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Abstract—There has been much recent interest in Private
information Retrieval (PIR) in models where a database is
stored across several servers using coding techniques from
distributed storage, rather than being simply replicated. In
particular, a recent breakthrough result of Fazelli, Vardy
and Yaakobi introduces the notion of a PIR code and a
PIR array code, and uses this notion to produce efficient
protocols.

In this paper we are interested in designing PIR array
codes. We consider the case when we havem servers,
with each server storing a fraction (1/s) of the bits of the
database; heres is a fixed rational number with s > 1. We
study the maximum PIR rate of a PIR array code with the
k-PIR property (which enables a k-server PIR protocol to
be emulated on them servers), where the PIR rate is defined
to bek/m. We present upper bounds on the achievable rate,
some constructions, and ideas how to obtain PIR array codes
with the highest possible PIR rate. In particular, we present
constructions that asymptotically meet our upper bounds,
and the exact largest PIR rate is obtained when1 < s ≤ 2.

I. I NTRODUCTION

A Private Information Retrieval (PIR) protocol allows
a user to retrieve a data item from a database, in such
a way that the servers storing the data will get no
information about which data item was retrieved. The
problem was introduced in [5]. The protocol to achieve
this goal assumes that the servers are curious but honest,
so they don’t collude. It is also assumed that the database
is error-free and synchronized all the time. For a set ofk
servers, the goal is to design ak-server PIR protocol, in
which the efficiency of the PIR is measured by the total
number of bits transmitted by all parties involved. This
model is called ainformation-theoreticPIR; there is also
computationalPIR, in which the privacy is defined in
terms of the inability of a server to compute which item
was retrieved in reasonable time [9]. In this paper we will
be concerned only with information-theoretic PIR.

The classical model of PIR assumes that each server
stores a copy of ann-bit database, so thestorage over-
head, namely the ratio between the total number of
bits stored by all servers and the size of the database,
is k. However, recent work combines PIR protocols with
techniques from distributed storage (where each server
stores only some of the database) to reduce the storage
overhead. This approach was first considered in [10], and
several papers have developed this direction further: [1],
[3], [4], [6], [7], [11], [12], [13]. Our discussion will
follow the breakthrough approach presented by Fazeli,

Vardy, and Yaakobi [6], [7], which shows thatm servers
(for somem > k) may emulate ak-server PIR protocol
with storage overhead significantly lower thank.

Fazeli et al [7] introduce the key notion of a[t×m, p]
k-PIR array code, which is defined as follows. Let
x1, x2, . . . , xp be a basis of a vector space of dimension
p (over some finite fieldF). A [t × m, p] array code
is simply a t × m array, each entry containing a linear
combination of the basis elementsxi. A [t×m, p] array
code satisfies thek-PIR property(or is a [t × m, p] k-
PIR array code) if for every i ∈ {1, 2, . . . , p} there exist
k pairwise disjoint subsetsS1, S2, . . . , Sk of columns so
that for all j ∈ {1, 2, . . . , k} the elementxi is contained
in the linear span of the entries of the columnsSj . The
following example of a (binary)[7 × 4, 12] 3-PIR array
code is taken from [7]:

x1 x2 x3 x1 + x2 + x3

x2 x3 x1 x6

x4 x5 x4 + x5 + x6 x4

x5 x6 x8 x9

x7 x7 + x8 + x9 x9 x7

x8 x10 x11 x12

x10 + x11 + x12 x11 x12 x10.

The3-PIR property means that for alli ∈ {1, 2, . . . , 12}
we can find3 disjoint subsets of columns whose entries
span a subspace containingxi. For example,x5 is in the
span of the entries in the subsets{1}, {2} and{3, 4} of
columns;x11 is in the span of the entries in the subsets
{1, 4}, {2} and{3} of columns.

In the example above, many of the entries in the array
consist of a single basis element; we call such entries
singletons.

Fazeli et al use a[t×m, p] k-PIR array code as follows.
The database is partitioned intop parts x1, x2, . . . , xp,
each part encoded as an element of the finite fieldF.
Each of a set ofm servers storest linear combinations
of these parts; thejth server stores linear combinations
corresponding to thejth column of the array code. We
say that thejth server hast cells, and stores one linear
combination in each cell. They show that thek-PIR
property of the array code allows the servers to emulate
all known efficientk-server PIR protocols. But the storage
overhead istm/p, and this can be significantly smaller
thank if a good array code is used. Defines = p/t, so
s can be thought of as the reciprocal of the proportion
of the database stored on each server. For small storage
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overhead, we would like the ratio

k

tm/p
= s

k

m
(1)

to be as large as possible. We define thePIR rate (rate
in short) of a[t×m, p] k-PIR array code to bek/m (this
rate should not be confused with the rate of the code).
In applications, we would like the rate to be as large as
possible for several reasons: whens, which represents the
amount of storage required at each server, is fixed such
schemes give small storage overhead compared tok (see
(1)); we wish to use a minimal numberm of servers,
so m should be as small as possible; large values ofk,
compared tom, are desirable, as they lead to protocols
with lower communication complexity. We will fix the
numbert of cells in a server, and the proportion1/s of
the database stored per server and we seek to maximise
the PIR rate. Hence, we defineg(s, t) to be the largest
rate of a[t×m, p] k-PIR array code whens and t (and
so p) are fixed. We defineg(s) = limt→∞g(s, t).

Most of the analysis in [6], [7] was restricted to the
caset = 1. The following two results presented in [7]
are the most relevant for our discussion. The first result
corresponds to the case where each server holds a single
cell, i.e. we have a PIR code (not an array code with
t > 1).

Theorem 1. For any given positive integers, g(s, 1) =
(2s−1)/(2s − 1).

The second result is a consequence of the only con-
struction of PIR array codes given in [7] which is not
an immediate consequence of the constructions for PIR
codes.

Theorem 2. For any integers ≥ 3, we haveg(s, s−1) ≥
s/(2s− 1).

The goal of this paper is first to generalize the results of
Theorems 1 and 2 and to find codes with better rates for a
givens. We would like to find out the behavior ofg(s, t)
as a function oft. This will be done by providing several
new constructions fork-PIR array codes which will imply
lower bounds ong(s, t) for a large range of pairs(s, t).
This will immediately imply a related bound ong(s) for
various values ofs. Contrary to the construction in [7],
the value ofs in our constructions is not necessarily an
integer (this possible feature was mentioned in [7]): each
rational number greater than one will be considered. We
will also provide various upper bounds ong(s, t), and
related upper bounds ong(s). It will be proved that some
of the upper bounds ong(s, t) are tight and also our main
upper bound ong(s) is tight.

To summarise, our notation used in the remainder of
the paper is given by:

1) n - the number of bits in the database.
2) p - number of parts the database is divided into.

The parts will be denoted byx1, x2, . . . , xp.
3) 1

s
- the fraction of the database stored on a server.

4) m - the number of servers (i.e. the number of
columns in the array).

5) t - number of cells in a server (or the number of
rows in the array); sot = p/s.

6) k - the array code allows the servers to emulate a
k-PIR protocol.

7) g(s, t) - the largest PIR rate of a[t×m, p] k-PIR
array code.

8) g(s) = limt→∞g(s, t).

Clearly, a PIR array code is characterized by the
parameters,s, t, k, andm (the integern does not have any
effect on the other parameters, except for some possible
divisibility conditions). In [7], where the caset = 1
was considered, the goal was to find the smallestm
for given s and k. This value ofm was denoted by
the functionM(s, k). The main discussion in [7] was to
find bounds onM(s, k) and to analyse the redundancy
M(s, k)− s and the storage overheadM(s, k)/s. When
PIR array codes are discussed, the extra parameter ist
and givens, t, and k, the goal is to find the smallest
m. We denote this value ofm by M(s, t, k). Clearly,
M(s, t, k) ≤ M(s, k), but the main target is to find the
range for whichM(s, t, k) < M(s, k), and especially
when the storage overhead is low. Our discussion answers
some of these questions, but unfortunately not for small
storage overhead (our storage overhead is much smaller
than k as required, butk is relatively large). Hence,
our results provide an indication of the target to be
achieved, and this target is left for future work. We will
fix two parameters,t and s, and examine the ratiok/m
(which might require bothk and m to be large and
as a consequence the storage overhead won’t be low).
To have a lower storage overhead we probably need to
compromise on a lower ratio ofk/m.

The rest of this paper is organized as follows. In
Section II we present a simple upper bound on the value
of g(s). Though this bound is attained, we prove that
g(s, t) < g(s) for any fixed values ofs andt. We will also
state a more complex upper bound ong(s, t) for various
pairs (s, t), and it will be shown to be attainable when
1 < s ≤ 2. In Section III we present a range of explicit
constructions. In Subsection III-A we consider the case
where 1 < s ≤ 2. In Subsection III-B we consider
the case wheres is rational number greater than 2. In
Section IV we present a construction in which at least
t − 1 cells in each server are singletons. In Section IV
we present a construction in which at leastt − 1 cells
in each server are singletons and its rate asymptotically
meets the upper bound. We believe that this construction
always produces the best bounds and prove this statement
in some cases. For lack of space we omit some proofs
and some constructions. These can be found in the full
version of this paper [2].

II. U PPERBOUNDS ON THEPIR RATE

In this section we will be concerned first with a simple
general upper bound (Theorem 3) on the rate of ak-
PIR array code for a fixed value ofs with s > 1. This



bound cannot be attained, but is asymptotically optimal
(ast → ∞). This will motivate us to give a stronger upper
bound (Theorem 1) on the rateg(s, t) of a [t×m, st] k-
PIR array code for various values oft that can sometimes
be attained.

Theorem 3. For each rational numbers > 1 we have
thatg(s) ≤ (s+1)/(2s). There is not such thatg(s, t) =
(s+ 1)/(2s).

Proof: Suppose we have a[t × m, p] k-PIR array
code withp/t = s. To prove the theorem, it is sufficient to
show thatk/m < (s+1)/(2s). Since thek-PIR property
only depends on the span of the contents of a server’s
cells, we may assume, without loss of generality, that if
xi can be derived from information on a certain server
then the singletonxi is stored as the value of one of the
cells of this server.

Let αi be the number of servers which hold the
singleton xi in one of their cells. Since each server
has t cells, we find that

∑p

i=1 αi ≤ tm, and so the
average value of the integersαi is at mosttm/p = m/s.
So there existsu ∈ {1, 2, . . . p} such thatαu ≤ m/s
(and we can only haveαu = m/s when αi = m/s
for all i ∈ {1, 2, . . . , p}). Let S(1), S(2), . . . , S(k) ⊆
{1, 2, . . . ,m} be disjoint sets of servers, chosen so the
span of the cells in each subset of servers containsxu.
Such subsets exist, by the definition of ak-PIR array
code. If no server in a subsetS(j) contains the singleton
xu, the subsetS(j) must contain at least two elements
(because of our assumption on singletons stated in the
first paragraph of the proof). So at mostαu of the subsets
S(j) are of cardinality1. In particular, this implies that
k ≤ αu + (m− αu)/2. Hence

k

m
≤

αu + (m− αu)/2

m
=

1

2
+

αu

2m
(2)

≤
1

2
+

m/s

2m
=

1

2
+

1

2s
=

s+ 1

2s
.

We can only have equality in (2) whenαi = m/s
for all i ∈ {1, 2, . . . , p}, which implies that all cells
in every server are singletons. But then the span of
subset of servers containsxi if and only if it contains
server with a cellxi, and sok ≤ αi = m/s. But this
implies that the ratek/m of the array code is at most
1/s = 2/(2s). This contradicts the assumption that the
rate of the array code isk/m = (s+1)/(2s), sinces > 1.
So k/m < (s+ 1)/(2s), as required.

Theorem 4. For any integert ≥ 2 and any positive
integerd, we have

g(1 +
d

t
, t) ≤

(2d+ 1)t+ d2

(t+ d)(2d+ 1)
= 1−

d2 + d

(t+ d)(2d+ 1)
.

Remark 1. We note that we can always writes = 1+d/t
whenevers > 1, sinces = p/t. So Theorem places no
extra restrictions ons.

III. C ONSTRUCTIONS ANDLOWER BOUNDS

In this section we will propose various constructions
for PIR array codes; these yield lower bounds ong(s, t)
and ong(s). The constructions yield an improvement on
the lower bound ong(s) implied by Theorem 2. They
also cover all rational values ofs > 1, and not just integer
values ofs. We are interested in constructions in which
the number of servers is as small as possible, although the
main goal in this paper is providing a lower bound on the
rate. In the constructions below, we use Hall’s marriage
Theorem [8]:

Theorem 5. In a finite bipartite graphG = (V1∪V2, E),
there is perfect matching if for each subsetX of V1, the
number of vertices inV2 connected to vertices ofX has
at least size|X |.

Corollary 6. A finite regular bipartite graph has a perfect
matching.

A. Constructions for1 < s ≤ 2

In this subsection we present constructions for PIR
array codes whens is a rational number greater than
1 and smaller than or equal to 2. The first construction
will be generalized in Subsection III-B and Section IV,
when s is any rational number greater than1, but the
special case considered here deserves separate attention
for three reasons: it is simpler than its generalization;
the constructed PIR array code attains the bound of
Theorem 1, while we do not have a proof of a similar
result for the generalization; and finally the analysis of
the generalization is slightly different.

Construction 1. (s = 1 + d/t and p = t+ d for t > 1,
d a positive integer,1 ≤ d ≤ t).

Let ϑ be the least common multiple ofd and t. There
are two types of servers. Servers of Type A storet
singletons. Each possiblet-subset of parts occursϑ/d
times as the set of singleton cells of a server, so there
are

(

p
t

)

ϑ/d servers of Type A. Each server of Type B has
t − 1 singleton cells int − 1 cells; the remaining cell
stores the sum of the remainingp− (t−1) = d+1 parts.
Each possible(t− 1)-set of singletons occursϑ/t times,
so there are

(

p
t−1

)

ϑ/t servers of Type B.

Theorem 7. Whent > 1 and 1 ≤ d ≤ t,

g(1 + d/t, t) ≥
(2d+ 1)t+ d2

(t+ d)(2d+ 1)
.

Proof: The total number of servers in Construction 1
is m =

(

t+d
t

)

ϑ/d+
(

t+d
d+1

)

ϑ/t. We now calculatek such
that Construction 1 has thek-PIR property. To do this, we
compute for eachi, 1 ≤ i ≤ p, a collection of pairwise
disjoint sets of servers, each of which can recover the
partxi.

There are
(

t+d−1
t−1

)

ϑ/d servers of Type A containing
xi as a singleton cell. LetV1 be the set of

(

t+d−1
t

)

ϑ/d

remaining servers of Type A. There are
(

t+d−1
t−2

)

ϑ/t
servers of Type B containingxi as a singleton cell. Let
V2 be the set of

(

t+d−1
t−1

)

ϑ/t remaining servers of Type B.



We define a bipartite graphG = (V1 ∪ V2, E) as
follows. Let v1 ∈ V1 and v2 ∈ V2. Let X1 ⊆
{x1, x2, . . . , xp} be the set oft singleton cells of the
server v1. Let X2 ⊆ {x1, x2, . . . , xp} be the parts
involved in the non-singleton cell of the serverv2. (So
X2 is the set ofd + 1 parts that are not singleton cells
of v2. Note thatxi ∈ X2.) We draw an edge fromv1 to
v2 exactly whenX2 \ {xi} ⊆ X1. Note thatv1 and v2
are joined by an edge if and only if the serversv1 and
v2 can together recoverxi.

The degrees of the vertices inV1 are all equal; the
same is true for the vertices inV2. Moreover, |V1| =
(

t+d−1
t

)

ϑ/d =
(

t+d−1
t−1

)

ϑ/t = |V2|. So G is a regular
graph, and hence by Corollary 6 there exists a perfect
matching inG. The edges of this matching form|V1|
disjoint pairs of servers, each of which can recoverxi.
Thus, we have thatk =

(

t+d−1
t−1

)

ϑ/d +
(

t+d−1
t−2

)

ϑ/t +
(

t+d−1
t

)

ϑ/d = m−
(

t+d−1
t

)

ϑ/d.
Finally, some simple algebraic manipulation shows us

that

g(1 + d/t, t) ≥
k

m
=

(2d+ 1)t+ d2

(t+ d)(2d+ 1)
.

Corollary 8.

(i) For any givent andd, 1 ≤ d ≤ t, whens = 1+d/t
we have

g(s, t) = 1−
d2 + d

(t+ d)(2d+ 1)
=

s+ 1 + 1/d

(2 + 1/d)s
.

(ii) For any rational number1 < s ≤ 2, we have
g(s) = (s+ 1)/(2s).

(iii) g(2, t) = (3t+ 1)/(4t+ 2).

Construction 2. (s = 1+d/t, p = t+d, and there exists
a Steiner systemS(d, d+ 1, p))

Let S be a S(d, d + 1, p) Steiner system on the set
of points {1, 2, . . . , p}. We define servers of two types.
There are

(

t+d
t

)

=
(

t+d
d

)

servers of Type A: each server
stores a different subset of parts int singleton cells. There
are d

d+1

(

t+d
d

)

servers of Type B, indexed by a set that
repeats each of the1

d+1

(

t+d
d

)

blocksB ∈ S a total of d
times. One cell in a server of Type B contains the sum
∑

i∈B xi; the remainingt−1 cells contain thet−1 parts
not involved in this sum.

The PIR rate of Construction 2 attains the upper bound
of Theorem 1 using fewer servers than in Construction 1.
Unfortunately, Construction 2 can be applied on a lim-
ited number of parameters since the number of possible
Steiner systems of this type is limited, and the number
of known ones is even smaller.

B. Constructions whens > 2 is rational

We do not know the exact value of the asymptotic
rate g(s, t) of PIR codes whens > 2. These values
will be considered in this subsection. We present only
the bounds implied by the constructions given in [2]. In

all the constructions there exist servers with fewer than
t− 1 singletons.

Theorem 9. For givent, d andr with r > 1, with r ≤ t,
and with1 ≤ d ≤ t− 1,

g(r + d/t, t) ≥
(rt + d)(rt + d)− t(t− r)

(rt + d)(2rt+ 2d− 2t+ r)
.

Combining Theorems 3 and 9 we have:

Corollary 10. If s > 2 is a rational number which is not
an integer, theng(s) = (s+ 1)/(2s).

Theorem 11. For any given integerss ≥ 2 and t ≥ s,

g(s, t) ≥
st+ t+ 1

s(2t+ 1)
= 1−

(s− 1)(t+ 1)

s(2t+ 1)
.

Combining Theorems 3 and 11 we have:

Corollary 12. For any given integers > 2, g(s) = s+1
2s .

All the results we obtained are fort ≥ s− 1. The next
theorem can be applied fort < s− 1.

Theorem 13. If c, s, t are integers such that1 ≤ c ≤ t−1
and2c−1t− 2c−1(c− 2)+ 1 ≤ s ≤ 2ct− 2c(c− 1), then
g(s, t) ≥ t−c+(t−1)s+1

t−c+2(t−1)s+2 .

IV. SERVERS WITH AT LEASTt− 1 SINGLETONS

All the lower bounds described above can be improved
with a construction which generalizes Constrution 1. This
general construction can be applied for all admissible
pairs(s, t). For simplicity we will define and demonstrate
it first for integer values ofs and later explain the
modification needed for non-integer values ofs.

The construction usess (⌈s⌉ if not an integer) types
of servers. Type Tr, 1 ≤ r ≤ s, has t − 1 singleton
cells and one cell with a sum of(r − 1)t+ 1 parts. For
each type, all possible combinations of parts and sums are
taken the same amount of times:ηr times for Type Tr.
Therefore, the number of servers in Type T1 is η1

(

st
t

)

and the number of servers in Type Tr, 2 ≤ r ≤ s, is
ηr
(

st
t−1

)(

st−t+1
(r−1)t+1

)

. A part xi is recovered from all the
singleton cells, where it appears, and also by pairing
servers as follows. We constructs − 1 bipartite graphs,
where bipartite graphr, Gr, 1 ≤ r ≤ s − 1, has two
sides. The first side represents all the servers of Type Tr

in whichxi is neither a singleton nor in a sum with other
parts. The second side represents all the servers of Type
Tr+1 in which xi participates in a sum with other parts.
There is an edge between vertexv of the first side and
vertexu of the second side if thet − 1 singleton parts
in v, and the(r − 1)t + 1 parts of the sum in the last
cell of v are thert parts in the sum of the last cell ofu,
excludingxi. We choose the constantsηr so that these
bipartite graphs will all be all regular. Edges in a perfect
matching of these graphs correspond to pairs of servers
that can together recoverxi.

We start with a general solution fors = 3 to show that
this method is much better than the previous ones. For
s = 3 there are three types of servers T1, T2, and T3.



In Type T1, each server hast singletons. There are
(

3t−1
t−1

)

combinations in whichxi is a singleton and
(

3t−1
t

)

combinations in whichxi is not a singleton.
Each combination will appear inη1 =

(

2t−1
t−1

)

servers
of Type T1.

In Type T2, each server hast − 1 singletons and one
cell with a sum oft + 1 parts. There are

(

3t−1
t−2

)(

2t+1
t

)

combinations in whichxi is a singleton,
(

3t−1
t−1

)(

2t
t

)

combinations in whichxi is in a sum oft + 1 parts,
and

(

3t−1
t−1

)(

2t
t−1

)

combinations in whichxi is neither a
singleton nor in a sum oft+ 1 parts. Each combination
will appear in exactly one server of Type T2, so η2 = 1.

In Type T3, each server hast − 1 singletons and one
cell with a sum of2t+1 parts. Hence, each part appears
in each server either as a singleton or in a sum of2t+1
parts. There are

(

3t−1
t−2

)

combinations in whichxi is a
singleton, and

(

3t−1
t−1

)

combinations in whichxi is in a
sum of 2t + 1 parts. Each combination will appear in
η3 = 8

(

2t
t−1

)

servers of Type T3.
Now, we can form the two bipartite graphs and apply

Corollary 6 to find the pairs from whichxi can be
recovered. We may calculate that the rate of the code
is 16t2+7t+1

24t2+15t+3 , which is much better than the rate of4t+1
6t+3

implied by Theorem 11. Hence, we have

Theorem 14.

g(3, t) ≥
16t2 + 7t+ 1

24t2 + 15t+ 3
.

The rate of the construction for each pair(s, t), which
is a lower bound ong(s, t), is given in the next theorem.

Theorem 15. For any integerss and t greater than one,
the rate of the code by the construction isβ+γ

β+2γ , where

β =

s−1
∏

ℓ=1

(ℓt+ 1) + (t− 1)

s
∑

r=2

(s− 1)!

(s− r)!
tr−2

s−1
∏

ℓ=r

(ℓt+ 1) ,

γ =

s−1
∑

r=1

(s− 1)!

(s− 1− r)!
tr−1

s−1
∏

ℓ=r

(ℓt+ 1) .

Moreover, whent → ∞ the rate meets the upper bound
of Theorem 3, i.e.(s+ 1)/(2s).

A careful analysis shows that the rate of this construc-
tion is larger from the rates of the previous constructions
whens > 2 (see [2]).

If s is not an integer, then the construction is very
similar. We note that there is some flexibility in choosing
the number of parts in each type (there is no such
flexibility when s is an integer). But we have to use the
same types of servers as in the case whens is an integer,
except for the last type. For example, consider the case
whent = 3 ands = 7/3, sop = 7. There are three types
of servers:

In Type T1, each server has 3 singletons. There are 15
combinations in whichxi is a singleton and 20 combi-
nations in whichxi is not a singleton. Each combination
will appear in three servers of Type T1, so η1 = 3.

In Type T2, each server has 2 singletons and one cell
with a sum of four parts. There are 30 combinations in
which xi is a singleton, 60 combinations in whichxi is
in a sum of four parts, and 15 combinations in which
xi is neither a singleton nor in a sum of four parts. Each
combination will appear in exactly one server of Type T2,
so η2 = 1.

In Type T3, each server has 3 singletons and one cell
with a sum of seven parts. Hence, each part appears in
each server either as a singleton or in a sum of seven
parts. There are 6 combinations in whichxi is a singleton,
and 15 combinations in whichxi is in a sum of seven
parts. Each combination will appear in exactly one server,
so η3 = 1.

Now, the two bipartite graphs are formed and Corol-
lary 6 is applied to find the pairs from whichxi can be
recovered. The rate of the resulting code is52

77 which is
better than the2335 rate implied by Theorem 9. The rates
for other parameters are also better and a general rate for
w = 7/3 is given by:

Theorem 16.

g(7/3, 3t) ≥
160t2 + 45t+ 3

224t2 + 81t+ 7
.
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