with a single bit codeword c(ξm+1|m) = 1.
In each step ℓ, we use recursion and obtain the codeword

c
(
ξℓ |m

)
=

{
c(ξℓ+1 |m), c(ξℓ+1 |m) if iℓ = 0

0, c(ξℓ+1 |m) if iℓ = 1
(4)

of length 2m−ℓ+1. Thus, any path ξ is encoded in the vector

c = c(ξ) of length n. Also, c(ξ) = 0 if fi1,...,im = 0.
Now consider a subset of N paths T. Then we encode N

information bits via their paths and obtain codewords c(T ) =∑
ξ∈T c(ξ). These codewords form a linear code C(m,T ).

Here at any level ℓ, encoding adds two codewords of level

ℓ + 1 entering any node ξℓ |m. Thus, encoding (4) performs

2m−ℓ operations on each of 2ℓ nodes ξℓ |m and has the overall

complexity of n log2 n over all levels ℓ.

Lemma 2. Code C(m,T ) has length 2m, dimension |T | and

distance 2m−r, where r = max{w(ξ), ξ ∈ T } is the weight of

the heaviest path in T. Code R(r,m) has the maximum code

rate R among all codes C(m,T ) of the distance 2m−r.

Proof. Let weight r be achieved on some path ψ ∈ T. Then

code C(m,T ) is generated by monomials xξ of degree r or

less. Thus, C(m,T ) ⊆ R(r,m). The monomial xψ has degree

r and gives the minimum weight 2m−r.

III. RECURSIVE DECODING ALGORITHMS

Below, we use a map x → (−1)x for any x = 0, 1 and

consider a discrete memoryless channel (DMC) W with inputs

±1. Vector ab will denote the component-wise product of

vectors a, b and c = (u,uv) will denote the codewords c

of a code R(r,m) with symbols ±1. In particular, 1n now

represents a former all-zero codeword. For any codeword c,
let y0, y1 be the two output halves corrupted by noise. We

use double index i, j for any position j = 1, ..., n/2 in a

half i = 0, 1. Define the posterior probability (PP) qi,j =
Pr{ci,j = 1 | yi,j} that 1 is sent in position i, j. We will

often replace qi,j with two related quantities, which we call

“the offsets” gi,j and the likelihoods hi,j :

gi,j = 2qi,j − 1, hi,j = qi,j/ (1− qi,j) (5)

Thus, we will use vectors q = (qi,j), g = (gi,j) and h =
(hi,j). For example, let W be a binary symmetric channel
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BSC(p), where p = (1− ǫ)/2. Then any output y = ±1 gives

quantities g(y) = ǫy and h(y) = (1 + ǫy)/(1− ǫy).
The following recursive algorithm Ψmr (q) of [2], [5] per-

forms SCD of information bits in codes R(r,m) or their

subcodes C(m,T ). Here we relegate decoding of vector q

to two vectors q(1) and q(0) of length n/2. Vector q(1)

consists of PP q
(1)
j ≡ Pr{vj = 1 | q0,j , q1,j} of symbols vj in

construction (u,uv) . Simple recalculations [2] show that the

offsets g
(1)
j of symbols vj can be expressed as the products

of two offsets g0,jg1,j. Thus, we obtain vectors g(1) and q(1)

with symbols

g
(1)
j = g0,jg1,j , q

(1)
j = (1 + g

(1)
j )/2. (6)

We may now apply some decoding algorithm Ψm−1
r−1 to the vec-

tor q(1) and obtain a vector ṽ ∈ R(r−1,m−1) of length n/2.
Now we have two corrupted versions y0 and y1ṽ of vector u.

We can then derive PP q
(0)
j = Pr{uj = 1 | q0,j , q1,j , ṽj} of

symbols uj in the (u,uv) construction. Indeed, any symbol uj
has likelihoods h0,j and (h1,j)

ṽj in the left and right halves,

respectively. Then we combine the two likelihoods into their

product:

h
(0)
j = h0,j (h1,j)

ṽj , q
(0)
j = h

(0)
j /(1 + h

(0)
j ) (7)

Then we can apply some decoding Ψm−1
r to vector q(0) and

obtain ũ ∈ R(r,m− 1).
Decomposition (6), (7) forms level ℓ = 1 of SCD, which

can also be continued for vectors q(1) and q(0) on the codes

R(r − 1,m − 1) and R(r,m − 1). Then levels ℓ = 2, ...,m
are processed similarly, moving decoding along the paths of

Fig. 1 or Fig. 2. Any incomplete path ξ1 | ℓ begins with its

v-extension (ξ1 | ℓ, 1). Upon decoding, this path delivers its

output ṽ to the u-path (ξ1 | ℓ, 0). Thus, all paths are ordered

lexicographically. Finally, the last step gives the likelihood

qξ = Pr{fξ = 0 | y0,y1} of one information bit fξ on

the path ξ. We then choose the more reliable bit fξ. It is

easy to verify [2] that m decomposition steps give complexity

2n log2 n.
Any subcode C(m,T ) is decoded similarly and assumes

that all paths ξ /∈T are frozen and give information bits

fξ ≡ 0. Let all N paths in T be ordered lexicographically as

ξ(1), ..., ξ(N). Then we have

Algorithm Ψ(m,T ) for code C(m,T ).

Given: a vector q = (qi,j) of PP.

Take s = 1, ..., N and ℓ = 1, ...,m.

For path ξ(s) = i
(s)
1 , ..., i

(s)
m in step ℓ do:

Apply recalculations (6) if i
(s)
ℓ = 1

Apply recalculations (7) if i
(s)
ℓ = 0.

Output the bit fξ(s) for ℓ = m.

IV. PATH ORDERING IN SC DECODING

Let a binary code C(m,T ) be used over a symmetric DMC

W. We now consider a code Cξ defined by a single path

ξ = (i1, ..., im) and estimate its decoding error probability

Pξ. Let a codeword 1n be transmitted over this path. We now

may assume that other paths give outputs ṽj = 1 in recursive

recalculations (5)-(7). Then we re-arrange (5)-(7) as follows

g
(1)
j = g0,jg1,j , g

(0)
j = (g0,j + g1,j)/(1 + g0,jg1,j) (8)

h
(0)
j = h0,jh1,j, h

(1)
j = (1 + h0,jh1,j)/(h0,j + h1,j) (9)

From now on, we may consider recalculations (8) and (9)

as the sequences of channel transformations applied to the

original random variables (rv) gi,j or hi,j . In the end, we

obtain a new memoryless channel Wξ : X → Yξ that outputs

a single rv h(ξ) after m steps. For any parameter λ > 0, we

also consider rv hλ(ξ) and its expectation Eh−λ(ξ). Then the

Chernoff upper bound gives

Pξ ≡ Pr{h(ξ) < 1} ≤ min
λ>0

Eh−λ(ξ) = min
λ>0

Ee−λ lnh(ξ)

Note that the quantity Eh−1/2(ξ) is identical to the Bhat-

tacharyya parameter

Z(W ) =
∑

y∈Y
√
W (y|0)

√
W (y|1)

defined for a DMC channel Wξ : X → Yξ. For example,

BSC(p) with p = (1 − g)/2 gives

Z(W ) = Eh−1/2(ξ) = 2
(
1+g
2

)1/2 ( 1−g
2

)1/2
=

√
1− g2

In a more general setting [7], we decompose a binary sym-

metric DMC Wξ into some number k of binary symmetric

channels BSCθi(pi) that have transition error probabilities

pi = (1 − gi)/2 and occur with some probability distribution

{θi}, where
∑k

1 θi = 1. Then

Z(Wξ) =
∑

i θi
√
1− g2i (10)

Below we use the upper bound Pξ ≤ Z(Wξ) employed by

Arikan in [3]. It is also proved in [3] that a one step recursion

(W,W ) →
(
W (1),W (0)

)
of (9) gives parameters Z(W (1))

and Z(W (0)) such that

1− Z(W (1)) ≥ [1− Z(W )]
2
, Z(W (0)) = Z2(W ) (11)

Now consider a compound channel Wξ as a set of BSCθi(pi).
Then we can define the expectation of the offsets gi > 0 :

G (Wξ) =
∑k

1
θigi

Note that
√
1− g2 is a concave function. Also,

√
1− g2 ≥

1− g for any g ∈ [0, 1]. Thus, (10) yields two inequalities

1− G (Wξ) ≤ Z(Wξ) ≤

√
1− [G (Wξ)]

2
(12)

Given a one step recursion (W,W ) →
(
W (1),W (0)

)
, we can

also take two independent identically distributed rv g0,j and

g1,j in (8) and find the expectation of their product g
(1)
j for

the channel W (1). Then we have two equalities

G(W (1)) = G2(W ), (13)

Z(W (0)) = Z2(W ) (14)

Below we replace notation Z(Wξ) and G(Wξ) with Z(ξ) and

G(ξ). Given a path ξ = (i1, ..., im), we say that a path η =
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(j1, ..., jm) is its descendant if η is obtained from ξ by the

following replacements in any positions s or (s, s+ 1) :

is = 1 ⇒ js = 0,

(is = 1, is+1 = 0) ⇒ (js = 0, js+1 = 1) (15)

Let h(ξ) and h(η) be the outputs of paths ξ and η obtained by

recalculations (9). The following Lemma 3 uses a partial order

for the paths ξ and η with respect to the quantities Eh−λ(ξ).
A similar lemma was used in [10] for a slightly different set

of recalculations, which approximate recalculations (9). In [8]

and [9], this lemma is proved for the Bhattacharyya parameter

Z(Wξ) with exact recalculations (9). In Appendix, we also

post a proof of Lemma 3 for the arbitrary moments Eh−λ(ξ).

Lemma 3. Recalculations (9) on some path ξ and its descen-

dant η give the outputs h(ξ) and h(η) that satisfy inequalities

Eh−λ(ξ) ≥ Eh−λ(η), λ ∈ [0, 1], (16)

Eh−λ(ξ) ≤ Eh−λ(η), λ ∈ [1,∞). (17)

Corollary. Any path ξ and its descendant η satisfy inequalities

P (η) ≤ Z(η) ≤ Z(ξ).

Below, we say that a path ξ forms a boundary for all

descendant paths η that satisfy replacements (15).

V. HIGH-RATE CODES WITH A STEPPED BOUNDARY

Below, log x ≡ log2 x. For i = 1, ..., s, consider a set of 2s
non-negative ordered integers L = {ri, ℓi} such that ri+ ℓi =
mi and

∑s
i=1mi = m. We say that a path

ξ (L) = ξ(1), ..., ξ(s) = 1r10ℓ1 , ..., 1rs0ℓs (18)

of length m bounds a path η(L) =η(1), ..., η(s) if each section

η(i) of length mi has weight

w(η(i)) ≤ ri, i = 1, ..., s (19)

Thus, each section η(i) is located to the right of ξ(i) as seen

in Fig. 3 for a path ξ (L) = 1r10ℓ11r20ℓ21r30ℓ3 . Clearly, any

path η(L) satisfies (15).

r1

`1

r2

`2

r3

`3

Fig. 3. Polar code

Step 1 : 1r10`1

Step 2 : 1r20`2

Step 3 : 1r30`3

RM (r1;m1)

RM (r2;m2)

RM (r3;m3)

with 3 steps 1ri0`i

Lemma 4. Paths η(L) of (19) generate the direct product

R(L) = ⊗si=1R(ri,mi) (20)

of s RM codes R(ri,mi) of rates Ri = k(ri,mi)/2
mi .

Code R(L) has length 2m, code rate RL = Πsi=1 Ri, and

construction complexity of order n logn.

Proof. Each segment ξ(i) is a boundary for the subpaths

η(i) : w(η(i)) ≤ ri. These single-step subpaths span the

code R(ri,mi), which is generated by monomials of degree

ri or less taken over variables xMi+1, ..., xMi+mi , where

Mi =
∑i−1
j=1mj , M1 = 0. Thus, R(L) is the direct product of

codes R(ri,mi) and has rate RL. Each row η of its generator

matrix is a map xη : Fm2 → F2 of the monomial xη defined

by a path η. Thus, conditions (19) require m operations to

verify that η ∈ η(L) for any row η. For n-row verification,

the complexity is bounded by the order n logn.

Consider a sequence of channels BSC(p) with p → 0. Let

s = o (logm) be some integer. We take a set of 2s numbers

L =
{
ri = 2i−1 log

(
1/p

)
− ci, ℓi = 2i−1 log log 1/p

}
(21)

where c1 = 6, c2 = 3 and ci = 0 for i ≥ 3. We also assume

that L is a set of integers. Then the path ξ (L) has the length

m =
∑s
i=1mi = (2s − 1)(log 1/p + log log 1/p )− 9 (22)

An equivalent setting arises if p ∼ m2−m/(2
s−1) for m →

∞. Note that the case s = 1 gives a single code R(r,m)
with m − r ∼ logm and p ∼ m2−m. We first estimate the

redundancy ρL of a code R(L) with boundary (21).

Lemma 5. Codes R(L) with a boundary L of (21) satisfy the

redundancy bound (2) for p→ 0.

Proof. Let ρi = 1 − Ri denote the redundancy of code

R(ri,mi) used in step i of design (20). Then

ρL = 1−RL = 1−
∏s

1
(1− ρi) ≤

∑s

1
ρi

Let τ = log 1/p . First, note that all codes R(ri,mi) have

ρi → 0 as p→ 0. Indeed, ℓi/mi ≤ (log τ) /τ → 0 and

ρi ≤ 2−mi
(
mi

ℓi

)
≤ 2−mi[1−h(ℓi/mi)]

Second, note that each segment ξ(i) of boundary (21) has the

length mi ≥ 2mi−1. Then ρi ∼ o(ρi−1) and ρL ∼ ρ1. Finally,

we use the bounds

h(ℓi/mi) = (ℓi/mi) log (emi/ℓi) +O(ℓ2i /m
2
i )

ρ1 ∼ (64p/τ) (eτ/ log τ)
log τ

< p
(
τ log τ

)

Thus, ρ1 and ρL satisfy asymptotic bound (2).

We now can prove Theorem 1 for construction (21). Here

we use the same approach that employed the boundary paths

in [2] and [10]; however, we extend this approach to a multi-

step boundary (21) instead of the single–step and double-step

boundaries used before. We proceed as follows. Consider

any high-quality channel W , such as BSC(p) with p → 0,

and its two descendant channels W (1) and W (0). Note that

the degrading channel W (1) and the upgrading channel W (0)

exhibit a vastly different behavior. In particular, let the original

parameter Z(W ) ∼ δ be close to 0 and the complementary

parameter G(W ) ∈ [1− δ, (1− δ2)1/2] be close to 1. Then the

channel W (0) undergoes a sharp improvement over W and

yields an exponentially declining parameter Z(W (0)) ∼ δ2,
according to (14). By contrast, the channel W (1) experiences a

relatively small degradation and yields G(W (1)) ∈ [1−2δ, 1−
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δ2]. This allows us to completely compensate the relatively

long chains of degrading channels 1ri with short chains 0ℓi

of upgrading channels. In fact, we will improve the overall

performance in each step of the boundary (21). It is this

superiority of the chains 0ℓi that yields small ratios ℓi/ri in our

design and leads to a nearly optimal decline rate of redundancy

ρL. The exact calculations are given below.

Consider two functions f = f(n) and r = r(n) that have

the same sign. Then we write f . r or f & r if the asymptotic

ratio λ = limn→∞ f/r is λ ∈ (0, 1) or λ ≥ 1, respectively.

We also write f ≻ r if f > rc for some c > 1. Finally,

consider inequalities

−x− x2 < ln(1− x) < −x, x ∈ (0,1/2 ) (23)

1− x < − lnx, x ∈ (0, 1)

which are tight as x→ 0 and x→ 1, respectively. Using these

inequalities, we can rewrite (12) as

logZ(ξ) < 1
2 log[−2 lnG(ξ)] (24)

lnG(ξ) > −Z(ξ)− Z2(ξ) (25)

Below, we extensively use a recursion that employs inequal-

ities (24) and (25). We will also see that Z(ξ) → 0 and

G(ξ) → 1 for the selected path ξ(L) of (21). In this case,

we can also replace (24) and (25) with simpler inequalities

logZ(ξ) . 1
2 log [− lnG(ξ)] and lnG(ξ) & −Z(ξ).

Lemma 6. Codes R(L) with a boundary (21) achieve an

output bit error rate Pη → 0 for each path η(L) under SCD

on a BSC(p) with p→ 0.

Proof. Given the boundary ξ (L) , we will estimate the Bhat-

tacharyya parameters

Z(i) ≡ Z
[
1r10ℓ1 ...1ri

]
, Z(i) ≡ Z

[
1r10ℓ1 ...1ri0ℓi

]

obtained in processing of each step i. We also use similar

notation G(i) and G(i) for the offsets obtained in step i. The

original channel BSC(p) gives parameter G = 1 − 2p, where

p→ 0. For the first segment 1r1 , equality (13) and the upper

bound (12) give:

G(1) = (1− 2p)1/(64p) ∼ e−1/32

Z(1) .
(
1− e−1/16

)1/2

< 2−2 (26)

For the next segment 0ℓ1 , equality (14) gives

Z(1) =
[
Z(1)

]
2ℓ1 < 2−2 log 1/p = p2

Then G(1) ≥ 1−Z(1), according to (12), and we proceed with

the segment 1r20ℓ2 using (13):

G(2) ≥ (1− p2)p
−2/8 ∼ e−1/8

Z(2) .
(
1− e−1/4

)
1/2

< 1/2

Z(2) = [Z(2)]
2ℓ2 < 2−τ

2

= pτ

Note that 2ri = p−2i−1

and 2ℓi = τ2
i−1

for i ≥ 3. Now we

use inequalities (24) and (25) to prove that parameters Z(i)

rapidly decline:

Z(i) ≤ pti , ti = τ2
i−i−1 (27)

Indeed, Z(2) satisfies (27). We take Z(i−1) ≤ pti−1 and use

induction on the i-th segment 1ri0ℓi . Then inequalities (24)

and (25) give

lnG(i) ≥ −2ri [pti−1 + p2ti−1 ] & −2ripti−1

logZ(i) <
1
2 log[−2 lnG(i)] .

1
2 (ti−1 − ri) log p (28)

Note that ri = o(ti−1). Thus, logZ(i) ≤ si log p, where

si = ti−1/τ = τ2
i−1−i−1 = o (ti−1)

Then

logZ(i) = 2ℓi logZ(i) ≤ τ2
i−1

si log p = ti log p (29)

This proves (27) and gives Pη ≤ Z(s) for each path η.

Discussion. Inequalities (28) and (29) show that the initial

chains 1ri and the subsequent chains 0ℓi affect parameters

Z(i) and Z(i) in a very different way. In particular, (28)

shows that any chain 1ri reduces the previous exponential

order ti−1 = logp Z
(i−1) to ti−1/2 − o(ti−1). By contrast,

the stretch 0ℓi increases this order above 2ℓi(ti−1/τ). For this

reason, good BSC(p) with p → 0 may overcompensate long

chains 1ri of degrading channels with the much shorter chains

0ℓi of upgrading channels. Note also that equalities (13) and

(14) are critical in our proof since they give exact estimates

G(i) and Z(i) in all intermediate steps of the segments 1ri or

0ℓi , without any loss in performance. To this end, note that

inequalities (11) and (12) alone cannot furnish Lemma 6. For

example, inequalities (11) replace estimate (26) with a loose

bound Z(1) ≤ 1−e−1/(32
√
p). This bound will require a much

longer path 0ℓ1 to achieve a low quantity Z(2), which in turn

increases redundancies ρ1 and ρL above the bound (12) of the

weakly optimal codes.

However, this particular construction fails to give the op-

timal redundancy ρopt ∼ p log 1/p or even reduce ρL to the

order of cp log 1/p for some constant c > 1. Nor is it known

if other low-complexity algorithms for polar or other codes can

achieve ρopt for p→ 0. Note also that the single-boundary set

η(L) of Lemma 6 does not form an optimized polar code since

many other paths η also have a vanishing output error rate. For

example, any initial segment 1r of length r < r1 gives rise

to many paths η /∈ η(L). To reduce redundancy ρL, one may

consider a growing set {ξ} of boundary paths ξ and form an

entire “envelope” of the descendant paths η(ξ). Calculating the

redundancy for this envelope-type boundary is another open

problem that may be related to the Young diagrams.

VI. LOW-RATE CODES WITH A STEPPED BOUNDARY

Consider a sequence of the BSCs(p) with p = (1 − ǫ)/2,
where ǫ → 0 as length n → ∞. Below we study capacity-

achieving (CA) codes of rate R ∼ C for the case of a

vanishing capacity C = 1 − h(p) ∼ ǫ2/ ln 4. It is proved
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in [13] that RM codes R(r, µ) are CA codes under ML-

decoding if r = o(µ). However, only codes R(1, µ) of length

k = 2µ or their concatenations are known to be CA-codes of

polynomial complexity. More specifically, consider a BSC(p∗)
with capacity C → 0 and transition error probability

p∗ = (1− ǫ∗)/2, ǫ∗ = (C ln 4)1/2 (30)

According to [14], for any parameter θ ∈ (0, 1), codes R(1, µ)
of code rate R = C(1− θ) achieve on BSC(p∗) the output bit

error rate P∗ ≤ k−θ or less with complexity O(k log k).
To proceed with the low-rate codes, we need to substantially

reduce the output error rate of (27). This is done in the

following theorem, where we reduce the error rate Pη ≤ Z(s)

at the expense of a slightly higher redundancy ρL. Consider a

boundary

Lc=
{
ri = 2i−1

(
log 1/p

)
− ci, ℓi = c2i−1 log 1/p

}
(31)

where c1 = 6, ci = 0 for i ≥ 2, and c ∈ (0, 1) is a parameter.

This boundary has length

m =
∑s

i=1
mi = (c+ 1) (2s − 1)

(
log 1/p

)
− 6 (32)

Lemma 7. Codes R(Lc) with boundary (31) have redundancy

ρL → 0 as p → 0. These codes perform SCD with an output

bit error rate Pη, where for each path η,

logPη . −22−sp−c(2
s−1) (33)

Proof. Note that ℓi/mi = c/(c+ 1). For i ≥ 2, let

c1 ≡ h(ℓi/mi) = h [c/(c+ 1)] < 1.

Then ρi ≤ 2−mi(1−c1) = o(ρi−1) for p→ 0, and

ρL ∼ ρ1 ≤ 64p(1+c)(1−c1) → 0

Also, 2ri = p−2i−1

and 2ℓi = p−c2
i−1

for i ≥ 2. Next, we

estimate parameters Z(i) and Z(i) and follow the proof of

Lemma 6. Given the same length r1, we again obtain Z(1) <
1/4 of (26). The next segment 0ℓ1 gives

Z(1) =
[
Z(1)

]
2ℓ1 < 2−2p−c

Then the segment 1r20ℓ2 yields estimates

lnG(2) & −p−2Z(1) & −p−22−2p−c

(34)

logZ(2) .
1
2 log

[
−2 lnG(2)

]
. −p−c

logZ(2) . −2ℓ2p−c . −p−3c

Now we prove that parameters Z(i) rapidly decline:

logZ(i) . −22−ip−c(2
i−1) (35)

Indeed, Z(2) satisfies (35). We take Z(i−1) of (35) and proceed

with the i-th segment 1ri0ℓi . We proceed similarly to (34),

lnG(i) & −2riZ(i−1)

logZ(i) <
1
2 log

[
−2 lnG(i)

]
. 1

2ri +
1
2 logZ

(i−1)

Since ri = o(logZ(i−1)), we obtain :

logZ(i) = 2ℓi logZ(i) . 2ℓi−1 logZ(i−1)

which gives (35) and proves the theorem.

We will now combine codes R(1, µ) with the high-rate polar

codes of Lemma 7 to obtain new CA codes.

Note that code R(1, µ) is defined by a boundary path ξ(0) =
110µ−1. We then combine ξ(0) with the boundary Lc of (31)

and obtain the extended boundary

Lext = {r0 = 1, ℓ0 = µ− 1, Lc} (36)

Lemma 4 shows that Lext generates the direct product Rext

of s+1 RM codes R(ri,mi). Thus, code Rext has code rate

R and length N, where

R = R(1, µ)RLc ∼ (µ+ 1)/2µ

N = kn, k = 2µ, n = 2m

Codes Rext also represent a simple concatenated construction,

which first uses µ+1 arbitrary codewords of the code R(Lc)
and forms an (µ+ 1) × n matrix. Then each column of this

matrix is encoded into the code R(1, µ). The result is an k×n
matrix, which represents a codeword formed by the inner code

of length k and s outer codes of length n. Below we take

µ,m→ ∞. Below we take po = 2−µθ in (31).

Theorem 8. Let codes Rext of code rate C(1 − θ) with

an s-step boundary (36) be used on a BSC(p∗) of capacity

C → 0. For any θ ∈ (0, 1), codes Rext have decoding

complexity O(N logN) in length N = nk and achieve a bit

error probability Pη such that

logPη ≺ −22−snc/(c+1) (37)

Proof. Decoding of codes Rext can be expressed as SCD;

below we also describe it as concatenated decoding of inner

codes. We take codes R(1, µ) of rate ǫ2/ ln 4 as θ → 0. Then

Rext ∼ (1− θ) ǫ2/ ln 4 as m → ∞. Given a received 2µ ×
2m matrix, we first perform ML decoding of each column of

length 2µ into the code R(1, µ). The resulting (µ+ 1)× 2m

matrix contains errors with probability po or less. Each row is

decoded into the code R(L) using SCD on a BSC(po). Note

that for any θ ∈ (0, 1),

m = (2s − 1) (c+ 1)µθ − c1 (38)

Then (33) gives the bit error rate (37):

logPη . −22−s2cµθ(2
s−1) (39)

Thus, codes Rext are CA codes. Inner and outer decod-

ings have the complexity nk log k and µn logn bounded by

N logN.

Discussion. According to (39), the order logPη depends

exponentially on the margin θ between the code rate R and

channel capacity C. Below, we compare the performance of

codes R(1, µ) and Rext for the same code rate R ∼ C(1−θ),
and define the minimum code length k or N that enables a

given output bit error P. Here we consider an asymptotic case

with parameters c → 1 and P → 0. For codes R(1, µ),
we have k ∼ P−1/θ. For codes Rext, we use notation
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A = 2sθ. Then parameters (38) and (39) yield asymptotic

approximations

n = 2m ≍ k2A, logP ≍ −n1/2 ≍ −kA (40)

(here f ≍ r if log f ∼ log r). Recall that the outer codes

R(Lc) require a vanishing input error rate k−θ , in which

case k = B1/θ for some B → ∞. Then N = k2A+1 ≍
B1/θ(log2 P ). Thus, codes Rext can improve the trade-off

k ∼ P−1/θ of the inner codes R(1, µ) only for the declining

error rates P = o(1). We further note that this is the case

for all other known concatenated constructions. In particular,

consider a classic concatenation that uses the inner codes

R(1, µ) and the outer RS codes of the same length 2µ and

code rate R → 1. It can be verified that this construction

requires the overall length N1 ≍ max{θ2 log2 P,B2/θ} given

the same inner length k = B1/θ. One possible advantage of

codes Rext over classic concatenation is the extra parameter s
that allows the outer code length n arbitrarily exceed the inner

length k in (38). In particular, we have inequality N . N1

for both cases B1/θ < log2 P and B1/θ > log2 P. Thus,

construction of Theorem 8 allows us to shorten the length N1

of the classical concatenated construction. More generally, it

is an important problem to find low-complexity codes of code

rate R → 0 that can achieve the vanishing error rates at the

shorter lengths of order N ∼ 2c/θ for some c ∈ (0, 1).

VII. CONCLUDING REMARKS

In this paper, we address explicit constructions of polar

codes that are nearly optimal for the extreme cases of a BSC(p)
with p → 0 and p → 1/2. In case of p → 0, we obtain

weakly optimal codes of rate R → 1, whose redundancy order

log ρ declines at the optimal rate (2). For the low-rate codes,

we obtain the optimal decline of code rate R → 0. These

simple constructions are completely defined by a single s-
step boundary path ξ (L) that only depends on transition error

probability p. In turn, this boundary defines all other paths η,
which form other sequences of upgrading-degrading channels

included in code construction. An important point is that the

boundary L consists of the consecutive chains of upgrading or

degrading channels, with a growing length of each segment.

For this reason, these single-boundary codes can be considered

as direct products of s Reed-Muller codes. One way to amplify

this design is to consider polar codes that include multiple

overlapping boundaries L1, ...,Lk and admit all descendant

paths η that satisfy at least one boundary restriction. Another

interesting problem is to extend this design to other code rates

and consider the explicit constructions that admit the finite-

length stretches of the upgrading-degrading channels.
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Appendix. Proof of Lemma 3. To prove Lemma 3, we

will assume that any channel Wξ satisfies the “symmetry”

condition ([15], p. 628). This condition (expressed in terms

of log likelihoods in [15]) implies that the likelihoods h of

transmitted symbols have the probability density function (pdf)

p(x) ≡ ph(x) such that

p(x)/p(x−1) = x, ∀x ∈ (0,∞). (41)

Condition (41) can be used for many conventional channels;

in particular, for a BSC(p) or an AWGN channel. It is also

proven in [15] that the “symmetry” condition is left intact

by transformations (9). Namely, both rv h
(0)
j and h

(1)
j in (9)

satisfy condition (41) if so do rv h0,j and h1,j .
Next, we consider an output h(a) of the prefix path a. Let

h1, h2, h3, and h4 denote 4 independent ID rv, which represent

4 different outputs h(a) of the prefix a. We need to calculate

the outputs h01 ≡ h(a01) and h10 ≡ h(a10) and prove that

Eh−λ01 ≤ Eh−λ10 if λ ∈ [0, 1]. An equivalent formulation is

to prove inequality Efλ01 ≤ Efλ10 given inverse likelihoods

fi = h−1
i , f01 = h−1

01 and f10 = h−1
10 . Correspondingly,

we consider the 4-dimensional space R
4
+ formed by vectors

F = (f1, f2, f3, f4) with positive coordinates. For extended

subpaths a01 and a10, recalculations (9) give the rv outputs

f01 =
f1f2 + f3f4
1 + f1f2f3f4

,

f10 =
(f1 + f2)(f3 + f4)

(1 + f1f2)(1 + f3f4)
.

Below we also consider another rv

u01 =
(f1 + f2)(f3 + f4)

2(1 + f1f2f3f4)
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and prove two inequalities

Efλ01 ≤ Euλ01 ≤ Efλ10, λ ∈ [0, 1]. (42)

To prove the left inequality, note that u01 = (f ′
01 + f ′′

01) /2,
where

f ′
01 =

f1f3 + f2f4
1 + f1f2f3f4

, f ′′
01 =

f1f4 + f2f3
1 + f1f2f3f4

.

The variables f ′
01 and f ′′

01 are obtained from f01 by replace-

ments f2 ⇔ f3 and f2 ⇔ f4 respectively. Then independent

and ID rv fi give equalities

Efλ01 = E (f ′
01)

λ
= E (f ′′

01)
λ

Since xλ is a concave function of any x > 0 for λ ∈ [0, 1],

(f ′

01)
λ

2 +
(f ′′

01)
λ

2 ≤
(
f ′

01+f
′′

01

2

)λ
= uλ01 (43)

and Efλ01 ≤ Euλ01.
To compare the expectations Euλ01 and Efλ10, we combine

each vector F ≡ F0 ∈ R
4
+ with three other vectors (which

may also coincide with F ) :

F1 = (f−1
1 , f−1

2 , f3, f4), F2 = (f−1
1 , f−1

2 , f−1
3 , f−1

4 ),

F3 = (f1, f2, f
−1
3 , f−1

4 )

We also consider the orbit T = {F0, F1, F2, F3} of vector

F0 ∈ R
4
+. Clearly, the whole space R

4
+ is now partitioned

into non-intersecting orbits T. Below we use notation

α = f1f2, β = f3f4, A = (f1 + f2)(f3 + f4).

It can be readily verified that the rv f10(T) does not change

on the orbit T:

f10(Fi) =
A

(1 + α) (1 + β)
, i = 0, ..., 3, (44)

while u01(T) takes two values

u01(F0) = u01(F2) =
A

2(1 + αβ)

u01(F1) = u01(F3) =
A

2(α+ β)

Let p = p(F0) denote the pdf of the 4-dimensional rv F0 ∈
R

4
+, which consists of inverse likelihoods. According to (41),

the pdfs of other orbit points are

p (F2) = αβp, p (F1) = αp, p (F3) = βp (45)

Then simple recalculations using equalities (44) and (45) give

Efλ10(T) = pAλ [(1 + α)(1 + β)]1−λ ,

Euλ01(T) = pAλ2−λ
[
(1 + αβ)

1−λ
+ (α+ β)

1−λ
]

Since x1−λ is a concave function, we have inequality

(1+αβ)1−λ

2 + (α+β)1−λ

2 ≤
[
(1+α)(1+β)

2

]1−λ
(46)

which proves the right inequality in (42). The second case

with λ ∈ [1,∞) is studied similarly. Now both xλ and x1−λ

are a convex functions of x > 0. Then inequalities (43) and

(46) change their sign and we have inequality (17). �
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