
HAL Id: hal-01556729
https://hal.science/hal-01556729

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Covert Communication with Noncausal Channel-State
Information at the Transmitter

Si-Hyeon Lee, Ligong Wang, Ashish Khisti, Gregory W Wornell

To cite this version:
Si-Hyeon Lee, Ligong Wang, Ashish Khisti, Gregory W Wornell. Covert Communication with Non-
causal Channel-State Information at the Transmitter. International Symposium on Information The-
ory, Jun 2017, Aachen, Germany. �hal-01556729�

https://hal.science/hal-01556729
https://hal.archives-ouvertes.fr


Covert Communication with Noncausal
Channel-State Information at the Transmitter

Si-Hyeon Lee∗, Ligong Wang†, Ashish Khisti‡, and Gregory W. Wornell§
∗POSTECH, Pohang, South Korea (e-mail:sihyeon@postech.ac.kr)
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Abstract—We consider the problem of covert communication
over a state-dependent channel, where the transmitter has non-
causal knowledge of the channel states. Here, “covert” means
that the probability that a warden on the channel can detect
the communication must be small. In contrast with traditional
models without noncausal channel-state information at the trans-
mitter, we show that covert communication can be possible with
positive rate. We derive closed-form formulas for the maximum
achievable covert communication rate (“covert capacity”) in this
setting for discrete memoryless channels as well as additive white
Gaussian noise channels. We also derive lower bounds on the
rate of the secret key that is needed for the transmitter and the
receiver to achieve the covert capacity.

I. INTRODUCTION

Covert communication [1]–[4] refers to scenarios where the
transmitter and the receiver must keep the warden (eavesdrop-
per) from discovering the fact that they are using the channel to
communicate. Specifically, the signals observed by the warden
must be statistically close to the signals when the transmitter
is switched off. For additive white Gaussian noise (AWGN)
channels, the transmitter being switched off is usually modeled
by it always sending zero; for discrete memoryless channels
(DMCs), this is modeled by it sending a specially designated
“no input” symbol x0. For a DMC, if the output distribution
at the warden generated by x0 is a convex combination of the
output distributions generated by the other input symbols, then
a positive covert communication rate is achievable; otherwise
the maximum amount of information that can be covertly
communicated scales like the square root of the total number
of channel uses [3]. For the AWGN channel, the latter situation
applies [1], [3].

The role played by channel uncertainties in covert commu-
nications has been studied in some recent works. In particular,
[5]–[7] consider the situation where the noise level in the
channel is unknown to the warden, and show that, in this
case, positive covert communication rates are achievable on
certain channel models (binary channels are considered in [5]
and AWGN channels in [6], [7]) which otherwise only allow
square-root scaling for covert communication. An important
assumption common to [5]–[7] is that the unknown parameter,
e.g., noise power, remains the same throughout the entire
communication duration. This makes it difficult for the warden
to tell whether what it observes is signal power or noise power.

The current work studies the benefit of channel uncertainties
for covert communications in a different context. We consider
channels with an unknown parameter that is independent and
identically distributed (IID) across different channel uses, and
that is known to the transmitter noncausally as channel-state
information (CSI).1 We study the maximum achievable rate
for covert communication, which we call the “covert capacity”
of such channels. For both DMCs and AWGN channels, we
derive closed-form formulas for the covert capacity, as well
as lower bounds for the length of the secret key shared
between the transmitter and the receiver that may be needed
to achieve the covert capacity. Our achievability proofs are
based on “likelihood encoding” employed in [8]–[10] rather
than standard Gelfand-Pinsker coding [11], because the former
admits easier covertness analysis. Our converse proof is based
on that of [11], taking into account covertness requirements.

For some DMCs (Example 1) and for the AWGN channel
(Theorem 5), our results show that the covert capacity is
zero without CSI but positive with noncausal CSI at the
transmitter. This, to some extent, confirms again that channel
statistics unknown to the warden can help the transmitter to
communicate covertly.

Our work is closely related to some works in steganography
[12]–[14]. As noted in [14], the covertext in steganography can
be seen as CSI that is noncausally known to the transmitter.
However, in steganography it is normally assumed that no
noise is imposed on the stegotext, hence, conditional on the
states (i.e., the covertext), the channel is noiseless. In our
setting, the channel has both states and noise.

II. PROBLEM FORMULATION

A state-dependent DMC (X ,S,Y,Z, PS , PY,Z|S,X) con-
sists of channel input alphabet X , state alphabet S, channel
output alphabets Y and Z at the receiver and the warden,
respectively, state probability mass function (PMF) PS , and
channel law PY,Z|S,X . All alphabets are finite. Let x0 ∈ X
be a “no input” symbol that is sent when no communica-
tion takes place. Define Q0(·) =

∑
s∈S PS(s)PZ|S,X(·|s,

1Note that, if an IID channel parameter is not known to any terminal, then
it can be treated as part of the channel statistics, and generally cannot help
the communicating parties to communicate covertly. One can see that the
same is true for an ergodic random parameter having a coherence time that
is much shorter than the communication duration. Hence the assumption of
the transmitter having CSI is crucial to our model.



x0) and let Q×n0 (·) denote the n-fold product of Q0. We
assume supp(Q0) = Z where supp(·) denotes the support
set of a distribution. The state sequence Sn is assumed to
be IID, hence the warden observes Zn distributed according
to Q×n0 (·) if no communication takes place over n channel
uses. We define a nonnegative cost b(x) for each input symbol
x ∈ X . The average input cost of xn ∈ Xn is defined as
b(xn) = 1

n

∑n
i=1 b(xi).

The state sequence is assumed to be noncausally known to
the transmitter, but unknown to the receiver and the warden.2

Furthermore, the transmitter and the receiver are assumed to
share a secret key K uniformly distributed over a set K. An
(|M|, |K|, n) code consists of an encoder at the transmitter
that maps (M,K,Sn) to Xn ∈ Xn, and a decoder at the
receiver that maps (Y n,K) to M̂ ∈M.

The transmitter and the receiver aim at constructing a code
that is both reliable and covert. As usual, their code is reliable
if the probability of error P (n)

e = P (M̂ 6= M) is negligible.
Their code is covert if it is hard for the warden to determine
whether the transmitter is sending a message (hypothesis H1)
or not (hypothesis H0). Let α and β denote the probabilities of
false alarm (accepting H1 when the transmitter is not sending
a message) and missed detection (accepting H0 when the
transmitter is sending a message), respectively. Note that a
blind test satisfies α + β = 1. Let P̂ denote the distribution
when the transmitter is sending a message.3 The warden’s

optimal hypothesis test satisfies α+β ≥ 1−
√
D(P̂Zn‖Q×n0 )

(see [16]). Hence, covertness is guaranteed if D(P̂Zn‖Q×n0 )
is negligible.

Let K = [1 : 2nRK ] and M = [1 : 2nR] for RK ≥ 0
and R ≥ 0. For given RK ≥ 0 and B ≥ 0, a covert rate
of R is said to be achievable if there exists a sequence of
(2nR, 2nRK , n) codes that simultaneously satisfies the input
cost constraint lim supn→∞ EM,K,Sn [b(Xn)] ≤ B, reliabil-
ity constraint limn→∞ P

(n)
e = 0, and covertness constraint

limn→∞D(P̂Zn‖Q×n0 ) = 0. The covert capacity C is defined
as the supremum of all achievable covert rates.

III. MAIN RESULTS FOR DMCS

The following two theorems present an upper and a lower
bound on the covert capacity, respectively. The proofs of these
theorems are provided in Sections IV and V, respectively.

Theorem 1. For RK ≥ 0 and B ≥ 0, the covert capacity is
upper-bounded as

C ≤ max(I(U ;Y )− I(U ;S)) (1)
where the maximum is over conditional PMF PU |S and
function x(u, s) such that |U| ≤ min(|X |+ |Y|+ |Z|+ |S| −
3, |X | · |S|), PZ = Q0 and E[b(X)] ≤ B.

2In the full version [15] of this paper, the case where the state sequence is
causally known to the transmitter is also considered.

3Note that P̂Zn depends on the code used for the communication and is
in general not IID. On the other hand, P̂Sn = P×n

S since the state sequence
is generated independently of whether communication is taking place or not.

Theorem 2. For RK ≥ 0 and B ≥ 0, the covert capacity is
lower-bounded as

C ≥ max(I(U ;Y )− I(U ;S)) (2)
where the maximum is over conditional PMF PU |S and
function x(u, s) such that |U| ≤ min(|X |+ |Y|+ |Z|+ |S| −
2, |X | · |S|+ 1), PZ = Q0, E[b(X)] ≤ B, and

I(U ;Z)− I(U ;Y ) < RK . (3)

Remark 1. If RK is large enough so that (3) holds under
the joint distribution that achieves the maximum on the right-
hand side of (1), then Theorems 1 and 2 establish the covert
capacity as the right-hand side of (1). Furthermore, if under
this joint distribution I(U ;Z) < I(U ;Y ), then no secret key
is needed to achieve the covert capacity.

Example 1. Consider a channel where X , Y , Z , and S
are all binary, and where PS is the Bernoulli distribution of
parameter p ∈ (0, 0.5). The channel law is Y = Z = X ⊕ S.
Assume that RK > 0.

Using Theorems 1 and 2 one can check that the optimal
choice is U = Y = Z having the Bernoulli distribution of
parameter p, independently of S. This gives C = Hb(p) =
p log 1

p + (1− p) log 1
1−p .

Note that, without CSI, the channel in Example 1 is a binary
symmetric channel, over which covert communication cannot
have a positive rate [2], [3].

IV. PROOF OF UPPER BOUND (THEOREM 1)

Let us first define the following function:
C(A,B) = max

PU|S ,PX|U,S :

E[b(X)]≤B, D(PZ‖Q0)≤A

(I(U ;Y )− I(U ;S)).

In the proof of Theorem 1, we use the following property of
C(A,B), which is proven in the full version [15] of this paper.

Lemma 3. The function C(A,B) is non-decreasing in each
of A and B, and concave and continuous in (A,B).

Proof of Theorem 1. For RK ≥ 0 and B ≥ 0, consider any
sequence of (2nR, 2nRK , n) codes that simultaneously satisfies
the input cost constraint lim supn→∞ EM,K,Sn [b(Xn)] ≤ B,
reliability constraint limn→∞ P

(n)
e = 0, and covertness con-

straint limn→∞D(P̂Zn‖Q×n0 ) = 0.
Let us start with the proof steps used for channels with

noncausal CSI [11] without a covertness constraint:

nR
(a)

≤ I(M ;Y n|K) + nεn (4)

=

n∑
i=1

I(M ;Yi|K,Y i−1) + nεn (5)

≤
n∑
i=1

I(M,K, Y i−1;Yi) + nεn (6)

=

n∑
i=1

I(M,K, Y i−1, Sni+1;Yi)

−
n∑
i=1

I(Yi;S
n
i+1|M,K, Y i−1) + nεn (7)



(b)
=

n∑
i=1

I(M,K, Y i−1, Sni+1;Yi)

−
n∑
i=1

I(Y i−1;Si|M,K,Sni+1) + nεn (8)

(c)
=

n∑
i=1

I(M,K, Y i−1, Sni+1;Yi)

−
n∑
i=1

I(M,K, Y i−1, Sni+1;Si) + nεn (9)

=

n∑
i=1

(I(Ui;Yi)− I(Ui;Si)) + nεn (10)

for εn → 0 and Ui := (M,K, Y i−1, Sni+1). Here, (a)
follows by applying Fano’s inequality from the reliability
constraint; (b) by Csiszár’s sum identity; and (c) because Si
and (M,K,Sni+1) are independent.

Now we utilize the definition and the property of C(A,B)
to further bound the right-hand side of (10):

nR ≤
n∑
i=1

(I(Ui;Yi)− I(Ui;Si)) + nεn (11)

≤
n∑
i=1

C(D(P̂Zi
‖Q0),E[b(Xi)]) + nεn (12)

(a)

≤ nC

(
1

n

n∑
i=1

D(P̂Zi‖Q0),
1

n

n∑
i=1

E[b(Xi)]

)
+ nεn

(13)
where (a) is due to the concavity of C(A,B). Recall from
Lemma 3 that C(A,B) is non-decreasing in each of A and
B. According to the input cost constraint, there exists δn → 0
such that 1

n

∑n
i=1 E[b(Xi)] ≤ B + δn. On the other hand,

from the covertness constraint, there exists δ′n → 0 such that
D(P̂Zn‖Q×n0 ) ≤ δ′n, while we have

D(P̂Zn‖Q×n0 )

= −H(Zn) + EP̂Zn

[
log

1

Q×n0 (Zn)

]
(14)

= −
n∑
i=1

H(Zi|Zi−1) + EP̂Zn

[
log

1

Q0(Zi)

]
(15)

= −
n∑
i=1

H(Zi|Zi−1) + EP̂Zi

[
log

1

Q0(Zi)

]
(16)

≥ −
n∑
i=1

H(Zi) + EP̂Zi

[
log

1

Q0(Zi)

]
(17)

=

n∑
i=1

D(P̂Zi
‖Q0). (18)

Hence, (13) implies

R ≤ C
(
δ′n
n
,B + δn

)
+ εn. (19)

Note that the right-hand side of (19) approaches C(0, B) as
n tends to infinity due to the continuity of C(A,B), from
which follows the condition PZ = Q0. Further, because
I(U ;Y ) − I(U ;S) is convex in the conditional distribution
PX|U,S , it suffices to maximize it over functions x(u, s)

instead of PX|S,U . Finally, the cardinality bound on U follows
by applying the support lemma [17].

V. PROOF OF LOWER BOUND (THEOREM 2)

Fix ε > ε′ > 0. Further fix PU |S and x(u, s) such that
PZ = Q0 and E[b(X)] ≤ B

1+ε′ .
1) Codebook generation: For each k ∈ [1 : 2nRK ]

and m ∈ [1 : 2nR], randomly and independently generate
2nR

′
codewords un(k,m, l), l ∈ [1 : 2nR

′
] according to∏n

i=1 PU (ui). These constitute the codebook C.
2) Encoding at the transmitter: Given state sequence sn,

secret key k, and message m, evaluate the likelihood

g(l|sn, k,m) =
P×nS|U (sn|un(k,m, l))∑

l′∈[1:2nR′ ] P
×n
S|U (sn|un(k,m, l′))

. (20)

The encoder randomly generates l according to (20) and
transmits xn where xi = x(ui(k,m, l), si).

3) Decoding at the receiver: Upon receiving yn, with
access to the secret key k, the decoder declares that m̂ is
sent if it is the unique message such that

(un(k, m̂, l), yn) ∈ T (n)
ε (21)

for some l ∈ [1 : 2nR
′
]; otherwise it declares an error. Here

T (n)
ε denotes the (strongly) typical set [18].
4) Covertness analysis: For covertness analysis, we use the

following lemma, which is proven in Appendix A.

Lemma 4. For the codebook generation and encoding pro-
cedure described in Sections V-1 and V-2, respectively, if
R′ > I(U ;S) and R+RK +R′ > I(U ;Z), then

EC

[
D(P̂Zn‖P×nZ )

]
n→∞−→ 0. (22)

Now, let
R′ > I(U ;S) (23)

R+RK +R′ > I(U ;Z). (24)
Because PU |S and x(u, s) are chosen to satisfy PZ = Q0,
Lemma 4 implies that

EC [D(P̂Zn‖Q×n0 )]
n→∞−→ 0. (25)

5) Reliability analysis: Consider the probability of error
averaged over the randomly generated codebook C. Let M and
M̂ denote the transmitted and decoded messages, respectively,
and let L denote the index generated according to (20) at the
encoder. The error event {M̂ 6= M} occurs only if at least
one of the following events occurs:

E1 := {(Un(K,M,L), Sn) /∈ T (n)
ε′ } (26)

E2 := {(Un(K,M,L), Y n) /∈ T (n)
ε } (27)

E3 := {(Un(K,m, l), Y n) ∈ T (n)
ε

for some m 6= M and l ∈ [1 : 2nR
′
]}. (28)

Hence, the probability of error is bounded as
P (M̂ 6= M) ≤ P (E1) + P (Ec1 ∩ E2) + P (E3). (29)

Now we bound each term on the right-hand side of (29). The
first term P (E1) tends to zero as n tends to infinity due to [9,
Lemma 2], as long as (23) is satisfied. Next, note that

Ec1 = {(Un(K,M,L), Sn) ∈ T (n)
ε′ }. (30)

By the conditional typicality lemma [17], P (Ec1 ∩E2) tends to
zero as n tends to infinity.



Lastly, P (E3) tends to zero as n tends to infinity by the
packing lemma [17] provided

R+R′ < I(U ;Y ). (31)
In summary, the probability of error averaged over the random
codebook C tends to zero as n tends to infinity if (23), (24),
and (31) are satisfied.

6) Input cost analysis: In the reliability analysis, it is shown
that
P (E1) = P{(Un(K,M,L), Sn) /∈ T (n)

ε′ } (32)

= P ((Un(K,M,L), Xn, Sn) /∈ T (n)
ε′ )

n→∞−→ 0. (33)
Note that if xn ∈ T (n)

ε′ , then b(xn) ≤ B by the typical average
lemma [17]. Hence,

EC,M,K,Sn [b(Xn)]

= P (E1) EC,M,K,Sn [b(Xn)|E1]

+ P (Ec1) EC,M,K,Sn [b(Xn)|Ec1 ] (34)
≤ P (E1)Bmax + P (Ec1)B, (35)

where Bmax := maxx∈X b(x). By (33), the right-hand side of
(35) approaches B as n tends to infinity. Hence, we have

lim sup
n→∞

EC,M,K,Sn [b(Xn)] ≤ B. (36)

In summary, if (23), (24), and (31) are satisfied,
then there must exist a sequence of codes such that
limn→∞ P

(n)
e = 0, limn→∞ EM,K,Sn [b(Xn)] ≤ B, and

limn→∞D(PZn‖Q×n0 ) = 0. By applying the Fourier-Mozkin
elimination [17] to (23), (24), and (31), we complete the proof.

VI. THE AWGN CHANNEL

Consider an AWGN channel where the channel outputs at
the receiver and the warden are given as

Y = X + S +NY (37)
Z = X + S +NZ , (38)

respectively, where X is the channel input from the transmitter,
S ∼ N (0, T ) is the external interference that is known
to the transmitter noncausally but unknown to the receiver
and the warden, and NY ∼ N (0, 1) and NZ ∼ N (0, σ2),
σ2 > 0, are additive Gaussian noises. Let P denote the
input power constraint at the transmitter, so the input must
satisfy E[X2] ≤ P . The “no input” symbol is 0, hence the
warden observes Zn distributed according to Q×n0 , where
Q0 = N (0, T+σ2), when no communication takes place over
n channel uses. The transmitter and the receiver are assumed
to share a secret key of rate RK . The covertness constraint
is again given by limn→∞D(P̂Zn‖Q×n0 ) = 0. The covert
capacity of this channel is defined in the same way as in
Section II.

The following theorem establishes the covert capacity when
the secret key rate is sufficiently large.

Theorem 5. Let P ∗ := min{P, 2T} − (min{P,2T})2
4T . If

RK > log
P ∗ + (1− γ)2T + σ2

P ∗σ2 + 1+P∗σ2

1+P∗ (1− γ)2T + σ2
, (39)

where γ = min{1, P2T }, then the covert capacity is given by
C = 1

2 log (1 + P ∗) .

Remark 2. If the warden’s channel is degraded, i.e., if σ2 ≥ 1,
a secret key is not needed.

Remark 3. Assume that the secret key rate is sufficiently large.
As T → ∞, the covert capacity approaches 1

2 log(1 + P ),
which is the capacity of the channel (37) with noncausal CSI
and without covertness constraint. On the other hand, when
T = 0, a positive covert-communication rate is not achievable,
which is consistent with [1], [3].

Converse proof of Theorem 5. It can be checked that Theo-
rem 1 applies to the AWGN channel with b(x) = x2. Fix
PU |S and x(u, s) that achieve the maximum in (1). Note
that PZ = Q0 and E[X2] ≤ P . Let P̃ := Var(X) and
Λ := E[XS]. It follows that

I(U ;Y )− I(U ;S) ≤ I(U ;Y, S)− I(U ;S) (40)
= I(U ;Y |S) (41)
≤ I(X,U ;Y |S) (42)
(a)
= I(X;Y |S) (43)
= h(X +NY |S)− h(NY ) (44)
(b)

≤ 1

2
log

(
1 + P̃ − Λ2

T

)
, (45)

where (a) is due to the Markov chain U − (X,S) − Y and
(b) is from [17, Problem 2.7]. Recall the condition PZ = Q0,
which implies

T + σ2 = Var(X + S +NZ) (46)

= P̃ + T + 2Λ + σ2, (47)
therefore we must have Λ = − P̃2 . Hence (45) implies

I(U ;Y )− I(U ;S) ≤ 1

2
log

(
1 + P̃ − P̃ 2

4T

)
. (48)

Note that P̃ ≤ P and arg max0≤P̃≤P

(
P̃ − P̃ 2

4T

)
=

min{P, 2T}. Thus, we have

C ≤ 1

2
log

(
1 + min{P, 2T} − (min{P, 2T})2

4T

)
, (49)

which concludes the proof.

Achievability proof of Theorem 5. We can adapt Theorem 2
for the Gaussian case with a power constraint, as explained
in Remark 4. We basically perform dirty paper coding
(DPC) [19], after reducing the interference power to make
room for message transmission. Hence, we let X = X ′ − γS
where γS is subtracted from X to reduce the interference
power and treat X ′ ∼ N (0, P ′) as the channel input for
performing DPC over the equivalent channel Y = X ′ + (1−
γ)S +NY .

Formally, this corresponds to the following choice of PU |S
and x(u, s) in Theorem 2:

X ′ ∼ N (0, P ′), independent of S (50)

U = X ′ +
P ′

P ′ + 1
(1− γ)S (51)

X = X ′ − γS. (52)
The parameters γ and P ′ are determined from the following:

P ′ + γ2T ≤ P (53)



P ′ + (1− γ)2T = T, (54)
where the inequality comes from the power constraint
E[X2] ≤ P and the equality is due to the covertness constraint
PZ = Q0. From the above, we choose γ = min{1, P2T } and
P ′ = P ∗.

By applying the aforementioned choice of PU |S and x(u, s)
in Theorem 2, we obtain C ≥ 1

2 log(1 + P ∗) when the secret
key rate satisfies

RK > I(U ;Z)− I(U ;Y ) (55)

= log
P ∗ + (1− γ)2T + σ2

P ∗σ2 + 1+P∗σ2

1+P∗ (1− γ)2T + σ2
, (56)

which completes the proof.

Remark 4. We adapt Theorem 2 for the Gaussian case with
a power constraint as follows. We employ the same encoding
procedure while PMFs are replaced with probability density
functions induced by the channel (37)-(38) and the choice
(50)-(52). Then, the covertness analysis proceeds in the same
way as in the discrete case and hence the covertness condition
would be satisfied if (23) and (24) are satisfied.

For the decoding procedure, we cannot use the notion of
strong typicality as in (21) for continuous alphabet. Instead,
the decoder considers quantized versions of U and Y . A
partition of P of U is a finite collection of disjoint sets Pi
such that ∪iPi = U . The quantization of U by P is denoted
as [U ]P and defined by

P

(
[U ]P =

{
supPi if supPi <∞
inf Pi otherwise

)
= P (U ∈ Pi).

For partitions P and P ′ of U and Y , respectively, the decoder
performs joint typicality check for [U ]nP and [Y ]nP′ with respect
to the joint distribution p([U ]P , [Y ]P′). Similarly, let us con-
sider quantized version [S]P̃ of S by partition P̃ for the joint
typicality in (26) and consider [X]P,P̃ := x([U ]P , [S]P̃) for
the joint typicality in (33). Then, the condition (31) becomes
R + R′ < I([U ]P ; [Y ]P′). As we refine the partitions P
and P ′, I([U ]P ; [Y ]P′) approaches to I(U ;Y ) according to
[20, Section 8.6]. Furthermore, the input cost constraint is
asymptotically satisfied as the partitions are refined given that
the function x(u, s) is continuous in each of u and s.

APPENDIX A
PROOF OF LEMMA 4

The proof follows similar lines to [9, Section VII-A]. As
in [9, Section VII-A], it can be checked that, to prove (22),
it suffices to show that the total variation (TV) distance
approaches zero:

EC ‖P̂Zn − P×nZ ‖TV
n→∞−→ 0. (57)

To evaluate the TV distance, define the ideal PMF for code-
book C as follows:
Γ(C)(k,m, l, un, sn, zn) =

2−n(RK+R+R′)
1un(k,m,l)=unP×nS|U (sn|un)P×nZ|U,S(zn|un, sn).

Using the triangle inequality for the TV distance, we upper-
bound the left-hand side of (57) as

EC ‖P̂Zn − P×nZ ‖TV

≤ EC ‖P̂Zn − Γ
(C)
Zn‖TV + EC ‖Γ(C)

Zn − P×nZ ‖TV. (58)

From the soft covering theorem [21, Theorem 4], [22, Corol-
lary VII.4], the second term on the right-hand side of (58)
decays to zero as n → ∞ if RK + R + R′ > I(U ;Z). For
the first term on the right-hand side of (58), note that

EC ‖P̂Zn − Γ
(C)
Zn‖TV ≤ EC ‖P̂Sn,Zn − Γ

(C)
Sn,Zn‖TV. (59)

By applying the same analysis as in [9, Section VII-A], the
right-hand side of (59) decays to zero as n → ∞ if R′ >
I(U ;S).
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