
Communication-Aware Computing for Edge Processing
Songze Li∗, Mohammad Ali Maddah-Ali†, and A. Salman Avestimehr∗

∗University of Southern California, †Nokia Bell Labs

Abstract—We consider a mobile edge computing problem, in
which mobile users offload their computation tasks to computing
nodes (e.g., base stations) at the network edge. The edge nodes
compute the requested functions and communicate the computed
results to the users via wireless links. For this problem, we
propose a Universal Coded Edge Computing (UCEC) scheme
for linear functions to simultaneously minimize the load of
computation at the edge nodes, and maximize the physical-
layer communication efficiency towards the mobile users. In
the proposed UCEC scheme, edge nodes create coded inputs
of the users, from which they compute coded output results.
Then, the edge nodes utilize the computed coded results to create
communication messages that zero-force all the interference
signals over the air at each user. Specifically, the proposed
scheme is universal since the coded computations performed at
the edge nodes are oblivious of the channel states during the
communication process from the edge nodes to the users.

I. INTRODUCTION

We consider a mobile edge computing (or fog computing)
scenario (see e.g., [1]–[3]), in which as shown in Fig. 1, a
set of K mobile users, denoted by User i (i = 1, . . . ,K),
offload their computation tasks to a set of M computing
nodes scattered at the network edge, which are called the edge
nodes and denoted by EN j (j = 1, . . . ,M). Each User i
(i = 1, . . . ,K) has an input di, and requests the computation
of an output φ(di), which is performed at the edge nodes. The
overall computation proceeds in two phases: the computation
phase, and the communication phase. In the computation
phase, the edge nodes compute all output results for all users.
In the communication phase, the edge nodes communicate the
the computed results back to the users through wireless links.

One example of the above computing scenario is object
recognition and collaborative filtering, which is the key enabler
of many augmented reality and machine learning applications.
In this case, mobile users are smartphones that want to
recognize the pictures captured by their cameras, using a
large common database that is stored at the edge nodes (e.g.,
routers and base stations). During the computation process, the
smartphones upload their pictures (or their feature vectors) to
the edge nodes. The edge nodes then process the pictures over
the database, and return the recognition results to the users.
Hence, the pictures (or their feature vectors) correspond to the
users’ inputs (di’s) and the recognition results correspond to
the requested outputs (φ(di)’s). Similar operations are also
commonly seen in other mobile edge computing applications
like navigation and recommendation systems.

We aim to understand how to design the computations
across the edge nodes, in order to maximize the physical-
layer efficiency (i.e., design the optimum communication-
aware computing schemes). We note that as we perform more

EN 1 EN MEN 2

Compute Compute Compute

User 1

Request

User K

Request

Edge

Offload
Offload

Fig. 1: A mobile edge computing system consisting of K mobile
users and M edge nodes.
computations, the spectral efficiency increases. For example,
consider the case where we have the same number of edge
nodes as the users (i.e., M = K), and every single node
computes all K outputs (i.e., a computation load of K2). In
this case, since all output results are available at all nodes,
effectively, we have a K × K multiple-input single-output
(MISO) broadcast channel on the physical layer, which can
be diagonalized into K parallel interference-free channels, and
the requested outputs of all users can be delivered simultane-
ously using one unit of communication load.

The above scheme represents one rather trivial point in
the set of all possible computation-communication load pairs
that accomplish the computation task and deliver the results,
denoted by the computation-communication load region. In
this paper, our objective is to formalize and characterize
the entire load region for edge processing. In particular, we
focus on universal schemes in which the edge nodes perform
the computations without knowing the channel gains towards
the users in the upcoming communication phase. Universal
computation is in fact a common practice in mobile computing
systems (see e.g., [4], [5]), where the computation phase
and the communication phase are executed independently of
each other. This is primarily due to the fact that the channel
state information (CSI) at the communication phase cannot be
predicted ahead of time at the computation phase.

Our main result is a full characterization of the computation-
communication load region for linear output functions. In
particular, we show that the load region is dominated by
one corner point that simultaneously achieves the minimum
computation load and the maximum spectral efficiency. To
establish this result, we first argue that each edge node should
execute coded computations, in which computation tasks are
executed on some linear combinations of the inputs, rather
than executing the task on each input individually. We then
propose a Universal Coded Edge Computing (UCEC) scheme,

ar
X

iv
:1

70
6.

07
52

3v
1

 [
cs

.I
T

]
 2

2
Ju

n
20

17

in which coded computations are performed at the edge nodes
to create messages that neutralize all interference signals in
the upcoming communication phase. In particular, the edge
nodes create coded inputs, each as the sum of certain carefully
selected users’ inputs, and pass them into the output functions
to compute coded results. The coded computation at each node
is such that (i) it achieves the minimum computation load of 1
computation unit/user’s input, (ii) it is independent of CSI in
communication phase, i.e., it is universal, (iii) no matter what
the CSI in communication phase is, the coded computation
results allow the edge nodes to create messages that cancel
all interference signals over the air and achieve the maximum
spectral efficiency of 1 symbol/user/channel use.

The coding technique in the proposed UCEC scheme is mo-
tivated by the “Aligned Network Diagonalization” technique
in [6], and the “Aligned Interference Neutralization” technique
in [7], for communications over a two-hop relay network. In
particular, we develop the coded computations, following the
patterns of aligned signals recovered at the relays in [6], [7].
These aligned signals can be used for signaling over the next
hop of the relays such that all interference are cancelled at
the destinations. We notice and exploit in this paper the fact
that the aligned signals at the relays are independent of CSI
of the next hop. While this property is completely irrelevant
in communication over the two-hop relay network, it allows
us to decouple computation phase from communication phase
and form universal computing schemes for edge processing.

Finally, while in this paper we focus on the case where
the entire dataset used to process the requests is stored on
each edge node, we can also consider the setting where each
edge node only stores a part of the dataset and need to
work collaboratively to meet the computational needs. For this
setting, recent works [8]–[13] have proposed to use coding
to minimize the load of communication between edge nodes.
An interesting future direction is to design optimal coding
schemes for a framework that accounts for communications
both from edge nodes to the users and between edge nodes.

II. PROBLEM FORMULATION

We consider a mobile edge computing problem, in which
K mobile users (e.g., smartphones) offload their computation
tasks to M edge nodes (e.g., base stations), for some K,M ∈
N. We denote the K users as User 1, . . . , User K, and the M
edge nodes as EN 1, . . . , EN M . User k, k = 1, . . . ,K, has a
sequence of input vectors (dk[i])∞i=1 (e.g., pictures of objects
in an object recognition application), where for each i ∈ N,
dk[i] ∈ RQ, for some Q ∈ N. For each input vector dk[i],
User k wants to compute B output functions (e.g., recognition
results) φ1, . . . , φB : RQ → R, for some B ∈ N.
Example: Matrix Multiplication. One example of the above
computation is matrix-vector multiplication, in which each
user wants to compute a sequence of output vectors from a
dataset matrix A stored at the edge nodes. That is, for each
input vector dk[i], i ∈ N, User k requests the output vector
[φ1(dk[i]), . . . , φB(dk[i])]T = Adk[i], for all k = 1, . . . ,K.
This type of computation commonly arises in many machine

learning algorithms. For example, in the gradient decent al-
gorithm for linear regression, when computing the gradient in
the current iteration, we need to multiply the data matrix with
the model vector from the previous iteration. �

In this paper, we focus on linear functions such that
φb(αdm[i] + βdn[j]) = αφb(dm[i]) + βφb(dn[j]), (1)

for any coefficients α, β ∈ R, m,n ∈ {1, . . . ,K}, i, j ∈ N,
and all b = 1, . . . , B.

The computation proceeds over a block of F input vectors at
each user, for some F ∈ N. The computation process consists
of the computation phase and the communication phase. In
the computation phase, the M edge nodes compute some
output functions from the input vectors d1[i], . . . ,dK [i], for
all i = 1, . . . , F . In the communication phase, the edge nodes
communicate the computed results to the intended users.

A. Computation Phase
In the beginning of the computation phase, EN m, m =

1, . . . ,M , is given `m linear combinations of the users’ inputs,
denoted by L(1)

m , . . . ,L(`m)
m , for some `m ∈ N, i.e.,

L(j)
m =

F∑
i=1

K∑
k=1

α
(j)
mk[i]dk[i], (2)

for some coefficients α(j)
mk[i] ∈ R, and j = 1, . . . , `m.

For each linear combination L(j)
m and a subset W(j)

m ⊆
{1, . . . , B}, j = 1, . . . , `m, EN m computes a function
s

(j)
mb : RQ → R, such that for each b ∈ W(j)

m ,

s
(j)
mb = φb(L(j)

m). (3)
Definition 1 (Computation Load). We define the computation
load, denoted by r, as the total number of functions computed
across all edge nodes, normalized by the total number of

required functions. That is, r ,
∑M

m=1

∑`m
j=1 |W

(j)
m |

FKB . ♦

B. Communication Phase
After the computation phase, the edge nodes communicate

the computed results back to the users. We consider a commu-
nication scheme that ranges over T time slots, for some T ∈ N.
The symbol communicated by EN m at time t, t = 1, . . . , T ,
denoted by Xm(t) ∈ R, is generated as a function, denoted
by ψm(t), of the functions computed locally at EN m in the
computation phase, for all m = 1, . . . ,M , i.e.,

Xm(t) = ψm(t)({s(j)
mb : b ∈ W(j)

m }
`m
j=1). (4)

Each edge node has an average power constraint of P .
The received symbol at User k in time t, t = 1, . . . , T ,

Yk(t) =

M∑
m=1

hkm(t)Xm(t) + Zk(t), (5)

where hkm(t) ∈ R, k = 1, . . . ,K, m = 1, . . . ,M , is the
channel gain from EN m to User k in time t. The channel
gains {hkm(t) : k = 1, . . . ,K, m = 1, . . . ,M}Tt=1 are
time-varying, and they are drawn i.i.d. from a continuous
distribution with a bounded second moment. We assume that
in the communication phase, the instantaneous channel state
information is available at all edge nodes. Zk(t) ∼ N (0, 1) is
the additive white Gaussian noise at User k in time t.

Definition 2 (Communication Load). We define the commu-
nication load, denoted by L, as the total number of communi-
cation time slots T normalized by the total number of output
functions required by each user, i.e., L , T

FB . ♦

After T time slots of communication, User k, k = 1, . . . ,K,
for each i = 1, . . . , F , and each b = 1, . . . , B, reconstructs the
intended output function φb(dk[i]) using a decoding function
ρkb[i]. That is, the reconstructed output function

φ̂b(dk[i]) = ρkb[i]({Yk(t)}Tt=1). (6)
We assume that all input vectors are arbitrary random

vectors, and each of the computed output functions is a random
variable with finite variance. We define the distortion of the
output function φb of the input vector dk[i] from User k as

Dkb[i] = E{(φ̂b(dk[i])− φb(dk[i]))2}. (7)
We say that a computation-communicate load pair (r, L)

is achievable, if there exist a computation scheme with a
computation load of r and a communication load of L,
such that by the end of the communication phase, User k,
k = 1, . . . ,K, can obtain a noisy version of φb(dk[i]), for all
b = 1, . . . , B, and all i = 1, . . . , F , or more precisely,

lim
P→∞

log(1/Dkb[i])

logP
= 1. (8)

We define the computation-communication load region,
denoted by C, as the closure of the set of all achievable
computation-communication load pairs.

III. MOTIVATION AND MAIN RESULTS

For the mobile edge computing scenario formulated in
the previous section, since each output function needs to be
computed at least once, the minimum computation load is at
least 1. On the other hand, in the communication phase, even
when we can create parallel communication channels for the
K users, we need to use the channel at least FB times, one
for delivering an output function required by a single user.
Hence, the minimum communication load is also at least 1.

Given the above individual lower bounds on the computa-
tion load and the communication load, We ask the following
question: Can we achieve the minimum computation load and
the minimum communication load simultaneously? Or is there
an edge computing scheme that achieves the load pair (1, 1)?
We first show through the following example, the achievability
of the (1, 1) pair when the edge nodes know the channel gains
towards the users when executing the computation phase.
Example 1 (“Zero-Forcing Ready” Coded Computing). We
consider a scenario in which K = 2 mobile users offload their
computation tasks to M = 2 edge nodes. User k, k = 1, 2, has
an input vector dk ∈ RQ, and wants to compute a length-B
output vector yk = Adk, for some data matrix A ∈ RB×Q.

In this case, we consider a communication phase of T = B
time slots, i.e., a communication load of L = 1, and we assume
that the channel gains {h11(t), h12(t), h21(t), h22(t)}Bt=1 are
known at the two edge nodes in the computation phase.

In the computation phase, for each t = 1, . . . , B, EN 1
generates a linear combination of the two input vectors
L(t)

1 = −h22(t)d1+h12(t)d2, and EN 2 also generates a linear

EN 1

User 1 User 2

EN 2

Compute

Communicate

Decode
Fig. 2: Coded edge computing of K = 2 users and M = 2 edge
nodes. Using channel state information to design coded computations
allows zero-forcing the interference signal at each user.

combination L(t)
2 = h21(t)d1 − h11(t)d2. Then, as shown in

Fig. 2, for the t-th row of A, denoted by at, t = 1, . . . , B,
EN 1 and EN 2 respectively computes

s
(t)
1t = atL(t)

1 = −h22(t)y1(t) + h12(t)y2(t), (9)

s
(t)
2t = atL(t)

2 = h21(t)y1(t)− h11(t)y2(t), (10)
where yk(t) is the tth element of the output vector yk. We
perform B coded computations at each of the two ENs,
achieving a computation load of r = 1.

In the communication phase, at time t, t = 1, . . . , B, EN k,
k = 1, 2, simply sends Xk(t) = γs

(t)
kt , where γ is some

factor enforcing the power constraint. As a result, as shown
in Fig. 2, User k, k = 1, 2, receives a noisy version of yk(t),
i.e., L(yk(t)). Therefore, we have successfully performed the
computation task, and simultaneously achieved the minimum
computation load and the minimum communication load. �
Remark 1. We note that in order to achieve the minimum
computation load and the minimum communication load si-
multaneously, it is critical to perform coded computations at
the edge nodes, which can create a linear combination of the
output functions using one computation unit. Also, the coding
needs to be communication-aware, such that the computed
coded results can be directly utilized to create messages that
zero-force the interference signals over the air at each user. �

While the above example shows the achievability of the
optimum load pair (1, 1) under the assumption that the channel
states are known in prior in the computation phase, this result
is not practically interesting. This is due to the fact that the
channel states at the communication phase cannot be predicted
ahead of time. Hence, we should focus on universal schemes
in which the edge nodes perform the computations without
knowing the channel gains towards the users in the future
communication phase (i.e., the coefficients in (2) are indepen-
dent of the channel states). Motivated by this phenomenon,
we ask the following question:

Is there a universal computation scheme that simulta-
neously achieves the minimum computation load and
the minimum communication load, i.e., the load pair
(1, 1), without requiring channel state information in
the computation phase at the edge nodes?

We answer the above question affirmatively, and present the
main result of this paper in the following theorem.
Theorem 1. For a mobile edge computing scenario with K
mobile users and K edge nodes, there exists a universal com-
putation scheme, named Universal Coded Edge Computing
(UCEC), that achieves the minimum computation load and the
minimum communication load simultaneously, i.e., the load
pair (1, 1), for time-varying channels and no channel state
information in the computation phase at the edge nodes.

We prove Theorem 1 in Section V, by describing the
proposed UCEC scheme, and analyzing its performance.

Remark 2. The key feature of the UCEC scheme is that in the
computation phase, without using channel state information,
the edge nodes compute coded outputs with a computation
load r = 1. In the communication phase, the edge nodes create
messages that admit a communication load L = 1 and can still
neutralize all the interference signals over the air. �

Remark 3. Theorem 1 implies that when no channel state
information is available in the computation phase, the
computation-communication load region has a simple shape
that is dominated by a single corner point (1, 1). Hence,
performing computations without being aware of the channel
gains does not cause any performance loss. �

Remark 4. In contrast to the “zero-forcing ready” scheme in
Example 1, we can execute the computation phase separately
from the communication phase, without losing any perfor-
mance. For example, we can perform the computations at
some remote edge clusters without knowing when and how
the computed results will be delivered to the mobile users,
and later have the access points close to the users (e.g., base
stations) communicate the results. �

Remark 5. We can directly apply the proposed UCEC scheme
in Theorem 1 to the general case of K users and M edge
nodes. In particular, when M > K, we can use any K out
of the M edge nodes to achieve the load pair (1, 1). When
M < K, we can split the K users into dKM e partitions of
size M (except that one partition has size K−MbKM c). Then
we repeatedly apply the UCEC scheme between the M edge
nodes and each of the user partitions, achieving a load pair
(1, dKM e). Overall, the UCEC scheme achieves the load pair
(1, dKM e), for the case of K users and M edge nodes. �

In the next section, we illustrate the key ideas of the
proposed UCEC scheme through a simple example.

IV. ILLUSTRATION OF THE UNIVERSAL CODED EDGE
COMPUTING SCHEME VIA A SIMPLE EXAMPLE

We consider a scenario where K = 2 mobile users offload
their tasks to M = 2 edge nodes. User k, k = 1, 2, has
F = 3 input vectors, and wants to compute the output vectors
yk[i] = Adk[i], i = 1, 2, 3, from some data matrix A. In
contrast to Example 1, now we do not assume the knowledge
of channel gains at the edge nodes in the computation phase.

In the computation phase, EN 1 generates L(1)
1 = d1[1] and

L(2)
1 = d1[2]+d2[1], and EN 2 generates L(1)

2 = d1[1]+d2[1].
These linear combinations do not depend on the channel gains.

Then for each b = 1, . . . , B, EN 1 computes two functions
s

(1)
1b = abL(1)

1 = y11(b), s(2)
1b = abL(2)

1 = y12(b) + y21(b),
where yki(b) is the bth element of the vector yk[i]. Also, EN 2
computes a function s(1)

2b = abL(1)
2 = y11(b) + y21(b).

In the communication phase, for each b = 1, . . . , B,
we employ a communication scheme ranging over 2 time
slots. For example, for b = 1, and some transmit directions
v11,v12,v2 ∈ R2, we create the transmitted symbols[

X1(1)
X1(2)

]
= v11s

(1)
11 + v12s

(2)
11 (11)

= v11y11(1) + v12(y12(1) + y21(1)), (12)[
X2(1)
X2(2)

]
= v2s

(1)
21 = v2(y11(1) + y21(1)). (13)

In order to zero-force the interfering signals, we select the
transmit directions such that H11v12 = −H12v2, H21v11 =

−H22v2, where Hkm =

[
hkm(1) 0

0 hkm(2)

]
is the channel

matrix from EN m to User k in the two time slots.
After the communication phase, User 1 recovers noisy

versions of y11(1) and y12(1) respectively, and User 2 recovers
a noisy version of y21(1). Similarly, repeating the same
communication process for B times, User 1 can reconstruct
y1[1] and y1[2], and User 2 can reconstruct y2[1].

Next, we swap the role of User 1 and User 2, and perform
the same computation and communication operations as before
to deliver y2[2] and y2[3] to User 2, and y1[3] User 1.

The above scheme achieves a computation load r =
(2+1)×B×2

3×2×B =1, and a communication load of L= 2×B×2
3×B = 4

3 .
Without channel state information, the edge nodes can still
exploit coding to reduce the communication load by 33.3%
(the communication load would have been 2 if uncoded com-
putations and orthogonal communications were employed),
while maintaining the minimum computation load of 1.

The techniques utilized above are motivated by the “Aligned
Interference Neutralization” (AIN) technique in [7], and the
“Aligned Network Diagonalization” (AND) technique in [6],
for communications over a two-hop relay network. AIN and
AND design the transmitted signals at the sources, such that
each aligned signal at the relays is the sum of some message
symbols, which does not depend on the channel gains on either
hop of the network. On the second hop, relays create messages
that cancel interference signals over the air at the destinations.

We finally note that if in general we consider a block of
F = 2W − 1 input vectors, for some W ∈ N, employing
coding techniques motivated by the AIN scheme that is
designed specifically for the 2× 2× 2 relay network, we can
achieve a computation-communication load pair (1, 2W

2W−1),
which goes to the optimal pair (1, 1) as W increases.

V. UNIVERSAL CODED EDGE COMPUTING SCHEME

We prove Theorem 1 by presenting a Universal Coded Edge
Computing (UCEC) scheme, for a case of K users and K
edge nodes, and time-varying channels. The proposed scheme
does not use the channel gains when executing the compu-
tation phase, and still asymptotically achieves the optimum
computation-communication load pair.

First, we define the set of transmit directions ∆N ,
{0, 1, . . . , N − 1}K2

, for some arbitrary N ∈ N. Then, we
consider a block of F = NK2

input vectors at each user.
For User k, k = 1, . . . ,K, we assign each of her NK2

input vectors to a unique transmit direction in ∆N . More
specifically, for each element p ∈ ∆N , we label the input
of User k on the direction p as dp

k .

A. Computation Phase

At EN m, m = 1, . . . ,K, for each transmit direction
(p11, p12, . . . , pKK) ∈ ∆N+1, we create a coded input vector
L(p11,p12,...,pKK)
m as the sum of certain input vectors

L(p11,p12,...,pKK)
m =

K∑
k=1

d
(p11,p12,...,pkm−1,...,pKK)
k . (14)

Then EN m computes the functions
s

(p11,p12,...,pKK)
mb = φb

(
L(p11,p12,...,pKK)
m

)
=

K∑
k=1

φb
(
d

(p11,p12,...,pkm−1,...,pKK)
k

)
, (15)

for all b = 1, . . . , B. Here we set φb(d
p
k) = 0 if any element

in p is N or −1. We note that in (14), no channel state
information is used when creating the coded input vectors.

B. Communication Phase

In communication phase, the channel state information is
known at the edge nodes. At EN m, m = 1, . . . ,K, for
each b = 1, . . . , B, we note that the computed functions
{spmb : p ∈ ∆N+1} resemble the aligned signals decoded at
the mth relay, using the AND scheme in [6] for a K×K×K
relay network. We perform the communication phase exploit-
ing the communication techniques in AND from the relays to
the destinations. Specifically, for channel matrix at time t

H(t) =

h11(t) · · · h1K(t)
...

. . .
...

hK1(t) · · · hKK(t)

 , (16)

we define

B(t) =

 b11(t) · · · bK1(t)
...

. . .
...

b1K(t) · · · bKK(t)

 , H(t)−1, (17)

and Q(t)p = Q(t)(p11,p12,...,pKK) ,
∏

1≤k,m≤K bkm(t)pkm .
We demonstrate the communication process to deliver the

first function φ1, and repeat the same process for all other
B−1 functions. Specifically, we consider a transmission over
d = |∆N+1| = (N + 1)K

2

time slots, such that at time t =
1, . . . , d, EN m, m = 1, . . . ,K, communicates a symbol

Xm(t)=γ
∑

p∈∆N+1

Q(t)pspm1 =γ
∑

p∈∆N

Q(t)p
(K∑

k=1

bkm(t)φ1(dp
k)

)
,

where γ is some factor to enforce the power constraint.
The received signals at the K users in time t, t = 1, . . . , d,Y1(t)

...
YK(t)

 = H(t)

X1(t)
...

XK(t)

+

Z1(t)
...

ZK(t)

= B(t)−1γ
∑

p∈∆N

Q(t)pB(t)

φ1(dp
1)

...
φ1(dp

K)

+

Z1(t)
...

ZK(t)

= γ

∑
p∈∆N

Q(t)p

φ1(dp
1)

...
φ1(dp

K)

+

Z1(t)
...

ZK(t)

 . (18)

As a result, at User k, k = 1, . . . ,K, all interference signals,
i.e., {φ1(dp

k′) : k′ 6= k,p ∈ ∆N}, are zero-forced over the air,
and the received signals Yk(1), . . . , Yk(d) are d = (N + 1)K

2

noisy linear combinations of the intended functions {φ1(dp
k) :

p ∈ ∆N}, from which User k can decode them individually.
Using this scheme, we achieve a computation load r =

|∆N+1|BK
FKB = (N+1)K

2

NK2 , and a communication load L = dB
FB =

(N+1)K
2

NK2 , which both go to 1 as N increases.

VI. ACKNOWLEDGEMENT

This work is in part supported by NSF grants CCF-
1408639, NETS-1419632, ONR award N000141612189, NSA
grant, and a research gift from Intel. This material is based
upon work supported by Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR001117C0053. The
views, opinions, and/or findings expressed are those of the
author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government.

REFERENCES

[1] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge
computing: A taxonomy,” in Proc. of the 6th International Conference
on Advances in Future Internet. IARIA, 2014.

[2] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 45–55, 2014.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. of the 1st edition of the MCC
workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, 2013.

[5] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[6] I. Shomorony and A. S. Avestimehr, “Degrees of freedom of two-hop
wireless networks: Everyone gets the entire cake,” IEEE Trans. Inf.
Theory, vol. 60, no. 5, pp. 2417–2431, 2014.

[7] T. Gou, S. A. Jafar, C. Wang, S.-W. Jeon, and S.-Y. Chung, “Aligned
interference neutralization and the degrees of freedom of the 2× 2× 2
interference channel,” IEEE Trans. Inf. Theory, vol. 58, no. 7, 2012.

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
53rd Allerton Conference, Sept. 2015.

[9] ——, “Fundamental tradeoff between computation and communication
in distributed computing,” IEEE ISIT, July 2016.

[10] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” arXiv:1604.07086, 2016, submitted to IEEE Trans. Inf. Theory.

[11] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded
distributed computing: Fundamental limits and practical challenges,”
50th Asilomar Conference, pp. 509–513, Nov. 2016.

[12] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” IEEE
NetCod, Dec. 2016.

[13] ——, “Coding for distributed fog computing,” IEEE Commun. Mag.,
vol. 55, no. 4, pp. 34–40, Apr. 2017.

	I Introduction
	II Problem Formulation
	II-A Computation Phase
	II-B Communication Phase

	III Motivation and Main Results
	IV Illustration of the Universal Coded Edge Computing scheme via a simple example
	V Universal Coded Edge Computing Scheme
	V-A Computation Phase
	V-B Communication Phase

	VI Acknowledgement
	References

