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Abstract

This study examines sharp bounds on Arimoto’s conditional Rényi entropy of order β with a fixed another one

of distinct order α 6= β. Arimoto inspired the relation between the Rényi entropy and the `r-norm of probability

distributions, and he introduced a conditional version of the Rényi entropy. From this perspective, we analyze the

`r-norms of particular distributions. As results, we identify specific probability distributions whose achieve our sharp

bounds on the conditional Rényi entropy. The sharp bounds derived in this study can be applicable to other information

measures, e.g., the minimum average probability of error, the Bhattacharyya parameter, Gallager’s reliability function

E0, and Sibson’s α-mutual information, whose are strictly monotone functions of the conditional Rényi entropy.

I. INTRODUCTION

In information theory, the Shannon entropy H(X) and the conditional Shannon entropy H(X | Y ) [34] are

traditional information measures of random variables (RVs) X and Y , whose characterize several theoretical limits

for information transmission. Later, the Rényi entropy Hα(X) [26] was axiomatically proposed as a generalized

Shannon entropy with order α. For a discrete RV1 X ∼ P , the Rényi entropy of order α ∈ [0,∞] is defined by

Hα(X) = Hα(P ) := lim
r→α

r

1− r
ln ‖P‖r, (1)

where ln denotes the natural logarithm, the `r-norm of a discrete probability distribution P is defined by

‖P‖r :=

( ∑
x∈supp(P )

P (x)r
)1/r

(2)

for r ∈ R, and supp(P ) := {x ∈ X | P (x) > 0} denotes the support of a distribution P on a countable alphabet X .

Note that (1) is well-defined since the limiting value exists for each α ∈ [0,∞] as follows:

Hα(X) =
α

1− α
ln ‖P‖α for α ∈ (0, 1) ∪ (1,∞), (3)

H0(X) = ln |supp(P )|, (4)

H1(X) = E[− lnP (X)] =: H(X), (5)

H∞(X) = − ln ‖P‖∞, (6)

This work was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research through the

Japan Society for the Promotion of Science under Grant 26420352.
1An RV X with distribution P is denoted by X ∼ P .
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where | · | denotes the cardinality2 of the countable set, E[·] denotes the expectation of the RV, and ‖P‖∞ :=

limr→∞ ‖P‖r = maxx∈supp(P ) P (x) denotes the `∞-norm of P . Moreover, Arimoto [2] proposed a conditional

version3 of the Rényi entropy Hα(X | Y ) as a generalized conditional Shannon entropy with order α. For a pair of

RVs (X,Y ) ∼ PX|Y PY , the conditional Rényi entropy [2] of order α ∈ [0,∞] is defined by

Hα(X | Y ) := lim
r→α

r

1− r
lnNr(X | Y ), (7)

where the expectation of `r-norm is denoted by

Nr(X | Y ) := E
[
‖PX|Y (· | Y )‖r

]
(8)

for r ∈ (0,∞], and note in (8) that Y ∼ PY . In this study, the RV Y can be considered to be either discrete

or continuous. By convention, we write Hα(X | Y = y) := Hα(PX|Y (· | y)) for y ∈ supp(PY ). As with the

unconditional Rényi entropy (1), note that (7) is also well-defined since the limiting value also exists for each

α ∈ [0,∞] as follows:4

Hα(X | Y ) =
α

1− α
lnNα(X | Y ) for α ∈ (0, 1) ∪ (1,∞), (9)

H0(X | Y ) = sup
y∈supp(PY )

H0(X | Y = y), (10)

H1(X | Y ) = E[− lnPX|Y (X | Y )] =: H(X | Y ), (11)

H∞(X | Y ) = − lnN∞(X | Y ). (12)

Note that Arimoto [2] proposed Hα(X | Y ) in terms of the relation between the `r-norm and the unconditional Rényi

entropy, shown in (1) (see also [41, Section II-A]). As shown in (5) and (11), Rényi’s information measures can be

reduced to Shannon’s information measures as α → 1. In many situations, Rényi’s information measures derive

stronger results than Shannon’s information measures (cf. [1], [6], [7], [9], [38]). In addition, the quantity Hα(X | Y )

is closely related to Gallager’s reliability function E0 [14, Eq. (5.6.14)] and Sibson’s α-mutual information [21],

[35]; and thus, coding theorems with them can be written by Hα(X | Y ) (cf. [2], [41]). Many basic properties of

Hα(X | Y ) were studied by Fehr and Berens [13].

Bounds on information measures are crucial tools in several engineering fields, e.g., information theory, coding

theory, cryptology, machine learning, statistics, etc. In this paper, a bound is said to be sharp if there is no tighter

bound than it in the same situation. One of well-known sharp bounds is Fano’s inequality [11], which bounds the

conditional Shannon entropy H(X | Y ) from above for fixed (i) average probability of error Pr(X 6= f(Y )) and

(ii) size of support |supp(PX)|, where the function f is an estimator of X given Y . As related bounds, the reverse

2In this study, suppose that |S| =∞ if S is a countably infinite set; thus, note in (4) that H0(X) =∞ if supp(P ) is countably infinite.
3There are many definition of conditional Rényi entropy (cf. [13], [37], [38]). In this paper, the conditional Rényi entropy means Arimoto’s

definition unless otherwise noted.
4Proofs of (10)–(12) can be found in, e.g., [13, Propositions 1 and 2].
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of Fano’s inequality, i.e., sharp lower bounds on H(X | Y ) with a fixed minimum average probability of error

Pe(X | Y ) := min
f

Pr(X 6= f(Y )), (13)

were established by Kovalevsky [23] and Tebbe and Dwyer [36] (see also [12]). Ho and Verdú [20] generalized

Fano’s inequality by relaxing its constraints from fixed number |supp(PX)| to fixed distribution PX . Very recently,

Sason and Verdú [33] generalized Fano’s inequality and the reverse of it to sharp bounds on the conditional Rényi

entropy Hα(X | Y ). In their study [33], interplay between Hα(X | Y ) and Pe(X | Y ) was investigated with broad

applications and comparisons to related works. On the other hand, we [29] derived sharp bounds on H(X | Y )

with a fixed Hα(X | Y ), and vice versa, by analyzing interplay between H(X | Y ) and Nr(X | Y ) (cf. (7)).

Unconditional versions of its results [29] were also examined in [30].

In this study, we further generalize interplay between Shannon’s information measure and Rényi’s information

measure of our results [29], [30] to interplay between two Rényi’s information measures with distinct orders α 6= β.

We start to analyze extremal probability distributions vn(·) and w(·) defined in Section II, where the extremal

distributions means that our sharp bounds on Hα(X) can be achieved by them (cf. Section III). To utilize the nature

of the expectation Nr(X | Y ) of `r-norm, our analyses of this study are concentrated on the `r-norm of extremal

distributions. Main results of this study are shown in Section IV, which show sharp bounds on Hβ(X | Y ) with

a fixed another one Hα(X | Y ), α 6= β, in several situation. In this study, we represent our bounds via specific

distributions to ensure sharpnesses of the bounds. The main results of this study are organized as follows:

• Section IV-A shows sharp bounds on Hβ(X | Y ) with fixed Hα(X | Y ) and the cardinality |supp(PX)| <∞

for distinct orders α 6= β as follows:

– Theorem 5 gives bounds on Hα(X | Y ) with a fixed H∞(X | Y ) for α ∈ (0,∞), and vice versa.

– Theorem 6 gives bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) for α, β ∈ [1/2,∞] and |supp(PX)| ≤ 2.

– Theorem 7 gives bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) for α, β ∈ [1/2,∞] and |supp(PX)| ≥ 3.

• Section IV-B shows sharp bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) for two orders α ∈ (0, 1) ∪ (1,∞]

and β ∈ (0,∞], as shown in Theorem 8. Note that unlike Theorems 5–7, Theorem 8 has no constraint of the

support supp(PX).

Finally, Section V shows some applications of sharp bounds on the conditional Rényi entropy to other related

information measures, whose are strictly monotone functions of the conditional Rényi entropy.

II. EXTREMAL DISTRIBUTIONS vn(·) AND w(·) AND THEIR PROPERTIES

In this subsection, we introduce the probability distributions vn(·) and w(·), which play significant roles in this

study. In addition, the `r-norms and Rényi entropy of them are investigated. Until Section III, we defer to show

extremality of these distributions vn(·) and w(·) in terms of the `r-norm and Rényi entropy.
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For each n ∈ N and p ∈ [1/n, 1], we define the n-dimensional probability vector5

vn(p) := (v0, v1, v2, . . . , vn−1), (14)

where N denotes the set of positive integers and vi is chosen so that

vi :=


p if i = 0,

1− p
n− 1

otherwise
(15)

for each i ∈ {0, 1, 2, . . . , n− 1}. In addition, for p ∈ (0, 1], we define the infinite-dimensional probability vector

w(p) := (w0, w1, w2, . . . ), (16)

where wi is chosen so that

wi :=


p if 0 ≤ i < b1/pc,

1− b1/pc p if i = b1/pc,

0 if i > b1/pc

(17)

for each i ∈ {0, 1, 2 . . . }, and bxc := max{z ∈ Z | z ≤ x} denotes the floor function of x ∈ R. Note that

|supp(vn(p))| = n for every p ∈ [1/n, 1), and |supp(w(p))| = m+ 1 for every m ∈ N and p ∈ [1/(m+ 1), 1/m),

i.e., these are discrete probability distributions with finite supports. Since v1(1) has only one probability mass 1

whenever n = 1, we omit its trivial case in our analyses; and assume that n ∈ N≥2 in this study, where N≥k denotes

the set of integers n satisfying n ≥ k. By the definition (2) of `r-norm, for each r ∈ (0,∞), the `r-norms of these

distributions vn(·) and w(·) can be calculated as follows:

‖vn(p)‖r =
(
pr + (n− 1)1−r (1− p)r

)1/r
, (18)

‖w(p)‖r =

(⌊
1

p

⌋
pr +

(
1−

⌊
1

p

⌋
p

)r)1/r

, (19)

respectively. In particular, the `∞-norms are ‖vn(p)‖∞ = p for p ∈ [1/n, 1] and ‖w(p)‖∞ = p for p ∈ (0, 1].

Substituting (18) and (19) into (1), the Rényi entropies of the distributions vn(·) and w(·), respectively, can also be

calculated as follows:

Hα(vn(p)) =
1

1− α
ln
(
pα + (n− 1)1−α (1− p)α

)
, (20)

Hα(w(p)) =
1

1− α
ln

(⌊
1

p

⌋
pα +

(
1−

⌊
1

p

⌋
p

)α)
, (21)

respectively. We first show the monotonicities of `r-norm of the distributions vn(·) and w(·) in the following lemma.

Lemma 1. Let r ∈ (0, 1)∪(1,∞] and n ∈ N≥2 be fixed numbers. If r ∈ (0, 1), then both `r-norms pv 7→ ‖vn(pv)‖r
and pw 7→ ‖w(pw)‖r are strictly decreasing functions of pv ∈ [1/n, 1] and pw ∈ (0, 1], respectively. Conversely,

5Note in [30, Eq. (3)] that the probability vector vn(·) is defined by another form; however, a simple change of variables immediately shows

that these are essentially equavalent.
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if r ∈ (1,∞], then both `r-norms pv 7→ ‖vn(pv)‖r and pw 7→ ‖w(pw)‖r are strictly increasing functions of

pv ∈ [1/n, 1] and pw ∈ (0, 1], respectively.

Proof of Lemma 1: Since ‖vn(pv)‖∞ = pv and ‖w(pw)‖∞ = pw for pv ∈ [1/n, 1] and pw ∈ (0, 1], respectively,

Lemma 1 is trivial if r =∞. Hence, it suffices to consider the `r-norm for r ∈ (0, 1) ∪ (1,∞).

We first verify the monotonicity of the function p 7→ ‖vn(p)‖r. A direct calculation shows

∂‖vn(p)‖r
∂p

(18)
=

∂

∂p

(
pr + (n− 1)1−r (1− p)r

)1/r
(22)

=
1

r

(
pr + (n− 1)1−r (1− p)r

)(1/r)−1( ∂

∂p

(
pr + (n− 1)1−r (1− p)r

))
(23)

=
1

r

(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
r pr−1 − r (n− 1)1−r (1− p)r−1

)
(24)

=
(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
pr−1 − (n− 1)1−r (1− p)r−1

)
. (25)

If we define the sign function as

sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0

(26)

for x ∈ R, then it follows that

sgn

(
∂‖vn(p)‖r

∂p

)
(25)
= sgn

((
pr + (n− 1)1−r (1− p)r

)(1/r)−1)
︸ ︷︷ ︸

=1

sgn
(
pr−1 − (n− 1)1−r (1− p)r−1

)
(27)

= sgn
(
pr−1 − (n− 1)1−r (1− p)r−1

)
(28)

=


−1 if r < 1,

0 if r = 1,

1 if r > 1

(29)

for every n ∈ N≥2, p ∈ (1/n, 1), and r ∈ (0,∞). This implies that for any fixed n ∈ N≥2,

• if r ∈ (0, 1), then p 7→ ‖vn(p)‖r is strictly decreasing for p ∈ [1/n, 1],

• if r ∈ (1,∞), then p 7→ ‖vn(p)‖r is strictly increasing for p ∈ [1/n, 1];

and therefore, the assertion of Lemma 1 holds for p 7→ ‖vn(p)‖r.

We next verify the monotonicity of the function p 7→ ‖w(p)‖r. Since b1/pc = m for each p ∈ (1/(m+ 1), 1/m]

and m ∈ N, we readily see that

∂‖w(p)‖r
∂p

(19)
=

∂

∂p

(
mpr +

(
1−mp

)r)1/r
(30)

=
1

r

(
mpr +

(
1−mp

)r)(1/r)−1( ∂

∂p

(
mpr +

(
1−mp

)r))
(31)

=
1

r

(
mpr +

(
1−mp

)r)(1/r)−1(
rmpr−1 − rm

(
1−mp

)r−1)
(32)
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= m
(
mpr +

(
1−mp

)r)(1/r)−1(
pr−1 −

(
1−mp

)r−1)
(33)

for every m ∈ N, p ∈ (1/(m+ 1), 1/m), and r ∈ (0,∞). Hence, we obtain

sgn

(
∂‖w(p)‖r

∂p

)
(33)
= sgn

(
m
(
mpr +

(
1−mp

)r)(1/r)−1)
︸ ︷︷ ︸

=1

sgn
(
pr−1 −

(
1−mp

)r−1)
(34)

=
(
pr−1 −

(
1−mp

)r−1)
(35)

=


−1 if r < 1,

0 if r = 1,

1 if r > 1

(36)

for every m ∈ N, p ∈ (1/(m + 1), 1/m), and r ∈ (0,∞). This implies that for each fixed m ∈ N and r ∈

(0, 1) ∪ (1,∞),

• if r ∈ (0, 1), then p 7→ ‖w(p)‖r is strictly decreasing for p ∈ (1/(m+ 1), 1/m],

• if r ∈ (1,∞), then p 7→ ‖w(p)‖r is strictly increasing for p ∈ (1/(m+ 1), 1/m].

Finally, it follows that

lim
p→(1/m)+

‖w(p)‖r = lim
p→(1/m)+

(⌊
1/p
⌋
pr +

(
1−

⌊
1/p
⌋
p
)r)1/r

(37)

=
(

(m− 1)
(
1/m

)r
+
(

1− (m− 1)
(
1/m

))r)1/r
(38)

=
(

(m− 1)m−r +m−r
)1/r

(39)

= m(1−r)/r (40)

= ‖w(1/m)‖r (41)

for each m ∈ N≥2 and r ∈ (0, 1), which implies that p 7→ ‖w(p)‖r is continuous on p ∈ (0, 1]; therefore, the

monotonicity of p 7→ ‖w(p)‖r come from (36) can be improved as follows:

• if r ∈ (0, 1), then p 7→ ‖w(p)‖r is strictly decreasing for p ∈ (0, 1],

• if r ∈ (1,∞), then p 7→ ‖w(p)‖r is strictly increasing for p ∈ (0, 1].

This completes the proof of Lemma 1.

Lemma 1 implies the existences of inverse functions. Let6

θ(r) := lim
t→r

1− t
t

, (42)

6Eq. (42) is defined to fulfill θ(∞) = −1.

February 3, 2017 DRAFT
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and let In(r) and J (r) be real intervals defined by

In(r) :=


[
1, nθ(r)

]
if 0 < r < 1,[

nθ(r), 1
]

if 1 < r ≤ ∞,
(43)

J (r) :=

[1,∞) if 0 < r < 1,

(0, 1] if 1 < r ≤ ∞
(44)

for each n ∈ N≥2 and r ∈ (0, 1) ∪ (1,∞], respectively. For each r ∈ (0, 1) ∪ (1,∞] and n ∈ N≥2, we denote by

N−1r (vn : ·) : In(r)→ [1/n, 1], (45)

N−1r (w : ·) : J (r)→ (0, 1] (46)

inverse functions of pv 7→ ‖vn(pv)‖r and pw 7→ ‖w(pw)‖r, respectively. As simple instances of them, if r =∞, then

N−1∞ (vn : tv) = tv and N−1∞ (w : tw) = tw for tv ∈ [1/n, 1] and tw ∈ (0, 1], respectively, because ‖vn(pv)‖∞ = pv

and ‖w(pw)‖∞ = pw for pv ∈ [1/n, 1] and pw ∈ (0, 1], respectively.

Since logarithm functions are strictly monotone, it also follows from (1) and Lemma 1 that both Rényi entropies

pv 7→ Hα(vn(pv)) and pw 7→ Hα(w(pw)) also have inverse functions for every7 α ∈ (0,∞], as with (45) and (46).

For each n ∈ N≥2 and α ∈ (0,∞], we denote by

H−1α (vn : ·) : [0, lnn]→ [1/n, 1], (47)

H−1α (w : ·) : [0,∞)→ (0, 1] (48)

inverse functions of pv 7→ Hα(vn(pv)) and pw 7→ Hα(w(pw)), respectively. By convention of the Shannon entropy,

we write H−1(vn : ·) and H−1(w : ·) as the inverse functions H−11 (vn : ·) and H−11 (w : ·) with α = 1, respectively.

In general, these inverse functions are hard-to-express in closed-forms, as with the inverse function of the binary

entropy function h2 : t 7→ −t ln t − (1 − t) ln(1 − t). As special cases of them, we give the following specific

closed-forms.

Fact 1. If α = 1/2, α = 2, or α =∞, then the inverse functions (47) and (48) can be expressed in the following

closed-forms:

H−11/2(vn : µ) =
n (n− 1)− (n− 2) eµ + 2

√
eµ (n− 1) (n− eµ)

n2
for n ∈ N and µ ∈ [0, lnn], (49)

H−11/2(w : µ) =
(m+ 1) + (m− 1) eµ + 2

√
eµm (1 +m− eµ)

m (1 +m)2
with m = beµc for µ ∈ [0,∞), (50)

H−12 (vn : µ) =
1 +

√
e−µ (n− 1) (n− eµ)

n
for n ∈ N and µ ∈ [0, lnn], (51)

H−12 (w : µ) =
m+

√
e−µm (1 +m− eµ)

m (1 +m)
with m = beµc for µ ∈ [0,∞), (52)

H−1∞ (vn : µ) = e−µ for n ∈ N and µ ∈ [0, lnn], (53)

7If α = 1, i.e., if these are Shannon entropies, these inverse functions also exist due to [30, Lemma 1].
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µ = Hα(vn(p))

p
=
H
−
1

α
(v
n

:
µ

)

[nats]

α =∞

α = 2

α = 1 (Shannon)

α = 1/2

(a) Plot of H−1
α (vn : µ) with n = 4 for µ ∈ [0, ln 4].

µ = Hα(w(p))

p
=
H
−
1

α
(w

:
µ

)

[nats]

α =∞

α = 2

α = 1 (Shannon)

α = 1/2

(µ, p) = (ln 2, 1/2)

(ln 3, 1/3)

(b) Plot of H−1
α (w : µ) for µ ∈ [0, ln 4].

Fig. 1. Plots of the inverse functions (47) and (48) with α = 1/2, α = 1, α = 2, and α =∞. The horizontal axes denote the Rényi entropy of

distributions vn(p) and w(p), i.e., the arguments of the inverse functions (47) and (48). The vertical axes denote the parameter p of distributions

vn(p) and w(p), i.e., the values of the inverse functions (47) and (48). Fact 1 is used to plot them for the cases: α = 1/2, α = 2, and α =∞.

H−1∞ (w : µ) = e−µ for µ ∈ [0,∞), (54)

where e denotes the base of natural logarithm.

Fact 1 can be verified by the quadratic formula in the case of8 α = 1/2 and α = 2. In Fig. 1, we illustrate

instances of the inverse functions of Fact 1, along with the inverse functions H−1(vn : ·) and H−1(w : ·) of the

Shannon entropies. As with Fact 1, from the relation between the Rényi entropy and `r-norm (cf. (1)), the inverse

functions N−1r (vn : ·) of (45) and N−1r (w : ·) of (46) can also be expressed in closed-forms if r = 1/2, r = 2, or

r =∞. By Fact 1, sharp bounds established in this paper can be expressed in closed-forms in some situations.

Using the inverse functions H−1(vn : ·) and H−1(w : ·) of the Shannon entropies, we introduce relations of

the convexity/concavity of the `r-norm with respect to the Shannon entropy of distributions vn(·) and w(·) in

Lemmas 2 and 3, respectively.

Lemma 2 ([29, Lemma 2]). If n = 2, for each r ∈ (0, 1) ∪ (1,∞), the `r-norm µ 7→ ‖v2(H−1(v2 : µ))‖r is

strictly concave in µ ∈ [0, ln 2]. In addition9, for each n ∈ N≥2, the `∞-norm µ 7→ ‖vn(H−1(vn : µ))‖∞ is strictly

concave in µ ∈ [0, lnn]. Moreover, for each n ∈ N≥3 and r ∈ [1/2, 1) ∪ (1,∞), there exists an inflection point

χn(r) ∈ (0, lnn) such that satisfies the following:

• the `r-norm µ 7→ ‖vn(H−1(vn : µ))‖r is strictly concave in µ ∈ [0, χn(r)],

• the `r-norm µ 7→ ‖vn(H−1(vn : µ))‖r is strictly convex in µ ∈ [χn(r), lnn].

Lemma 3 ([29, Lemma 3]10). For each m ∈ N and r ∈ (0, 1) ∪ (1,∞], the `r-norm µ 7→ ‖w(H−1(w : µ))‖r is

8If α =∞, then Fact 1 is almost trivial from the definition (6).
9This concavity is shown in not [29, Lemma 2] but the below paragraph of [29, Lemma 2].
10In [29, Lemma 3], the case r =∞ is not considered; however, it can also be proved by the fact that ‖w(p)‖∞ = p for p ∈ (0, 1], as with

Lemma 2.
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strictly concave in µ ∈ [lnm, ln(m+ 1)].

In [29], Lemmas 2 and 3 were used to derive sharp bounds on the conditional Shannon entropy H(X | Y ) with a

fixed conditional Rényi entropy Hα(X | Y ), and vice versa, from perspectives of the expectation of (8) and (11).

In this study, we establish sharp bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) for distinct orders α 6= β in a

similar manner to [29], i.e., the property of expectation (8) are employed. To this end, we further examine the

convexity/concavity of `r-norms with respect to `s-norm for distributions vn(·) and w(·), as with Lemmas 2 and 3,

respectively. To derive such convexity/concavity lemmas, we now give the following Lemma 4.

Lemma 4. We define the function

g(n, z; r, s) :=
(
zr + (n− 1)

)
lnr z −

(
zs + (n− 1)

)
lns z (55)

for each n ∈ N≥2, z ∈ (0,∞), and r, s ∈ (0,∞), where the q-logarithm function11 [40] is defined by

lnq x :=


lnx if q = 1,

x1−q − 1

1− q
if q 6= 1

(56)

for x > 0 and q ∈ R. Then, the following three assertions hold:

• For any n ∈ N≥2, any z ∈ (0, 1), and any 0 < r < s <∞, it holds that

g(n, z; r, s) = −g(n, z; s, r) > 0, (57)

• if n = 2, then for any z ∈ (1,∞) and 1/2 ≤ r < s <∞, it holds that

g(2, z; r, s) = −g(2, z; s, r) < 0, (58)

• for any n ≥ N≥3 and any 1/2 ≤ r < s <∞, there exists ζ(n; r, s) ∈ (1,∞) such that

sgn
(
g(n, z; r, s)

)
= − sgn

(
g(n, z; s, r)

)
=


−1 if ζ(n; r, s) < z <∞,

0 if z = 1 or z = ζ(n; r, s),

1 if 1 < z < ζ(n; r, s)

(59)

for every z ∈ (1,∞).

Lemma 4 is proved in Appendix A. Defining12

γ(r, s) := lim
(a,b)→(r,s)

1− a
1− b

, (60)

we present the convexity/concavity of `s-norms of vn(·) and w(·) with respect to `r-norms of them, r 6= s, in

Lemmas 5 and 6, respectively. We emphasize that Lemma 4 is a key lemma for deriving Lemmas 5 and 6.

11Note that the limiting value limq→1(x1−q − 1)/(1− q) = lnx can be verified by L’Hôpital’s rule.
12In (60), suppose that γ(∞,∞) = 1.
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Lemma 5. For each n ∈ N≥2 and r, s ∈ (0, 1) ∪ (1,∞), it holds that

• the `∞-norm t 7→ ‖vn(N−1r (vn : t))‖∞ is strictly concave in t ∈ In(r),

• if s ∈ (0, 1), then t 7→ ‖vn(N−1∞ (vn : t))‖s is strictly concave in t ∈ [1/n, 1],

• if s ∈ (1,∞), then t 7→ ‖vn(N−1∞ (vn : t))‖s is strictly convex in t ∈ [1/n, 1].

Moreover, if n = 2, then it holds that for any distinct r, s ∈ [1/2, 1) ∪ (1,∞),

• if γ(r, s) > 1, then t 7→ ‖vn(N−1r (vn : t))‖s is strictly convex in t ∈ In(r),

• if γ(r, s) < 1, then t 7→ ‖vn(N−1r (vn : t))‖s is strictly concave in t ∈ In(r).

Furthermore, for each n ∈ N≥3 and distinct r, s ∈ [1/2, 1) ∪ (1,∞), there exists an inflection point τ(n; r, s) ∈

In(r) \ {1, nθ(r)} such that

• if γ(r, s) > 1, then

– the `s-norm t 7→ ‖vn(N−1r (vn : t))‖s is strictly convex in t ∈ I(1)n (r, s),

– the `s-norm t 7→ ‖vn(N−1r (vn : t))‖s is strictly concave in t ∈ I(2)n (r, s),

• if γ(r, s) < 1, then

– the `s-norm t 7→ ‖vn(N−1r (vn : t))‖s is strictly convex in t ∈ I(2)n (r, s),

– the `s-norm t 7→ ‖vn(N−1r (vn : t))‖s is strictly concave in t ∈ I(1)n (r, s),

where real intervals I(1)n (r, s) and I(2)n (r, s) are defined by

I(1)n (r, s) :=


[
1, τ(n; r, s)

]
if r ∈ (0, 1),[

τ(n; r, s), 1
]

if r ∈ (1,∞),

(61)

I(2)n (r, s) :=


[
τ(n; r, s), nθ(r)

]
if r ∈ (0, 1),[

nθ(r), τ(n; r, s)
]

if r ∈ (1,∞),

(62)

respectively.

Note that the convexity and the concavity of Lemma 5 are switched each other according to either γ(r, s) > 1 or

γ(r, s) < 1. We illustrate two regions of pairs (r, s) which fulfill γ(r, s) > 1 and γ(r, s) < 1, respectively, in Fig. 2.

Proof of Lemma 5: In a similar way to the proofs of [15, Lemma 1] and [29, Lemma 2], we prove this lemma

by verifying signs of derivatives. A simple calculation yields

∂2‖vn(p)‖r
∂p2

(25)
=

∂

∂p

((
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
pr−1 − (n− 1)1−r (1− p)r−1

))
(63)

=

(
∂

∂p

(
pr + (n− 1)1−r (1− p)r

)(1/r)−1)(
pr−1 − (n− 1)1−r (1− p)r−1

)
+
(
pr + (n− 1)1−r (1− p)r

)(1/r)−1( ∂

∂p

(
pr−1 − (n− 1)1−r (1− p)r−1

))
(64)

=

(
1− r
r

(
pr + (n− 1)1−r (1− p)r

)(1/r)−2( ∂

∂p

(
pr + (n− 1)1−r (1− p)r

)))(
pr−1 − (n− 1)1−r (1− p)r−1

)
+
(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
(r − 1) pr−2 + (r − 1) (n− 1)1−r (1− p)r−2

)
(65)
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r

s
(r, s) = (1, 1)

Fig. 2. Plot of two regions of pairs (r, s). The dark gray region fulfills γ(r, s) > 1; and the light gray region fulfills γ(r, s) < 1, where γ(r, s)

is defined in (60).

=
1− r
r

(
pr + (n− 1)1−r (1− p)r

)(1/r)−2(
r pr−1 − r (n− 1)1−r (1− p)r−1

)(
pr−1 − (n− 1)1−r (1− p)r−1

)
+ (r − 1)

(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
pr−2 + (n− 1)1−r (1− p)r−2

)
(66)

= (1− r)
(
pr + (n− 1)1−r (1− p)r

)(1/r)−2(
pr−1 − (n− 1)1−r (1− p)r−1

)2
+ (r − 1)

(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
pr−2 + (n− 1)1−r (1− p)r−2

)
(67)

= (1− r)
(
pr + (n− 1)1−r (1− p)r

)(1/r)−2
×
[(
pr−1 − (n− 1)1−r (1− p)r−1

)2
−
(
pr + (n− 1)1−r (1− p)r

)(
pr−2 + (n− 1)1−r (1− p)r−2

)]
(68)

(a)
= (1− r) Ψ1(n, p, r)

(
pr + (n− 1)1−r (1− p)r

)(1/r)−2
(69)

(b)
= (r − 1) (n− 1)1−r

(
p (1− p)

)r−2(
pr + (n− 1)1−r (1− p)r

)(1/r)−2
, (70)

where (a) follows by the definition

Ψ1(n, p, r) :=
(
pr−1 − (n− 1)1−r (1− p)r−1

)2
−
(
pr + (n− 1)1−r (1− p)r

)(
pr−2 + (n− 1)1−r (1− p)r−2

)
,

(71)

and (b) follows from the fact that

Ψ1(n, p, r) =
(
p2(r−1) − 2 (n− 1)1−r pr−1 (1− p)r−1 + (n− 1)2(1−r) (1− p)2(r−1)

)
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−
(
p2(r−1) + (n− 1)1−r pr (1− p)r−2 + (n− 1)1−r pr−2 (1− p)r + (n− 1)2(1−r) (1− p)2(r−1)

)
(72)

= −2 (n− 1)1−r pr−1 (1− p)r−1 − (n− 1)1−r pr (1− p)r−2 − (n− 1)1−r pr−2 (1− p)r (73)

= −(n− 1)1−r
(
p (1− p)

)r−2(
2 p (1− p) + p2 + (1− p)2

)
(74)

= −(n− 1)1−r
(
p (1− p)

)r−2(
p+ (1− p)

)2
(75)

= −(n− 1)1−r
(
p (1− p)

)r−2
. (76)

Then, we obtain

sgn

(
∂2‖vn(p)‖r

∂p2

)
(70)
= sgn(r − 1) sgn

(
(n− 1)1−r

)
︸ ︷︷ ︸

=1

sgn
((
p (1− p)

)r−2)︸ ︷︷ ︸
=1

sgn

((
pr + (n− 1)1−r (1− p)r

)(1/r)−2)
︸ ︷︷ ︸

=1

(77)

= sgn(r − 1) (78)

=


−1 if r < 1,

0 if r = 1,

1 if r > 1

(79)

for every n ∈ N≥2, p ∈ (1/n, 1), and r ∈ (0,∞). By the inverse function theorem, we have

∂N−1r (vn : t)

∂t
=

(
∂‖vn(p)‖r

∂p

)−1
, (80)

∂2N−1r (vn : t)

∂t2
= −∂

2‖vn(p)‖r
∂p2

(
∂‖vn(p)‖r

∂p

)−3
(81)

for every n ∈ N≥2, r ∈ (0, 1)∪ (1,∞), and t ∈ In(r) \ {1, nθ(r)}, where In(·) is defined in (43), and the variables

t and p are chosen to satisfy ‖vn(p)‖r = t (cf. the definition (45) of N−1r (vn : ·)), i.e.,

1/n < p < 1 ⇐⇒ min{1, nθ(r)} < t < max{1, nθ(r)}. (82)

In particular, since ‖vn(p)‖∞ = p for p ∈ [1/n, 1], it follows from (29) and (79) that

sgn

(
∂2‖vn(N−1r (vn : t))‖∞

∂t2

)
= sgn

(
∂2N−1r (vn : t)

∂t2

)
(83)

(81)
= − sgn

(
∂2‖vn(p)‖r

∂p2

)
sgn

((
∂‖vn(p)‖r

∂p

)−3)
(84)

= − sgn

(
∂2‖vn(p)‖r

∂p2

)
sgn

(
∂‖vn(p)‖r

∂p

)
(85)

= −1 (86)

for every n ∈ N≥2, r ∈ (0, 1)∪(1,∞), and t ∈ In(r)\{1, nθ(r)}. Moreover, since N−1∞ (vn : t) = t for t ∈ [1/n, 1],
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we also get

sgn

(
∂2‖vn(N−1∞ (vn : t))‖s

∂t2

)
= sgn

(
∂2‖vn(p)‖s

∂p2

)
(87)

(79)
=


−1 if s < 1,

0 if s = 1,

1 if s > 1

(88)

for every n ∈ N≥2, t ∈ [1/n, 1], and s ∈ (0,∞). Therefore, it follows from (86) and (88) that

• for each n ∈ N≥2 and r ∈ (0, 1) ∪ (1,∞), the `∞-norm t 7→ ‖vn(N−1r (vn : t))‖∞ is strictly concave in

t ∈ In(r),

• for each n ∈ N≥2 and s ∈ (0, 1), the `s-norm t 7→ ‖vn(N−1∞ (vn : t))‖s is strictly concave in t ∈ [1/n, 1],

• for each n ∈ N≥2 and s ∈ (1,∞), the `s-norm t 7→ ‖vn(N−1∞ (vn : t))‖s is strictly convex in t ∈ [1/n, 1].

Henceforth, we consider the convexity/concavity of t 7→ ‖vn(N−1r (vn : t))‖s with respect to t ∈ In(r) for each

distinct r, s ∈ (0, 1) ∪ (1,∞). By the chain rule of derivatives, we have

∂2‖vn(N−1r (vn : t))‖s
∂t2

=
∂2‖vn(p)‖s

∂p2

(
∂N−1r (vn : t)

∂t

)2

+
∂‖vn(p)‖s

∂p

∂2N−1r (vn : t)

∂t2
(89)

(80)
=

∂2‖vn(p)‖s
∂p2

(
∂‖vn(p)‖r

∂p

)−2
+
∂‖vn(p)‖s

∂p

∂2N−1r (vn : t)

∂t2
(90)

(81)
=

∂2‖vn(p)‖s
∂p2

(
∂‖vn(p)‖r

∂p

)−2
− ∂‖vn(p)‖s

∂p

∂2‖vn(p)‖r
∂p2

(
∂‖vn(p)‖r

∂p

)−3
(91)

=
∂2‖vn(p)‖r

∂p2
∂2‖vn(p)‖s

∂p2

(
∂‖vn(p)‖r

∂p

)−3
×

[
∂‖vn(p)‖r

∂p

(
∂2‖vn(p)‖r

∂p2

)−1
− ∂‖vn(p)‖s

∂p

(
∂2‖vn(p)‖s

∂p2

)−1]
(92)

(a)
=
∂2‖vn(p)‖r

∂p2
∂2‖vn(p)‖s

∂p2

(
∂‖vn(p)‖r

∂p

)−3
× p (1− p)2

n− 1

[(
zr + (n− 1)

)
lnr z −

(
zs + (n− 1)

)
lns z

]
(93)

(55)
= g(n, z; r, s)

p (1− p)2

n− 1

∂2‖vn(p)‖r
∂p2

∂2‖vn(p)‖s
∂p2

(
∂‖vn(p)‖r

∂p

)−3
, (94)

where (a) follows from

• the change of variables as

z = z(n, p) := (n− 1)
p

1− p
, (95)
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• and the fact that

∂‖vn(p)‖r
∂p

(
∂2‖vn(p)‖r

∂p2

)−1
(25)
=
(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
pr−1 − (n− 1)1−r (1− p)r−1

)
×
(
∂2‖vn(p)‖r

∂p2

)−1
(96)

(70)
=
(
pr + (n− 1)1−r (1− p)r

)(1/r)−1(
pr−1 − (n− 1)1−r (1− p)r−1

)
× (r − 1)−1 (n− 1)r−1

(
p (1− p)

)2−r(
pr + (n− 1)1−r (1− p)r

)2−(1/r)
(97)

= (r − 1)−1 (n− 1)r−1
(
p (1− p)

)2−r
×
(
pr + (n− 1)1−r (1− p)r

)(
pr−1 − (n− 1)1−r (1− p)r−1

)
(98)

=
p (1− p)
r − 1

(
pr + (n− 1)1−r (1− p)r

)(
(n− 1)r−1 (1− p)1−r − p1−r

)
(99)

=
p (1− p)
r − 1

(
(n− 1)r−1 pr (1− p)1−r − p+ (1− p)− (n− 1)1−r p1−r (1− p)r

)
(100)

=
p (1− p)
r − 1

(
(1− 2p) + p

(p (n− 1)

1− p

)r−1
− (1− p)

(p (n− 1)

1− p

)1−r)
(101)

(95)
=

p (1− p)
r − 1

(
(1− 2p) + p zr−1 − (1− p) z1−r

)
(102)

=
p (1− p)
r − 1

(
(1− z1−r) + p zr−1 (1− 2 z1−r + z2(1−r))

)
(103)

=
p (1− p)
r − 1

(
(1− z1−r) + p zr−1 (1− z1−r)2

)
(104)

=
p (1− p)
r − 1

(1− z1−r)
(

1 + p zr−1 (1− z1−r)
)

(105)

= p (1− p)
(

1 + p (zr−1 − 1)
) z1−r − 1

1− r
(106)

(56)
= p (1− p)

(
1 + p (zr−1 − 1)

)
(lnr z) (107)

(95)
= p (1− p)

(
1 +

z

(n− 1) + z
(zr−1 − 1)

)
(lnr z) (108)

=
p (1− p)

(n− 1) + z

(
(n− 1) + z + zr − z

)
(lnr z) (109)

=
p (1− p)

(n− 1) + z

(
(n− 1) + zr

)
(lnr z) (110)

(95)
=

p (1− p)2

(n− 1) (1− p) + p (n− 1)

(
(n− 1) + zr

)
(lnr z) (111)

=
p (1− p)2

n− 1

(
(n− 1) + zr

)
(lnr z). (112)
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Since p ∈ (1/n, 1) for t ∈ In(r) \ {1, nθ(r)} (cf. (82)), it suffices to consider the range of variable z of (95) on

z ∈ (1,∞). A further calculation derives

sgn

(
∂2‖vn(N−1r (vn : t))‖s

∂t2

)
(94)
= sgn

(
g(n, z; r, s)

)
sgn

(p (1− p)2

n− 1

)
︸ ︷︷ ︸

=1

sgn

(
∂2‖vn(p)‖r

∂p2

)
sgn

(
∂2‖vn(p)‖s

∂p2

)
sgn

((
∂‖vn(p)‖r

∂p

)−3)

(113)

= sgn
(
g(n, z; r, s)

)
sgn

(
∂2‖vn(p)‖r

∂p2

)
sgn

(
∂2‖vn(p)‖s

∂p2

)
sgn

(
∂‖vn(p)‖r

∂p

)
(114)

(86)
= sgn

(
g(n, z; r, s)

)
sgn

(
∂2‖vn(p)‖s

∂p2

)
(115)

(79)
=

− sgn
(
g(n, z; r, s)

)
if s < 1,

sgn
(
g(n, z; r, s)

)
if s > 1

(116)

for every n ∈ N≥2, distinct r, s ∈ (0, 1) ∪ (1,∞), and t ∈ In(r) \ {1, nθ(r)}. That is, the convexity/concavity of

t 7→ ‖vn(N−1r (vn : t))‖s with respect to t ∈ In(r) depend on the sign of g(n, z; r, s). If n = 2, we have from (58)

of Lemma 4 and (116) that

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=

−1 if r < 1 < s or s < r < 1 or s < 1 < r or 1 < r < s,

1 if r < s < 1 or 1 < s < r

(117)

=

−1 if γ(r, s) < 1,

1 if γ(r, s) > 1

(118)

for every distinct r, s ∈ [1/2, 1) ∪ (1,∞) and t ∈ I2(r) \ {1, nθ(r)}, where γ(r, s) is defined in (60). This implies

the assertion of Lemma 5 for n = 2.

Furthermore, we verify the assertion of Lemma 5 for n ∈ N≥3. It is clear from (95) that p 7→ z(n, p) is strictly

increasing for p ∈ [1/n, 1). Moreover, it follows from (29) that

• if r ∈ (0, 1), then p 7→ ‖vn(p)‖r is strictly decreasing for p ∈ [1/n, 1],

• if r ∈ (1,∞), then p 7→ ‖vn(p)‖r is strictly increasing for p ∈ [1/n, 1].

Hence, we observe from the relation N−1r (vn : t) = p that

• it holds that limt→1 z(n,N
−1
r (vn : t)) = limp→1 z(n, p) =∞,

• it holds that z(n,N−1r (vn : nθ(r))) = z(n, 1/n) = 1,

• if r ∈ (0, 1), then t 7→ z(n,N−1r (vn : t)) is strictly decreasing for t ∈ In(r) \ {1},

• if r ∈ (1,∞), then t 7→ z(n,N−1r (vn : t)) is strictly increasing for t ∈ In(r) \ {1}.

Therefore, it follows from (59) of Lemma 4 and (116) that for any n ∈ N≥3 and distinct r, s ∈ [1/2, 1) ∪ (1,∞),

there exists τ(n; r, s) ∈ In(r) \ {1, nθ(r)} such that satisfies the following:
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• if r < s < 1, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if τ(n; r, s) < t < nθ(r),

0 if t = τ(n; r, s),

1 if 1 < t < τ(n; r, s)

(119)

for every t ∈ In(r) \ {1, nθ(r)},

• if r < 1 < s, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if 1 < t < τ(n; r, s),

0 if t = τ(n; r, s),

1 if τ(n; r, s) < t < nθ(r)

(120)

for every t ∈ In(r) \ {1, nθ(r)},

• if 1 < r < s, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if τ(n; r, s) < t < 1,

0 if t = τ(n; r, s),

1 if nθ(r) < t < τ(n; r, s)

(121)

for every t ∈ In(r) \ {1, nθ(r)},

• if s < r < 1, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if 1 < t < τ(n; r, s),

0 if t = τ(n; r, s),

1 if τ(n; r, s) < t < nθ(r)

(122)

for every t ∈ In(r) \ {1, nθ(r)},

• if s < 1 < r, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if τ(n; r, s) < t < 1,

0 if t = τ(n; r, s),

1 if nθ(r) < t < τ(n; r, s)

(123)

for every t ∈ In(r) \ {1, nθ(r)},

• if 1 < s < r, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if nθ(r) < t < τ(n; r, s),

0 if t = τ(n; r, s),

1 if τ(n; r, s) < t < 1

(124)

for every t ∈ In(r) \ {1, nθ(r)},
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Combining (119)–(124), we obtain that for every n ∈ N≥3, distinct r, s ∈ [1/2, 1) ∪ (1,∞), and t ∈ In(r),

• if γ(r, s) > 1, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if t ∈ I(2)n (r, s),

0 if t = τ(n; r, s),

1 if t ∈ I(1)n (r, s),

(125)

• if γ(r, s) < 1, then

sgn

(
∂2‖v2(N−1r (v2 : t))‖s

∂t2

)
=


−1 if t ∈ I(1)n (r, s),

0 if t = τ(n; r, s),

1 if t ∈ I(2)n (r, s),

(126)

where I(1)n (r, s) and I(2)n (r, s) are defined in (61) and (62), respectively. This completes the proof of Lemma 5.

Lemma 6. Define the real interval Jm(r) by13

Jm(r) :=


[
mθ(r), (m+ 1)θ(r)

]
if 0 < r < 1,[

(m+ 1)θ(r),mθ(r)
]

if 1 < r ≤ ∞.
(127)

For each m ∈ N and distinct r, s ∈ (0, 1) ∪ (1,∞], the following convexity/concavity holds:

• if γ(r, s) > 1, then t 7→ ‖w(N−1r (w : t))‖s is strictly convex in t ∈ Jm(r),

• if γ(r, s) < 1, then t 7→ ‖w(N−1r (w : t))‖s is strictly concave in t ∈ Jm(r).

Proof of Lemma 6: In a similar manner to the proof of [29, Lemma 3], we also prove this lemma by verifying

signs of derivatives, as with the proof of Lemma 5. A simple calculation yields

∂2‖w(p)‖r
∂p2

(33)
=

∂

∂p

(
m
(
mpr +

(
1−mp

)r)(1/r)−1(
pr−1 −

(
1−mp

)r−1))
(128)

= m

(
∂

∂p

(
mpr +

(
1−mp

)r)(1/r)−1)(
pr−1 −

(
1−mp

)r−1)
+m

(
mpr +

(
1−mp

)r)(1/r)−1( ∂

∂p

(
pr−1 −

(
1−mp

)r−1))
(129)

= m

(
1− r
r

(
mpr +

(
1−mp

)r)(1/r)−2( ∂

∂p

(
mpr +

(
1−mp

)r)))(
pr−1 −

(
1−mp

)r−1)
+m

(
mpr +

(
1−mp

)r)(1/r)−1(
(r − 1) pr−2 +m (r − 1)

(
1−mp

)r−2)
(130)

= m
1− r
r

(
mpr +

(
1−mp

)r)(1/r)−2(
mr pr−1 −mr

(
1−mp

)r−1)(
pr−1 −

(
1−mp

)r−1)
+m (r − 1)

(
mpr +

(
1−mp

)r)(1/r)−1(
pr−2 +m

(
1−mp

)r−2)
(131)

= m2 (1− r)
(
mpr +

(
1−mp

)r)(1/r)−2(
pr−1 −

(
1−mp

)r−1)2
13Note in (127) that for every m ∈ N, it holds that mθ(r) < (m+ 1)θ(r) if r ∈ (0, 1), and (m+ 1)θ(r) < mθ(r) if r ∈ (1,∞].
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+m (r − 1)
(
mpr +

(
1−mp

)r)(1/r)−1(
pr−2 +m

(
1−mp

)r−2)
(132)

= m (1− r)
(
mpr +

(
1−mp

)r)(1/r)−2
×
[
m
(
pr−1 −

(
1−mp

)r−1)2 − (mpr +
(
1−mp

)r)(
pr−2 +m

(
1−mp

)r−2)]
(133)

(a)
= m (1− r) Ψ2(m, p, r)

(
mpr +

(
1−mp

)r)(1/r)−2
(134)

(b)
= (r − 1)mpr−2

(
1−mp

)r−2 (
mpr +

(
1−mp

)r)(1/r)−2
(135)

for every m ∈ N, r ∈ (0,∞), and p ∈ (1/(m+ 1), 1/m), where (a) follows by the definition

Ψ2(m, p, r) := m
(
pr−1 −

(
1−mp

)r−1)2 − (mpr +
(
1−mp

)r)(
pr−2 +m

(
1−mp

)r−2)
, (136)

and (b) follows from the fact that

Ψ2(m, p, r) =
[
mp2(r−1) − 2mpr−1

(
1−mp

)r−1
+m

(
1−mp

)2(r−1)]
−
[
mp2(r−1) +m2 pr

(
1−mp

)r−2
+ pr−2

(
1−mp

)r
+m

(
1−mp

)2(r−1)]
(137)

= −2mpr−1
(
1−mp

)r−1 −m2 pr
(
1−mp

)r−2 − pr−2 (1−mp
)r

(138)

= −pr−2
(
1−mp

)r−2 (
2mp

(
1−mp

)
+m2 p2 +

(
1−mp

)2)
(139)

= −pr−2
(
1−mp

)r−2 (
mp+

(
1−mp

))2
(140)

= −pr−2
(
1−mp

)r−2
. (141)

Then, we obtain

sgn

(
∂2‖w(p)‖r

∂p2

)
(135)
= sgn(r − 1) sgn

(
mpr−2

(
1−mp

)r−2)︸ ︷︷ ︸
=1

sgn

((
mpr +

(
1−mp

)r)(1/r)−2)
︸ ︷︷ ︸

=1

(142)

= sgn(r − 1) (143)

=


−1 if r < 1,

0 if r = 1,

1 if r > 1

(144)

for every m ∈ N, p ∈ (1/(m+ 1), 1/m), and r ∈ (0,∞). By the inverse function theorem, we have

∂N−1r (w : t)

∂t
=

(
∂‖w(p)‖r

∂p

)−1
, (145)

∂2N−1r (w : t)

∂t2
= −∂

2‖w(p)‖r
∂p2

(
∂‖w(p)‖r

∂p

)−3
(146)

for every m ∈ N, r ∈ (0, 1) ∪ (1,∞), and t ∈ Jm(r) \ {mθ(r), (m+ 1)θ(r)}, where Jm(·) is defined in (127), and

the variables t and p are chosen to satisfy ‖w(p)‖r = t (cf. the definition (46) of N−1r (w : ·)), i.e.,

1/(m+ 1) < p < 1/m ⇐⇒ min{mθ(r), (m+ 1)θ(r)} < t < max{mθ(r), (m+ 1)θ(r)}. (147)
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In particular, since ‖w(p)‖∞ = p for p ∈ (0, 1], it follows from (36) and (144) that

sgn

(
∂2‖w(N−1r (w : t))‖∞

∂t2

)
= sgn

(
∂2N−1r (w : t)

∂t2

)
(148)

(146)
= − sgn

(
∂2‖w(p)‖r

∂p2

)
sgn

((
∂‖w(p)‖r

∂p

)−3)
(149)

= − sgn

(
∂2‖w(p)‖r

∂p2

)
sgn

(
∂‖w(p)‖r

∂p

)
(150)

= −1 (151)

for every m ∈ N, r ∈ (0, 1) ∪ (1,∞), and t ∈ Jm(r) \ {mθ(r), (m+ 1)θ(r)}. Moreover, since N−1∞ (w : t) = t for

t ∈ (0, 1], we also get

sgn

(
∂2‖w(N−1∞ (w : t))‖s

∂t2

)
= sgn

(
∂2‖w(p)‖s

∂p2

)
(152)

(144)
=


−1 if s < 1,

0 if s = 1,

1 if s > 1

(153)

for every m ∈ N, t ∈ (1/(m+ 1), 1/m), and s ∈ (0, 1) ∪ (1,∞). Therefore, it follows from (151) and (153) that

• for each m ∈ N and r ∈ (0, 1)∪(1,∞), the `∞-norm t 7→ ‖w(N−1r (w : t))‖∞ is strictly concave in t ∈ Jm(r),

• for each m ∈ N and s ∈ (0, 1), the `s-norm t 7→ ‖w(N−1∞ (w : t))‖s is strictly concave in t ∈ [1/(m+1), 1/m],

• for each m ∈ N and s ∈ (1,∞), the `s-norm t 7→ ‖w(N−1∞ (w : t))‖s is strictly convex in t ∈ [1/(m+1), 1/m].

Henceforth, we consider the convexity/concavity of t 7→ ‖w(N−1r (w : t))‖s with respect to t ∈ Jm(r) for each

distinct r, s ∈ (0, 1) ∪ (1,∞). By the chain rule of derivatives, we have

∂2‖w(N−1r (w : t))‖s
∂t2

=
∂2‖w(p)‖s

∂p2

(
∂N−1r (w : t)

∂t

)2

+
∂‖w(p)‖s

∂p

∂2N−1r (w : t)

∂t2
(154)

(145)
=

∂2‖w(p)‖s
∂p2

(
∂‖w(p)‖r

∂p

)−2
+
∂‖w(p)‖s

∂p

∂2N−1r (w : t)

∂t2
(155)

(146)
=

∂2‖w(p)‖s
∂p2

(
∂‖w(p)‖r

∂p

)−2
− ∂‖w(p)‖s

∂p

∂2‖w(p)‖r
∂p2

(
∂‖w(p)‖r

∂p

)−3
(156)

=
∂2‖w(p)‖r

∂p2
∂2‖w(p)‖s

∂p2

(
∂‖w(p)‖r

∂p

)−3
×

[
∂‖w(p)‖r

∂p

(
∂2‖w(p)‖r

∂p2

)−1
− ∂‖w(p)‖s

∂p

(
∂2‖w(p)‖s

∂p2

)−1]
(157)

(a)
=
∂2‖w(p)‖r

∂p2
∂2‖w(p)‖s

∂p2

(
∂‖w(p)‖r

∂p

)−3
× p2 (1−mp)

[(
zs + (n− 1)

)
lns z −

(
zr + (n− 1)

)
lnr z

]
(158)

(55)
= −p2 (1−mp) g(m+ 1, z; r, s)

∂2‖w(p)‖r
∂p2

∂2‖w(p)‖s
∂p2

(
∂‖w(p)‖r

∂p

)−3
, (159)
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where (a) follows from

• the change of variables as

z = z(m, p) :=
1−mp

p
, (160)

• the fact that

∂‖w(p)‖r
∂p

(
∂2‖w(p)‖r

∂p2

)−1
(33)
= m

(
mpr +

(
1−mp

)r)(1/r)−1(
pr−1 −

(
1−mp

)r−1)(∂2‖w(p)‖r
∂p2

)−1
(161)

(135)
= m

(
mpr +

(
1−mp

)r)(1/r)−1(
pr−1 −

(
1−mp

)r−1)
× (r − 1)−1m−1 p2−r

(
1−mp

)2−r (
mpr +

(
1−mp

)r)2−(1/r)
(162)

= (r − 1)−1
(
p (1−mp)

)2−r(
mpr +

(
1−mp

)r)(
pr−1 −

(
1−mp

)r−1)
(163)

=
p (1−mp)

r − 1

(
mpr + (1−mp)r

)(
(1−mp)1−r − p1−r

)
(164)

=
p (1−mp)

r − 1

(
mpr (1−mp)1−r −mp+ (1−mp)− p1−r (1−mp)r

)
(165)

=
p (1−mp)

r − 1

(
(1− 2mp) +mp

(1−mp

p

)1−r
− (1−mp)

(1−mp

p

)r−1)
(166)

(160)
=

p (1−mp)

r − 1

(
(1− 2mp) +mpz1−r − (1−mp) zr−1

)
(167)

=
p (1−mp)

r − 1

(
(1− zr−1) +mpz1−r (z2(r−1) − 2 zr−1 + 1)

)
(168)

=
p (1−mp)

r − 1

(
(1− zr−1) +mpz1−r (zr−1 + 1)2

)
(169)

=
p (1−mp)

r − 1
(1− zr−1)

(
1 +mpz1−r (1− zr−1)

)
(170)

= p (1−mp)
(

1 +mp (z1−r − 1)
)(
− zr−1 z

1−r − 1

1− r

)
(171)

(56)
= −p (1−mp) zr−1

(
1 +mp (z1−r − 1)

)
(lnr z) (172)

(160)
= −p (1−mp) zr−1

(
1 +m

( 1

m+ z

)
(z1−r − 1)

)
(lnr z) (173)

= −p (1−mp)

m+ z
zr−1

(
(m+ z) +m (z1−r − 1)

)
(lnr z) (174)

= −p (1−mp)

m+ z
zr−1

(
z +mz1−r

)
(lnr z) (175)

= −p (1−mp)

m+ z

(
m+ zr

)
(lnr z) (176)

(160)
= − p2 (1−mp)

mp+ (1−mp)

(
m+ zr

)
(lnr z) (177)
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= −p2 (1−mp)
(
m+ zr

)
(lnr z). (178)

Since p ∈ (1/(m+ 1), 1/m) for t ∈ Jm(r) \ {mθ(r), (m+ 1)θ(r)} (cf. (147)), it suffices to consider the range of

variable z of (160) on z ∈ (0, 1). A further calculation derives

sgn

(
∂2‖vn(N−1r (vn : t))‖s

∂t2

)
(159)
= − sgn

(
p2 (1−mp)

)
︸ ︷︷ ︸

=1

sgn
(
g(m+ 1, z; r, s)

)
sgn

(
∂2‖w(p)‖r

∂p2

)
sgn

(
∂2‖w(p)‖s

∂p2

)
sgn

((
∂‖w(p)‖r

∂p

)−3)

(179)

= − sgn
(
g(m+ 1, z; r, s)

)
sgn

(
∂2‖w(p)‖r

∂p2

)
sgn

(
∂2‖w(p)‖s

∂p2

)
sgn

(
∂‖w(p)‖r

∂p

)
(180)

(151)
= − sgn

(
g(m+ 1, z; r, s)

)
sgn

(
∂2‖w(p)‖s

∂p2

)
(181)

(144)
=

sgn
(
g(m+ 1, z; r, s)

)
if s < 1,

− sgn
(
g(m+ 1, z; r, s)

)
if s > 1

(182)

for m ∈ N, distinct r, s ∈ (0, 1) ∪ (1,∞), and t ∈ Jm(r) \ {mθ(r), (m+ 1)θ(r)}. That is, the convexity/concavity

of t 7→ ‖w(N−1r (w : t))‖s with respect to t ∈ Jm(r) depend on the sign of g(m+ 1, z; r, s). Combining (57) of

Lemma 4 and (182), we have

sgn

(
∂2‖vn(N−1r (vn : t))‖s

∂t2

)
=

−1 if r < 1 < s or 1 < r < s or s < r < 1 or s < 1 < r,

1 if r < s < 1 or 1 < s < r

(183)

=

−1 if γ(r, s) < 1,

1 if γ(r, s) > 1

(184)

for every m ∈ N, distinct r, s ∈ (0, 1) ∪ (1,∞), and t ∈ Jm(r) \ {mθ(r), (m+ 1)θ(r)}, where γ(r, s) is defined in

(60). This completes the proof of Lemma 6.

III. SHARP BOUNDS ON UNCONDITIONAL RÉNYI ENTROPY

In this section, we introduce sharp bounds on the Rényi entropy Hβ(X) with a fixed another one Hα(X), studied

in [28]. We first show extremality of the distribution vn(·) defined in (14) in terms of the relation between `r-norm

and `s-norm in the following theorem.

Theorem 1 ([28, Lemma 2]). Let P be a discrete probability distribution with finite support, and let n = |supp(P )|.

For any r, s ∈ (0, 1) ∪ (1,∞], it holds that

‖vn(p)‖s ≤ ‖P‖s if γ(r, s) ≥ 1, (185)

‖vn(p)‖s ≥ ‖P‖s if γ(r, s) ≤ 1 (186)

with p = N−1r (vn : ‖P‖r), where N−1r (vn : ·) and γ(r, s) are defined in (45) and (60), respectively.
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Proof of Theorem 1: In the original version [28, Lemma 2], we wrote this proposition as follows: Let

P be a discrete probability distributions with finite support, i.e., |supp(P )| = n for some n ∈ N≥2. For any

r ∈ (0, 1) ∪ (1,∞], there exists p ∈ [1/n, 1] such that

‖vn(p)‖r = ‖P‖r, (187)

‖vn(p)‖s ≤ ‖P‖s for all s ∈ (min{1, r},max{1, r}), (188)

‖vn(p)‖s ≥ ‖P‖s for all s ∈ (0,min{1, r}) ∪ (max{1, r},∞]. (189)

It is obvious that the value p satisfying (187) is determined as p = N−1r (vn : ‖P‖r). It follows from the definition

(60) of γ(r, s) that

s ∈ (min{1, r},max{1, r}) ⇐⇒ γ(r, s) > 1, (190)

s ∈ (0,min{1, r}) ∪ (max{1, r},∞] ⇐⇒ γ(r, s) < 1. (191)

Moreover, the case γ(r, s) = 1 implies r = s, i.e., it is a trivial case. Therefore, the statements of (187)–(189)

shown in [28, Lemma 2] can be rewritten as Theorem 1.

We second show extremality of the distribution w(·) defined in (16) in terms of the relation between `r-norm

and `s-norm in the following theorem.

Theorem 2 ([28, Lemma 3]). Let P be a discrete probability distribution with possibly countably infinite support.

For any r, s ∈ (0, 1) ∪ (1,∞], it holds that

‖w(p)‖s ≥ ‖P‖s if γ(r, s) ≥ 1, (192)

‖w(p)‖s ≤ ‖P‖s if γ(r, s) ≤ 1 (193)

with p = N−1r (w : ‖P‖r), where N−1r (w : ·) and γ(r, s) are defined in (46) and (60), respectively.

Proof of Theorem 2: In the proof of [28, Lemma 2], we considered only for finite-dimensional probability

vectors as follows: Let p = (p1, p2, . . . , pn) be an n-dimensional probability vector satisfying

pi ≥ 0 for i = 1, 2, . . . , n, (194)
n∑
i=1

pi = 1. (195)

Since the equiprobable distribution is a trivial case, suppose that p = (1/n, 1/n, . . . , 1/n) is omitted. Let k ∈

{2, 3, . . . , n− 1} and l ∈ {k + 1, k + 2, . . . , n} be positive integers chosen so that

p[1] = · · · = p[k−1] ≥ p[k] ≥ p[k+1] ≥ · · · ≥ p[l−1] ≥ p[l] > p[l+1] = · · · = p[n] = 0 (p[k−1] > p[k+1]), (196)

where

p[1] ≥ p[2] ≥ · · · ≥ p[n] (197)
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denotes the components of p in decreasing order14. Then, total derivatives of the probability vector p was considered

in the following assumptions:

‖p‖r = A for some constant A ∈ In(r), (198)

dp[i]

dp[k]
=

dp[1]

dp[k]
for i ∈ {2, 3, . . . , k − 1}, (199)

dp[j]

dp[k]
= 1 for j ∈ {k + 1, k + 2, . . . , l − 1}, (200)

dp[m]

dp[k]
= 0 for m ∈ {l + 1, l + 2, . . . , n}, (201)

and the parameter r ∈ (0, 1) ∪ (1,∞) is fixed. Due to the hypothesis of (196), the support size of p is l ∈ N; thus,

[28, Lemma 2] only proved for probability distributions with finite support.

Fortunately, considering infinite-dimensional probability vector p = (p1, p2, . . . ) and extendind the hypothesis of

(201) for every m ∈ {l + 1, l + 2, . . . }, we can remove the hypothesis of the finite support. That is, the analyses of

the proof of [28, Lemma 2] can naturally generalized to probability distributions with possibly countably infinite

support.

Moreover, in the proof of [28, Lemma 2], we examined `∞-norm by majorization theory [24]. This analysis can

also be extended from finite- to infinite-dimensional probability vectors, as with the proof of [20, Theorem 10]

studied by Ho and Verdú.

We now consider the function

fα(t) :=
ln t

θ(α)
(202)

for each α ∈ (0, 1) ∪ (1,∞] and t > 0, where θ(·) is defined in (42). Since

• it follows from (1) that Hα(P ) = fα(‖P‖α) for every α ∈ (0, 1) ∪ (1,∞],

• if α ∈ (0, 1), then t 7→ fα(t) is strictly increasing for t > 0,

• if α ∈ (1,∞], then t 7→ fα(t) is strictly decreasing for t > 0,

Theorems 1 and 2 can be rewritten from sharp bounds on the `s-norm ‖P‖s to sharp bounds on the Rényi entropy

Hβ(P ) as shown in the following two theorems:

Theorem 3 ([28, Theorem 2]). Let P be a discrete probability distribution with finite support, i.e., |supp(P )| = n

for some n ∈ N. Then, it holds that

Hβ(P ) ≥ Hβ(vn(p)) for 0 < α ≤ β ≤ ∞, (203)

Hβ(P ) ≤ Hβ(vn(p)) for 0 < β ≤ α ≤ ∞, (204)

with p = H−1α (vn : Hα(P )), where H−1α (vn : ·) is defined in (47).

14We used this notation by following the book of Marshall and Olkin [24].
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Theorem 4 ([28, Theorem 2]). Let P be a discrete probability distribution with possibly infinite support. For any

α ∈ (0,∞], it holds that

Hβ(P ) ≤ Hβ(w(p)) for 0 < α ≤ β ≤ ∞, (205)

Hβ(P ) ≥ Hβ(w(p)) for 0 < β ≤ α ≤ ∞ (206)

with p = H−1α (w : Hα(P )), where H−1α (w : ·) is defined in (48).

Note that Theorem 3 has a constraint of finite supports, but Theorem 4 enables us to consider countably infinite

supports. If α =∞, then Theorem 3 is equivalent to the result by Ben-Bassat and Raviv [4, Theorem 6]; and if

α =∞, then Theorem 4 is a stronger result than [4, Theorems 4 and 5]. In addition, Theorems 3 and 4 yield same

joint ranges of pairs (Hα(P ), Hβ(P )) considered in [16]. In [28, Theorem 2], Theorems 3 and 4 are organized

in one theorem. However, in this study, Theorems 2 and 4 are extended from probability distributions with finite

support to countably infinite support. Due to such extension, Theorems 3 and 4 are divided, and Theorem 4 is

generalized to possibly countably infinite support. Since Theorems 3 and 4 are due to Theorems 1 and 2, and

the strict monotonicity of the logarithm functions, as with Theorems 3 and 4, we can establish sharp bounds on

other definitions of entropy [3], [5], [10], [18], [39], which are strictly monotonic for the `r-norm of a probability

distribution (cf. [30, Table I]).

In the next section, using the sharp bounds introduced in this section, we further consider to extend them to sharp

bounds on the conditional Rényi entropy Hα(X | Y ).

IV. SHARP BOUNDS ON ARIMOTO’S CONDITIONAL RÉNYI ENTROPY

A. Bounds Established from Distribution vn(·)

In this subsection, by using the extremality of the distribution vn(·) discussed in Section III, we derive sharp

bounds on Hβ(X | Y ) with two fixed Hα(X | Y ) and |supp(PX)| in some situations. We first give the sharp

bounds, whose mean interplay between Hα(X | Y ) and H∞(X | Y ) in the following theorem.

Theorem 5. Let X be an RV in which |supp(PX)| = n ∈ N, and let Y be an arbitrary RV. For any α ∈ (0,∞), it

holds that

Hα(X | Y ) ≤ Hα(vn(p1)), (207)

H∞(X | Y ) ≥ H∞(vn(p2)) (208)

with p1 = H−1∞ (vn : H∞(X | Y )) and p2 = H−1α (vn : Hα(X | Y )), respectively, where H−1α (vn : ·) is defined in

(47).

Proof of Theorem 5: Let X be an RV in which |supp(PX)| = n for some15 n ∈ N≥2, and let Y be an arbitrary

RV. If α = 1, then (207) is equivalent to Fano’s inequality. In fact, Inequality (207) is equivalent to the right-hand

15If |supp(PX)| = 1, it is clear that Hα(X | Y ) = 0 for every α ∈ [0,∞]. That is, we omit such trivial cases in our analyses.
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inequalities of [23, Eq. (15)] and [36, Eq. (5)]. On the other hand, Inequality (208) with α = 1 can be verified as

follows:

H∞(X | Y )
(12)
= − lnN∞(X | Y ) (209)

(8)
= − lnE[‖PX|Y (· | Y )‖∞] (210)

(6)
= − lnE[exp(−H∞(PX|Y (· | Y )))] (211)

(a)
≥ − lnE[exp(−H∞(vn(H−1(vn : H(PX|Y (· | Y ))))))] (212)

(6)
= − lnE[‖vn(H−1(vn : H(PX|Y (· | Y ))))‖∞] (213)

(b)
= − lnE[H−1(vn : H(PX|Y (· | Y )))] (214)

(c)
≥ − lnH−1(vn : E[H(PX|Y (· | Y ))]) (215)

(11)
= − lnH−1(vn : H(X | Y )) (216)

(b)
= − ln ‖vn(H−1(vn : H(X | Y )))‖∞ (217)

(6)
= H∞(vn(H−1(vn : H(X | Y ))) (218)

= H∞(vn(p)) (219)

with p = H−1(vn : H(X | Y )), where (a) follows from (203) of Theorem 3 with α = 1 and β =∞, Equalities (b)

follow from the fact that ‖vn(p)‖∞ = p for p ∈ [1/n, 1], and (c) follows from Jensen’s inequality and the fact that

µ 7→ H−1(vn : µ) is strictly concave in µ ∈ [0, lnn]. Note that the concavity of µ 7→ H−1(vn : µ) can be verified

by the following two facts:

• the function16 p 7→ H(vn(p)) = h2(p) + (1− p) ln(n− 1) is strictly decreasing for p ∈ [1/n, 1],

• the function p 7→ H(vn(p)) = h2(p) + (1− p) ln(n− 1) is strictly concave in p ∈ [1/n, 1].

Therefore, both bounds of Theorem 5 hold for α = 1.

We next consider to prove (207) of Theorem 5 for α ∈ (0, 1)∪ (1,∞). Let s ∈ (0, 1)∪ (1,∞) be a fixed number.

Note that

s ∈ (0, 1) ⇐⇒ γ(∞, s) = −∞ < 1, (220)

s ∈ (1,∞) ⇐⇒ γ(∞, s) =∞ > 1, (221)

where γ(·, ·) is defined in (60). If γ(∞, s) < 1, we have

Ns(X | Y )
(8)
= E

[
‖PX|Y (· | Y )‖s

]
(222)

(a)
≤ E

[∥∥vn(N−1∞ (vn : ‖PX|Y (· | Y )‖∞)
)∥∥
s

]
(223)

(b)
≤
∥∥vn(N−1∞ (vn : E[‖PX|Y (· | Y )‖∞]

))∥∥
s

(224)

16The function h2 : t 7→ −t ln t− (1− t) ln(1− t) denotes the binary entropy function.
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(8)
=
∥∥vn(N−1∞ (vn : N∞(X | Y )

))∥∥
s

(225)

(c)
=
∥∥vn(N∞(X | Y )

)∥∥
s

(226)

= ‖vn(p)‖s (227)

with p = N∞(X | Y ), where Inequality (a) follows from (186) of Theorem 1, Inequality (b) follows from Jensen’s

inequality and fact that t 7→ ‖vn(N−1∞ (vn : t))‖s is strictly concave in t ∈ [1/n, 1] (cf. Lemma 5), and Equality (c)

follows from the fact that N−1∞ (vn : t) = t for t ∈ [1/n, 1]. Analogously, if γ(∞, s) > 1, then we also get

Ns(X | Y ) ≥ ‖vn(p)‖s (228)

with p = N∞(X | Y ). We now define

fα(t) :=
α

1− α
ln t (229)

for α ∈ (0, 1) ∪ (1,∞) and t > 0. Since

• it holds that Hα(X | Y ) = fα(Nα(X | Y )) for every α ∈ (0, 1),

• if α ∈ (0, 1), then t 7→ fα(t) is a strictly increasing function of t > 0,

• if α ∈ (1,∞), then t 7→ fα(t) is a strictly decreasing function of t > 0,

it follows from (227) and (228) that

Hα(X | Y ) ≤ Hα(vn(p)) (230)

with p = N∞(X | Y ) for every α ∈ (0, 1) ∪ (1,∞). In addition, since

N∞(X | Y ) = exp
[
−
(
− lnN∞(X | Y )

)]
(231)

(12)
= exp

[
−H∞(X | Y )

]
(232)

(53)
= H−1∞ (vn : H∞(X | Y )), (233)

we get from (230) that

Hα(X | Y ) ≤ Hα(vn(p)) (234)

with p = H−1∞ (vn : H∞(X | Y )) for every α ∈ (0, 1) ∪ (1,∞) rather than p = N∞(X | Y ), which is (207) of

Theorem 5.

We further consider to prove (208) of Theorem 5 for α ∈ (0, 1) ∪ (1,∞). Note that

r ∈ (0, 1) ∪ (1,∞) ⇐⇒ γ(r,∞) = 0 < 1. (235)
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Thus, we have

N∞(X | Y )
(8)
= E

[
‖PX|Y (· | Y )‖∞

]
(236)

(a)
≤ E

[∥∥vn(N−1r (vn : ‖PX|Y (· | Y )‖r)
)∥∥
∞

]
(237)

(b)
≤
∥∥vn(N−1r (

vn : E[‖PX|Y (· | Y )‖r]
))∥∥
∞ (238)

(8)
=
∥∥vn(N−1r (

vn : Nr(X | Y )
))∥∥
∞ (239)

= ‖vn(p)‖∞ (240)

with p = N−1r (vn : Nr(X | Y )), where (a) follows from (186) of Theorem 1, and (b) follows from Jensen’s

inequality and fact that t 7→ ‖vn(N−1r (vn : t))‖∞ is strictly concave in t ∈ In(r) (cf. Lemma 5). Thus, it holds that

H∞(X | Y )
(12)
= − lnN∞(X | Y ) (241)

(240)
≥ − ln ‖vn(p)‖∞ (242)

(6)
= H∞(vn(p)) (243)

with p = N−1r (vn : Nr(X | Y )). Now, it follows from (45) and (47) that

H−1α (vn : Hα(X | Y ))
(7)
= H−1α

(
vn :

α

1− α
lnNα(X | Y )

)
(244)

(a)
= N−1α

(
vn : exp

(
1− α
α

α

1− α
lnNα(X | Y )

))
(245)

= N−1α (vn : Nα(X | Y )), (246)

where (a) follows from the fact that

µ = Hα(vn(p)) =
α

1− α
ln ‖vn(p)‖α ⇐⇒ p = H−1α (vn : µ) = N−1α

(
vn : exp

(1− α
α

µ
))

. (247)

Thus, Inequality (243) can be restated as

H∞(X | Y ) ≥ H∞(vn(p)) (248)

with p = H−1α (vn : Hα(X | Y )) rather than p = N−1r (vn : Nr(X | Y )). This completes the proof of Theorem 5.

Since the minimum average probability of error Pe(X | Y ) satisfies

Pe(X | Y )
(13)
= min

f
Pr(X 6= f(Y )) (249)

= 1−max
f

Pr(X = f(Y )) (250)

= 1− E
[

max
x∈supp(PX|Y (·|Y ))

PX|Y (x | Y )
]

(251)

(8)
= 1−N∞(X | Y ) (252)

= 1−H−1∞ (vn : H∞(X | Y )), (253)
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Ineq. (207) of Theorem 5 can be seen as a generalization of Fano’s inequality from H(X | Y ) to Hα(X | Y ) (see

also [33]). Moreover, Theorem 5 is tighter than a generalized Fano’s inequality [22, Theorem 7], whose bounds

another definition of conditional Rényi entropy proposed by Hayashi [19]. We defer to discuss this comparison until

Section V-A.

On the other hand, the following theorem shows sharp bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) when X

is a Bernoulli RV.

Theorem 6. Let X be a Bernoulli RV, i.e., |supp(PX)| ≤ 2, and let Y be an arbitrary RV. Then, it holds that

Hβ(X | Y ) ≥ Hβ(vn(p)) for 1/2 ≤ α ≤ β ≤ ∞, (254)

Hβ(X | Y ) ≤ Hβ(vn(p)) for 1/2 ≤ β ≤ α ≤ ∞, (255)

with n = 2 and p = H−1α (vn : Hα(X | Y )), where H−1α (vn : ·) is defined in (47). In particular, if α = 1, then

(255) also holds for every 0 < β < 1/2.

Proof of Theorem 6: We prove this theorem in a similar manner to the proof of Theorem 5. If either α =∞ or

β =∞, then Theorem 6 comes from Theorem 5. If α = β, then Theorem 6 is trivial17. Hence, we consider otherwise.

Let X be a Bernoulli RV in which |supp(PX)| = n = 2, let Y be an arbitrary RV, and let r, s ∈ [1/2, 1) ∪ (1,∞)

be distinct numbers. If γ(r, s) < 1, then we have

Ns(X | Y )
(8)
= E

[
‖PX|Y (· | Y )‖s

]
(256)

(a)
≤ E

[∥∥v2

(
N−1r (v2 : ‖PX|Y (· | Y )‖r)

)∥∥
s

]
(257)

(b)
≤
∥∥v2

(
N−1r

(
v2 : E[‖PX|Y (· | Y )‖r]

))∥∥
s

(258)

(8)
=
∥∥v2

(
N−1r

(
v2 : Nr(X | Y )

))∥∥
s

(259)

= ‖v2(p)‖s (260)

with p = N−1r (v2 : Nr(X | Y )), where γ(r, s) is defined in (60), Inequality (a) follows from (186) of Theorem 1,

and Inequality (b) follows from Jensen’s inequality and fact that t 7→ ‖v2(N−1r (v2 : t))‖s is strictly concave in

t ∈ I2(r) (cf. Lemma 5). Analogously, if γ(r, s) > 1, then we also get

Ns(X | Y ) ≥ ‖v2(p)‖s (261)

with p = N−1r (v2 : Nr(X | Y )). We now define

fα(t) :=
α

1− α
ln t (262)

for α ∈ (0, 1) ∪ (1,∞) and t > 0. Since

• it holds that Hβ(X | Y ) = fβ(Nβ(X | Y )) for every β ∈ (0, 1) ∪ (1,∞),

• if β ∈ (0, 1), then t 7→ fβ(t) is a strictly increasing function of t > 0,

17If α = β, then both inequalities of Theorem 6 hold with equality, because Hα(vn(H−1
α (vn : Hα(X | Y )))) = Hα(X | Y ).
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• if β ∈ (1,∞), then t 7→ fβ(t) is a strictly decreasing function of t > 0,

it follows from (260) and (261) that

Hβ(X | Y ) ≥ Hβ(v2(p)) for 1/2 ≤ α < β <∞, (263)

Hβ(X | Y ) ≤ Hβ(v2(p)) for 1/2 ≤ β < α <∞ (264)

with p = N−1α (v2 : Nα(X | Y )) for every distinct α, β ∈ [1/2, 1)∪ (1,∞), where (a) follows from (260) and (261).

Combining (246), (263), and (264), we have Theorem 6 for distinct α, β ∈ [1/2, 1) ∪ (1,∞).

Finally, if α = 1, then Theorem 6 can be proved by employing the concavity of Lemma 2 and the extremality of

Theorem 3. In fact, it holds that for any β ∈ (0, 1),

Hβ(X | Y ) =
β

1− β
lnE[‖PX|Y (· | Y )‖β ] (265)

(1)
=

β

1− β
lnE

[
exp

(
1− β
β

Hβ(PX|Y (· | Y ))

)]
(266)

(a)
≤ β

1− β
lnE

[
exp

(
1− β
β

Hβ(v2(H−1(v2 : H(PX|Y (· | Y )))))

)]
(267)

(1)
=

β

1− β
lnE

[
‖v2(H−1(v2 : H(PX|Y (· | Y ))))‖β

]
(268)

(b)
≤ β

1− β
ln ‖v2(H−1(v2 : E[H(PX|Y (· | Y ))]))‖β (269)

(11)
=

β

1− β
ln ‖v2(H−1(v2 : H(X | Y )))‖β (270)

(7)
= Hβ(v2(H−1(v2 : H(X | Y )))) (271)

= Hβ(v2(p)) (272)

with p = H−1(v2 : H(X | Y )), where (a) follows from (204) of Theorem 3 with α = 1, and (b) follows from

Jensen’s inequality and the fact that µ 7→ ‖v2(H−1(v2 : µ))‖β is strictly concave in µ ∈ [0, ln 2] (cf. Lemma 2).

Analogously, we also obtain

Hβ(X | Y ) ≥ Hβ(v2(p)) (273)

with p = H−1(v2 : H(X | Y )) for every β ∈ (1,∞). This completes the proof of Theorem 6.

In Theorems 5 and 6, we establish bounds on the conditional Rényi entropy Hβ(X | Y ) by another Rényi

entropy Hβ(vn(p)) of an explicit distribution vn(·). Namely, these bounds are sharp, i.e., there is no tighter bound

than them in these situations. Theorems 5 and 6 are proved by using the convexity/concavity of Lemmas 2 and 5.

However, if n ∈ N≥3 and r, s ∈ [1/2, 1)∪ (1,∞), then the convexity/concavity of Lemma 5 is not unique on In(r).

Due to this reason, we cannot use same techniques as the proofs of Theorems 5 and 6 in the cases of n ∈ N≥3
and r, s ∈ [1/2, 1) ∪ (1,∞). In fact, we later show in Theorem 7 that Hβ(X | Y ) cannot be always bounded by

Hβ(vn(p)) with a fixed Hβ(X | Y ) in such situations. In [29, Theorem 4 and Corollary 1], we established sharp

bounds on H(X | Y ) with a fixed Hα(X | Y ) in which supp(PX) is finite, by defining a pair of RVs (X ′′, Y ′′)

[29, Definition 2] whose achieves their bounds. In this study, we also define a specific pair of RVs (S, T ) later in
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Definition 1, and establish sharp bounds on Hβ(X | Y ) by using (S, T ) in Theorem 7. To accomplish this goal, we

now give the following lemma.

Lemma 7. For any fixed n ∈ N≥3 and distinct r, s ∈ (0, 1) ∪ (1,∞), the equation

‖vn(N−1r (vn : t))‖s − nθ(s)

t− nθ(r)
=
∂‖vn(N−1r (vn : t))‖s

∂t
(274)

has a unique root t = t∗(n; r, s) ∈ In(r) \ {1, nθ(r)}, where In(r) is defined in (43).

Proof of Lemma 7: Suppose that r < s and γ(r, s) < 1. Define

χ(n, t, u; r, s) :=
‖vn(N−1r (vn : u))‖s − nθ(s)

u− nθ(r)
− ∂‖vn(N−1r (vn : t))‖s

∂t
. (275)

We prove this lemma by showing the existence of the value t∗(n; r, s) ∈ I(1)n (r, s) satisfying χ(n, t, t∗(n; r, s); r, s) =

0, and proving its uniqueness. Letting p = N−1r (vn : t), the chain rule of derivatives shows

∂‖vn(N−1r (vn : t))‖s
∂t

=
∂N−1r (vn : t)

∂t

∂‖vn(p)‖s
∂p

(276)

(80)
=

(
∂‖vn(p)‖r

∂p

)−1
∂‖vn(p)‖s

∂p
(277)

(25)
=
(
pr + (n− 1)1−r (1− p)r

)1−(1/r)(
pr−1 − (n− 1)1−r (1− p)r−1

)−1
×
(
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
ps−1 − (n− 1)1−s (1− p)s−1

)
(278)

=

(
ps−1 − (n− 1)1−s (1− p)s−1

pr−1 − (n− 1)1−r (1− p)r−1

)((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)

(279)

= ps−r
(

1− (n− 1)1−s (p/(1− p))1−s

1− (n− 1)1−r (p/(1− p))1−r

)((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)

(280)

(95)
= ps−r

(
1− z1−s

1− z1−r

)((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)

(281)

= ps−r
(

1− s
1− r

)(
z1−s − 1

1− s

)(
z1−r − 1

1− r

)−1((ps + (n− 1)1−s (1− p)s
)(1/s)−1(

pr + (n− 1)1−r (1− p)r
)(1/r)−1

)
(282)

(56)
= ps−r

(
1− s
1− r

)(
lns z

lnr z

)((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)

(283)

(60)
= ps−r γ(r, s)−1

(
lns z

lnr z

)((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)
. (284)

It follows from (45) and (95) that

• if r ∈ (0, 1), then p→ 1− as t→ 1+,

• if r ∈ (1,∞), then p→ 1− as t→ 1−,

• it holds that z →∞ as p→ 1−;
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and thus, if r ∈ (0, 1), then we obtain

lim
t→1+

∂‖vn(N−1r (vn : t))‖s
∂t

(284)
= lim

p→1−

[
ps−r γ(r, s)−1

(
lns z

lnr z

)((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)]

(285)

= γ(r, s)−1 lim
z→∞

(
lns z

lnr z

)
(286)

(a)
= 0 (287)

for every n ∈ N≥2 and s ∈ (0,∞) in which r < s, where (a) follows from the limiting value

lim
z→∞

(
lns z

lnr z

)
=

0 if r < 1,

γ(r, s) if r > 1

(288)

for every 0 < r < s <∞. Analogously, we also get that if r ∈ (1,∞), then

lim
t→1−

∂‖vn(N−1r (vn : t))‖s
∂t

= 1 (289)

for every n ∈ N≥2 and s ∈ (0,∞) in which r < s. Therefore, we have the following:

• if r ∈ (0, 1), then

lim
t→1+

χ(n, t, t; r, s)
(275)
= lim

t→1+

[
‖vn(N−1r (vn : t))‖s − nθ(s)

t− nθ(r)
− ∂‖vn(N−1r (vn : t))‖s

∂t

]
(287)
=

1− nθ(s)

1− nθ(r)
,

(290)

• if r ∈ (1,∞), then

lim
t→1−

χ(n, t, t; r, s)
(275)
= lim

t→1−

[
‖vn(N−1r (vn : t))‖s − nθ(s)

t− nθ(r)
− ∂‖vn(N−1r (vn : t))‖s

∂t

]
(289)
=

nθ(r) − nθ(s)

1− nθ(r)

(291)

for every n ∈ N≥2 and s ∈ (0,∞) in which r < s, where note that ‖vn(N−1r (vn : 1))‖s = 1 because ‖vn(1)‖r = 1.

Since

sgn
(

1− nθ(r)
)

=


−1 if r < 1,

0 if r = 1,

1 if r > 1

(292)

for every n ∈ N≥2 and r ∈ (0,∞], it follows from (290) that

sgn
(

lim
t→1+

χ(n, t, t; r, s)
)

=


−1 if s > 1,

0 if s = 1,

1 if s < 1

(293)

for every n ∈ N≥2, r ∈ (0, 1), and s ∈ (r,∞). Similarly, it also follows from (291) that

sgn
(

lim
t→1−

χ(n, t, t; r, s)
)

= 1 (294)

for every n ∈ N≥2 and 1 < r < s <∞.
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We now verify the sign of the derivative (284) as follows:

sgn

(
∂‖vn(N−1r (vn : t))‖s

∂t

)
(284)
= sgn

(
ps−r

)
︸ ︷︷ ︸

=1

sgn
(
γ(r, s)−1

)
sgn

(
lns z

lnr z

)
︸ ︷︷ ︸

=1

sgn

((
ps + (n− 1)1−s (1− p)s

)(1/s)−1(
pr + (n− 1)1−r (1− p)r

)(1/r)−1
)

︸ ︷︷ ︸
=1

(295)

(60)
= sgn

(
1− s
1− r

)
(296)

=


−1 if r < 1 < s,

0 if s = 1,

1 if r < s < 1 or 1 < r < s

(297)

for every n ∈ N≥2, 0 < r < s <∞, and t ∈ In(r), which implies that for each n ∈ N≥2, the following holds:

• if r < 1 < s, then t 7→ ‖vn(N−1r (vn : t))‖s is strictly decreasing for t ∈ In(r),

• if either r < s < 1 or 1 < r < s, then t 7→ ‖vn(N−1r (vn : t))‖s is strictly increasing for t ∈ In(r).

Recall from Lemma 5 that if γ(r, s) < 1, then t 7→ ‖vn(N−1r (vn : t))‖s is strictly convex in t ∈ I(2)n (r, s) for

every fixed 1/2 ≤ r < s <∞, where note that I(2)n (r, s) ⊂ In(r) (cf. (43) and (62)). Since

• the first term of the right-hand side of (275) is the slope of the secant line from the point (nθ(r), nθ(s)) to the

point (u, ‖vn(N−1r (vn : u))‖s),

• the second term of the right-hand side of (275) is the slope of the tangent line of the curve t 7→ (t, ‖vn(N−1r (vn :

t))‖s),

it follows from the monotonicity and convexity of t 7→ ‖vn(N−1r (vn : t))‖s with respect to t ∈ I(2)n (r, s) that

sgn
(
χ(n, t, τ(n; r, s); r, s)

)
=

−1 if r < s < 1 or 1 < r < s,

1 if r < 1 < s

(298)

for every n ∈ N≥2, 1/2 ≤ r < s <∞ in which γ(r, s) < 1, and t ∈ I(2)n (r, s), where τ(n; r, s) is the inflection point

of t 7→ ‖vn(N−1r (vn : t))‖s derived in Lemma 5. Combining (293), (294), and (298), and applying the intermediate

value theorem for the function u 7→ χ(n, t, u; r, s), it holds that for any n ∈ N≥2 and any 1/2 ≤ r < s < ∞ in

which γ(r, s) < 1, there exists t∗(n; r, s) ∈ I(1)n (r, s) such that

χ(n, t, t∗(n; r, s); r, s) = 0, (299)

where I(1)n (r, s) is defined in (61). Finally, the concavity of t 7→ ‖vn(N−1r (vn : t))‖s with respect to t ∈ I(1)n (r, s)

implies the uniqueness of the value t∗(n; r, s) ∈ I(1)n (r, s). Therefore, the assertion of Lemma 7 holds for 1/2 ≤

r < s <∞ in which γ(r, s) < 1. Furthermore, the assertion of Lemma 7 for other situations can also be proved in

a similar way to the above discussion. This completes the proof of Lemma 7.

From the definition (45) of N−1r (vn : ·), we see that

‖vn(p)‖r = t ⇐⇒ N−1r (vn : t) = p; (300)
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thus, it follows from (80) and the chain of derivatives that (274) of Lemma 7 can be rewritten by

‖vn(p)‖s − nθ(s)

‖vn(p)‖r − nθ(r)
=
∂‖vn(p)‖s

∂p

(
∂‖vn(p)‖r

∂p

)−1
(301)

with the change of variables (300), where note that the first-order derivatives appeared in (301) is already derived in

(25). Lemma 7 also ensures that for every n ∈ N≥3 and distinct r, s ∈ [1/2, 1) ∪ (1,∞), Eq. (301) has a unique

root with respect to p = p∗(n; r, s) ∈ (1/n, 1) under the relation (300). Therefore, solving the root p∗(n; r, s) of

(301), we can obtain the root of (274) as t∗(n; r, s) = ‖vn(p∗(n; r, s))‖r. In fact, the root p∗(n; r, s) of (301) can

be solved via numerical calculations. However, in general, the root p∗(n; r, s) is also hard-to-express in closed-forms,

as with (47) and (48). Fortunately, if either r = 1/2 or s = 1/2, then the root p∗(n; r, s) of (301) can be written in

a simple closed-form, as shown in the following.

Fact 2. For any n ∈ N≥3 and t ∈ (1/2, 1) ∪ (1,∞),

p∗(n; 1/2, t) = p∗(n; t, 1/2) =
1

1 + (n− 1)(t−2)/t
. (302)

Fact 2 can be verified by directly substituting (302) into (301), as with the proof of [29, Fact 2]. In fact, Fact 2 yields

the same value p∗ to18 [29, Fact 2] as t→ 1. Note that p∗(n; r, s) = p∗(n; s, r) holds; but t∗(n; r, s) = t∗(n; s, r)

does not hold in general. Employing the roots t∗(n; r, s) and p∗(n; r, s) of (274) and (301), respectively, we now

define the pair of RVs (S, T ) as follows: For n ∈ N≥3 and distinct r, s ∈ [1/2, 1) ∪ (1,∞), let the real intervals

I(a)n (r, s) and I(b)n (r, s) be defined by

I(a)n (r, s) :=


(
t∗(n; r, s), nθ(r)

]
if r < 1,[

nθ(r), t∗(n; r, s)
)

if r > 1,

(303)

I(b)n (r, s) :=


[
1, t∗(n; r, s)

]
if r < 1,[

t∗(n; r, s), 1
]

if r > 1,

(304)

respectively, where θ(r) is defined in (42). Note that {I(a)n (r, s), I(b)n (r, s)} forms a partition of the interval In(r)

defined in (43). If r and s are clear from the context, for simplicity, we write (303) and (304) by I(a)n and I(b)n ,

respectively. Using them, we give the definition of the pair of RVs (S, T ) as follows.

Definition 1. For given distinct r, s ∈ [1/2, 1)∪ (1,∞) and pair of RVs (X,Y ) ∼ PX|Y PY in which |supp(PX)| =

n ∈ N≥3, the pair of RVs (S, T ) ∼ PS|TPT is defined as follows: The RV S takes values from supp(PX); and the

RV T takes values from {0, 1}, i.e., the latter is a Bernoulli RV. Let δ be chosen so that

δ =
Nr(X | Y )− nθ(r)

t∗(n; r, s)− nθ(r)
, (305)

18Note that the definition of vn(·) used in [29] is slightly different to (14); however, these are essentially same.
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where θ(r) is defined in (42). Then, the marginal distribution PT is given by

(PT (0), PT (1)) =

(1− δ, δ) if Nr(X | Y ) ∈ I(a)n (r, s),

(0, 1) if Nr(X | Y ) ∈ I(b)n (r, s),

(306)

and the conditional distribution PS|T is given by

PS|T (· | t) =


vn(1/n) = (1/n, 1/n, . . . , 1/n) if t = 0,

vn(p(a)) if t = 1 and Nr(X | Y ) ∈ I(a)n (r, s),

vn(p(b)) if t = 1 and Nr(X | Y ) ∈ I(b)n (r, s)

(307)

with p(a) = p∗(n; r, s) and p(b) = N−1r (vn : Nr(X | Y )), where I(a)n (r, s) and I(b)n (r, s) are defined in (303) and

(304), respectively. If we want to specify the parameters (r, s) for (S, T ), we write (S(r,s), T(r,s)).

After some algebra, for given pair of RVs (X,Y ) in which |supp(PX)| = n ∈ N≥3 and distinct r, s ∈

[1/2, 1) ∪ (1,∞), the expectation of `s-norm of S given T can be calculated by

Ns(S(r,s) | T(r,s))
(8)
= E

[∥∥PS|T (· | T )
∥∥
s

]
(308)

= PT (0)
∥∥PS|T (· | 0)

∥∥
s

+ PT (1)
∥∥PS|T (· | 1)

∥∥
s

(309)

(306)
=

(1− δ)
∥∥PS|T (· | 0)

∥∥
s

+ δ
∥∥PS|T (· | 1)

∥∥
s

if Nr(X | Y ) ∈ I(a)n (r, s),∥∥PS|T (· | 1)
∥∥
s

if Nr(X | Y ) ∈ I(b)n (r, s)

(310)

(307)
=

(1− δ)
∥∥vn(1/n)‖s + δ

∥∥vn(p∗(n; r, s)
)∥∥
s

if Nr(X | Y ) ∈ I(a)n (r, s),∥∥vn(N−1r (vn : Nr(X | Y ))
)∥∥
s

if Nr(X | Y ) ∈ I(b)n (r, s)

(311)

=

(1− δ)nθ(s) + δ
∥∥vn(p∗(n; r, s)

)∥∥
s

if Nr(X | Y ) ∈ I(a)n (r, s),∥∥vn(N−1r (vn : Nr(X | Y ))
)∥∥
s

if Nr(X | Y ) ∈ I(b)n (r, s),

(312)

=

(1− δ)nθ(s) + δ ‖vn(p(a))‖s if Nr(X | Y ) ∈ I(a)n (r, s),

‖vn(p(b))‖s if Nr(X | Y ) ∈ I(b)n (r, s)

(313)

with

p(a) = p∗(n; r, s), (314)

p(b) = N−1r (vn : Nr(X | Y )), (315)

where δ is given by (305), and p∗(n; r, s) is the root of (301). Letting (α, β) = (r, s), for any distinct α, β ∈
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[1/2, 1) ∪ (1,∞), the conditional Rényi entropy of S given T can be calculated by

Hβ(S(α,β) | T(α,β))
(7)
=

β

1− β
lnNβ(S(α,β) | T(α,β)) (316)

(313)
=


β

1− β
ln
[
(1− δ)nθ(β) + δ ‖vn(p(a))‖β

]
if Nα(X | Y ) ∈ I(a)n (α, β),

β

1− β
ln
[
‖vn(p(b))‖β

]
if Nα(X | Y ) ∈ I(b)n (α, β)

(317)

(1)
=


β

1− β
ln
[
(1− δ)nθ(β) + δ ‖vn(p(a))‖β

]
if Nα(X | Y ) ∈ I(a)n (α, β),

Hβ(vn(p(b))) if Nα(X | Y ) ∈ I(b)n (α, β)

(318)

(7)
=


β

1− β
ln
[
(1− δ)nθ(β) + δ ‖vn(p(a))‖β

]
if Hα(X | Y ) ∈ H(a)

n (α, β),

Hβ(vn(p(b))) if Hα(X | Y ) ∈ H(b)
n (α, β)

(319)

with

p(a) = p∗(n;α, β), (320)

p(b) = H−1α (vn : Hα(X | Y )), (321)

where H(a)
n (α, β) and H(b)

n (α, β) are two real intervals defined by

H(a)
n (α, β) :=

(
Hα(vn(p(a))), lnn

]
, (322)

H(b)
n (α, β) :=

[
0, Hα(vn(p(a)))

]
, (323)

respectively, and δ is given by (305) with (r, s) = (α, β). Note that {H(a)
n (α, β),H(b)

n (α, β)} forms a partition of

the interval [0, lnn]. Namely, the quantity Hβ(S(α,β) | T(α,β)) is determined by the following three arguments: (i)

the number |supp(PX)| ≥ 3, (ii) the value Hα(X | Y ), and (iii) distinct α, β ∈ [1/2, 1) ∪ (1,∞). In fact, for any

distinct α, β ∈ [1/2, 1) ∪ (1,∞), we can verify the following:

• if Hα(X | Y ) ∈ H(a)
n (α, β), then

Hα(S(α,β) | T(α,β))
(319)
=

α

1− α
ln
[
(1− δ)nθ(α) + δ ‖vn(p(a))‖α

]
(324)

(320)
=

α

1− α
ln
[
(1− δ)nθ(α) + δ t∗(n;α, β)

]
(325)

(305)
=

α

1− α
ln

[(
t∗(n;α, β)−Nα(X | Y )

t∗(n;α, β)− nθ(α)

)
nθ(α) +

(
Nα(X | Y )− nθ(α)

t∗(n;α, β)− nθ(α)

)
t∗(n;α, β)

]
(326)

=
α

1− α
lnNα(X | Y ) (327)

(7)
= Hα(X | Y ), (328)

• if Hα(X | Y ) ∈ H(b)
n (α, β), then

Hα(S(α,β) | T(α,β))
(319)
= Hα(vn(p(b))) (329)

(321)
= Hα(X | Y ). (330)
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Hence, the following theorem gives bounds on Hβ(X | Y ) with a fixed Hα(X | Y ), and the bounds are sharp

because these are written by a specific pair of RVs (S, T ).

Theorem 7. Let X be an RV in which 3 ≤ |supp(PX)| < ∞, and let Y be an arbitrary RV. For any distinct

α, β ∈ [1/2, 1) ∪ (1,∞), it holds that

Hβ(X | Y ) ≥ Hβ(S(α,β) | T(α,β)) if α < β, (331)

Hβ(X | Y ) ≤ Hβ(S(α,β) | T(α,β)) if β < α, (332)

where the pair of RVs (S, T ) is defined in Definition 1.

Proof of Theorem 7: Let (X,Y ) be a pair of RVs in which |supp(PX)| = n for some n ∈ N≥3, and let

r, s ∈ [1/2, 1) ∪ (1,∞) be distinct fixed numbers. Define

fST(n, t; r, s) :=

(1− δ′)nθ(s) + δ′
∥∥vn(N−1r (vn : t∗(n; r, s))

)∥∥
s

if t ∈ I(a)n (r, s),∥∥vn(N−1r (vn : t)
)∥∥
s

if t ∈ I(b)n (r, s),

(333)

where I(a)n (r, s) and I(b)n (r, s) are defined in (303) and (304), respectively, the value δ′ ∈ [0, 1) is chosen so that

δ′ =
t− nθ(r)

t∗(n; r, s)− nθ(r)
, (334)

and t∗(n; r, s) is the root of (274) shown in Lemma 7. Note from (313) that fST(n, t; r, s) is defined to satisfy

fST(n,Nr(X | Y ); r, s) = Ns(S(r,s) | T(r,s)). (335)

Then, we can verify the following statements:

• the function t 7→ fST(n, t; r, s) is linear in t ∈ I(a)n (r, s),

• if γ(r, s) > 1, then t 7→ fST(n, t; r, s) is strictly convex in t ∈ I(b)n (r, s) (cf. Lemma 5),

• if γ(r, s) < 1, then t 7→ fST(n, t; r, s) is strictly concave in t ∈ I(b)n (r, s) (cf. Lemma 5),

where γ(r, s) is defined in (60). Moreover, since t∗(n; r, s) used in Definition 1 fulfills (274) of Lemma 7, the

function t 7→ fST(n, t; r, s) is differentiable t = t∗(n; r, s). Therefore, the above convexity/concavity can be modified

as follows:

• if γ(r, s) > 1, then t 7→ fST(n, t; r, s) is convex in t ∈ In(r),

• if γ(r, s) < 1, then t 7→ fST(n, t; r, s) is concave in t ∈ In(r),

where In(r) is defined in (43).

We now consider inequalities between ‖vn(N−1r (vn : t))‖s and fST(n, t; r, s). By definition (333), it is clear that

‖vn(N−1r (vn : t))‖s = fST(n, t; r, s) (336)

for every t ∈ I(b)n (r, s). On the other hand, the proof of Lemma 7 shows that

• if γ(r, s) > 1, the curve t 7→ (t, ‖vn(N−1r (vn : t))‖s) is bounded from below by the secant line from the point

(nθ(r), nθ(s)) to the point (t∗(n; r, s), ‖vn(N−1r (vn : t∗(n; r, s)))‖s),
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• if γ(r, s) < 1, the curve t 7→ (t, ‖vn(N−1r (vn : t))‖s) is bounded from above by the secant line from the point

(nθ(r), nθ(s)) to the point (t∗(n; r, s), ‖vn(N−1r (vn : t∗(n; r, s)))‖s).

Since the secant line from the point (nθ(r), nθ(s)) to the point (t∗(n; r, s), ‖vn(N−1r (vn : t∗(n; r, s)))‖s) can be

denoted by t 7→ (t, fST(n, t; r, s)) for t ∈ I(a)n (r, s), it holds that

γ(r, s) > 1 =⇒ ‖vn(N−1r (vn : t))‖s ≥ fST(n, t; r, s), (337)

γ(r, s) < 1 =⇒ ‖vn(N−1r (vn : t))‖s ≤ fST(n, t; r, s) (338)

for every t ∈ I(a)n (r, s). Combining (336), (337), and (338), we get

γ(r, s) > 1 =⇒ ‖vn(N−1r (vn : t))‖s ≥ fST(n, t; r, s), (339)

γ(r, s) < 1 =⇒ ‖vn(N−1r (vn : t))‖s ≤ fST(n, t; r, s) (340)

for every t ∈ In(r), because In(r) = I(a)n (r, s) ∪ I(b)n (r, s).

According to the above discussion, if γ(r, s) > 1, we have

Ns(X | Y )
(8)
= E

[
‖PX|Y (· | Y )‖s

]
(341)

(a)
≥ E

[∥∥vn(N−1r (vn : ‖PX|Y (· | Y )‖r)
)∥∥
s

]
(342)

(339)
≥ E

[
fST
(
n, ‖PX|Y (· | Y )‖r; r, s

)]
(343)

(b)
≥ fST

(
n,E[‖PX|Y (· | Y )‖r]; r, s

)
(344)

(8)
= fST

(
n,Nr(X | Y ); r, s

)
(345)

(335)
= Ns(S(r,s) | T(r,s)), (346)

where (a) follows from (185) of Theorem 1, and (b) follows from the convexity of t 7→ fST(n, t; r, s) for t ∈ In(r).

Similarly, if γ(r, s) < 1, we also have

Ns(X | Y ) ≤ Ns(S(r,s) | T(r,s)). (347)

Finally, we define

fα(t) :=
α

1− α
ln t (348)

for α ∈ (0, 1) ∪ (1,∞) and t > 0. Since

• it holds that Hβ(X | Y ) = fβ(Nβ(X | Y )) for every β ∈ (0, 1) ∪ (1,∞),

• if β ∈ (0, 1), then t 7→ fβ(t) is a strictly increasing function of t > 0,

• if β ∈ (1,∞), then t 7→ fβ(t) is a strictly decreasing function of t > 0,

it follows from (346) and (347) that

Hβ(X | Y ) ≥ Hβ(S(α,β) | T(α,β)) if α < β, (349)

Hβ(X | Y ) ≤ Hβ(S(α,β) | T(α,β)) if β < α (350)
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for every α, β ∈ [1/2, 1) ∪ (1,∞). This completes the proof of Theorem 7.

Note that if either α = 1 or β = 1, then sharp bounds in a similar situation to Theorem 7 were already derived in

[29, Theorem 2 and Corollary 1].

In this subsection, we derive sharp bounds on Hβ(X | Y ) with a fixed Hα(X | Y ), α 6= β, by employing the

extremality of the distribution vn(·) shown in Section III. In the next subsection, we further derive sharp bounds on

Hβ(X | Y ) with a fixed Hα(X | Y ), α 6= β, by employing the extremality of another distribution w(·) shown in

Section III.

B. Bounds Established from Distribution w(·)

In this subsection, by using extremality of the distribution w(·) introduced in Section III, we derive sharp bounds

on Hβ(X | Y ) with a fixed Hα(X | Y ). Unlike the bounds established in Section IV-A, as with Theorem 4, sharp

bounds established in this subsection can be considered for every distributions with possibly countably infinite

support. In a similar way to consider a specific pair of RVs (S, T ) of Definition 1, we now define another specific

pair of RVs (U, V ) in Definition 2, whose achieves the bounds of Theorem 8 as shown later.

Definition 2. For given r ∈ (0, 1)∪ (1,∞] and pair of RVs (X,Y ) ∼ PX|Y PY , the pair of RVs (U, V ) ∼ PU |V PV
is defined as follows: The RV U takes values from {0, 1, 2, . . . }; and the RV V takes values from {0, 1}, i.e., the

latter is a Bernoulli RV. Let m ∈ N and λ ∈ [0, 1] be chosen so that

m =
⌊
Nr(X | Y )θ(r)

⌋
, (351)

λ =
(m+ 1)θ(r) −Nr(X | Y )

(m+ 1)θ(r) −mθ(r)
, (352)

respectively, where θ(r) is defined in (42). Then, the marginal distribution PV is given by

(PV (0), PV (1)) = (1− λ, λ), (353)

and the conditional distribution PU |V is given by

PU |V (· | v) =

w(1/m) if v = 0,

w(1/(m+ 1)) if v = 1.

(354)

If we want to specify the parameter r for (U, V ), we write (U(r), V(r)).

After some algebra, we see that

Ns(U(r) | V(r))
(8)
= E

[∥∥PU |V (· | V )
∥∥
s

]
(355)

= PV (0)
∥∥PU |V (· | 0)

∥∥
s

+ PV (1)
∥∥PU |V (· | 1)

∥∥
s

(356)

(353)
= λ

∥∥PU |V (· | 0)
∥∥
s

+ (1− λ)
∥∥PU |V (· | 1)

∥∥
s

(357)

(354)
= λ

∥∥w(1/m)
∥∥
s

+ (1− λ)
∥∥w(1/(m+ 1))

∥∥
s

(358)

(40)
= λmθ(s) + (1− λ) (m+ 1)θ(s) (359)
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for every pair of RVs (X,Y ), r ∈ (0, 1) ∪ (1,∞], and s ∈ (0,∞], where m ∈ N and λ ∈ [0, 1] are given by (351)

and (352), respectively. Similarly, the conditional Rényi entropy of U given V can be calculated as

Hβ(U(α) | V(α))
(7)
=

1

θ(β)
lnNβ(U(α) | V(α)) (360)

(359)
=

1

θ(β)
ln
[
λmθ(β) + (1− λ) (m+ 1)θ(β)

]
, (361)

for every pair of RVs (X,Y ), α ∈ (0, 1) ∪ (1,∞], and β ∈ (0, 1) ∪ (1,∞], where m ∈ N and λ ∈ [0, 1] are given

by (351) and (352), respectively, with r = α. Analogously, it follows that

H(U(α) | V(α)) = λ lnm+ (1− λ) ln(m+ 1) (362)

for every α ∈ (0, 1) ∪ (1,∞]. Thus, the quantity Hβ(U(α) | V(α)) is determined by the following two arguments: (i)

the value Hα(X | Y ), and (ii) two orders α, β. In fact, as with (328) and (330), it also holds that

Nr(U(r) | V(r))
(359)
= λmθ(r) + (1− λ) (m+ 1)θ(r) (363)

(352)
=

(
(m+ 1)θ(r) −Nr(X | Y )

(m+ 1)θ(r) −mθ(r)

)
mθ(r) +

(
Nr(X | Y )−mθ(r)

(m+ 1)θ(r) −mθ(r)

)
(m+ 1)θ(r) (364)

=

(
(m+ 1)θ(r) −mθ(r)

(m+ 1)θ(r) −mθ(r)

)
Nr(X | Y ) (365)

= Nr(X | Y ), (366)

Hα(U(α) | V(α))
(366)
= Hα(X | Y ). (367)

Fortunately, unlike Hβ(S(α,β) | T(α,β)), the quantity Hβ(U(α) | V(α)) can be expressed in closed-forms for every

α ∈ (0, 1) ∪ (1,∞] and β ∈ (0,∞]. Employing the pair of RVs (U, V ), the sharp bounds on Hβ(X | Y ) with a

fixed Hα(X | Y ) can be established for α 6= β, as shown in the following theorem.

Theorem 8. Let X be a discrete RV in which supp(PX) is possibly countably infinite, and let Y be an arbitrary

RV. For any α ∈ (0, 1) ∪ (1,∞] and any β ∈ (0,∞], it holds that

Hβ(X | Y ) ≤ Hβ(U(α) | V(α)) if α ≤ β, (368)

Hβ(X | Y ) ≥ Hβ(U(α) | V(α)) if β ≤ α, (369)

where the pair of RVs (U, V ) is defined in Definition 2.

Proof of Theorem 8: Suppose that 0 < r < s ≤ ∞. For given m ∈ N, r ∈ (0,∞) and t ∈ Jm(r), let λ ∈ [0, 1]

be chosen so that

t = λmθ(r) + (1− λ) (m+ 1)θ(r). (370)
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It follows from Lemma 6 that if γ(r, s) < 1, then

‖w(N−1r (w : t))‖s
(370)
= ‖w(N−1r (w : λmθ(r) + (1− λ) (m+ 1)θ(r)))‖s (371)

(a)
≥ λ ‖w(N−1r (w : mθ(r)))‖s + (1− λ) ‖w(N−1r (w : (m+ 1)θ(r)))‖s (372)

(b)
= λ ‖w(1/m)‖s + (1− λ) ‖w(1/(m+ 1))‖s (373)

= λmθ(s) + (1− λ) (m+ 1)θ(s) (374)

(370)
=

(
(m+ 1)θ(r) − t

(m+ 1)θ(r) −mθ(r)

)
mθ(s) +

(
t−mθ(r)

(m+ 1)θ(r) −mθ(r)

)
(m+ 1)θ(s) (375)

=

(
(m+ 1)θ(r)mθ(s) −mθ(r) (m+ 1)θ(s)

(m+ 1)θ(r) −mθ(r)

)
+ t

(
(m+ 1)θ(s) −mθ(s)

(m+ 1)θ(r) −mθ(r)

)
(376)

=: φ(m, t; r, s) (377)

for every m ∈ N, t ∈ Jm(r), and 0 < r < s ≤ ∞, where (a) follows by the concavity of Lemma 6 and the

definition of concave functions, and (b) follows from the fact that

‖w(1/m)‖r = mθ(r) ⇐⇒ N−1r (w : mθ(r)) = 1/m. (378)

Similarly, if γ(r, s) > 1, it also follows from Lemma 6 that

‖w(N−1r (w : t))‖s ≤ φ(m, t; r, s) (379)

for every m ∈ N, t ∈ Jm(r), and 0 < r < s ≤ ∞. Note from (359) and (374) that the function φ(m, t; r, s) fulfills

Ns(U(r) | V(r)) = φ
(⌊
Nr(X | Y )θ(r)

⌋
, Nr(X | Y ); r, s

)
(380)

for given pair of RVs (X,Y ) and r, s ∈ (0, 1) ∪ (1,∞]. We now verify the monotonicity of the derivative

∂φ(m, t; r, s)

∂t
=

(m+ 1)θ(s) −mθ(s)

(m+ 1)θ(r) −mθ(r)
(381)

=

(
mθ(s)

mθ(r)

)(
((m+ 1)/m)θ(s) − 1

((m+ 1)/m)θ(r) − 1

)
(382)

(56)
= mθ(s)−θ(r) θ(r)

θ(s)

(
ln1−θ(s)((m+ 1)/m)

ln1−θ(r)((m+ 1)/m)

)
(383)

with respect to m ∈ N. Since 1− θ(r) < 1− θ(s) whenever r < s and

∂

∂x
lnq x = x−q, (384)

we get that for each fixed 0 < r < s ≤ ∞, the function

m 7→
ln1−θ(s)((m+ 1)/m)

ln1−θ(r)((m+ 1)/m)
(385)
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is strictly decreasing for m ∈ N. Moreover, since θ(s) − θ(r) < 0 whenever r < s, it also follows that for each

fixed 0 < r < s ≤ ∞, the function m 7→ mθ(s)−θ(r) is strictly decreasing for m ∈ N. Therefore, we have

sgn

(
∂φ(m, t; r, s)

∂t
− ∂φ(m+ 1, t; r, s)

∂t

)
= sgn

(
θ(r)

θ(s)

)
sgn

(
mθ(s)−θ(r)

(
ln1−θ(s)((m+ 1)/m)

ln1−θ(r)((m+ 1)/m)

)
− (m+ 1)θ(s)−θ(r)

(
ln1−θ(s)((m+ 2)/(m+ 1))

ln1−θ(r)((m+ 2)/(m+ 1))

))
︸ ︷︷ ︸

=1

(386)

(42)
= sgn

(
s (1− r)
r (1− s)

)
(387)

(a)
=

−1 if γ(r, s) > 1,

1 if γ(r, s) < 1

(388)

for every m ∈ N and 0 < r < s ≤ ∞ with r, s 6= 1, where (a) follows from the hypothesis: r < s. This implies the

strict monotonicity of the derivative

m 7→ ∂φ(m, t; r, s)

∂t
(389)

with respect to m ∈ N. In addition, it follows from (375) that

φ(m, (m+ 1)θ(r); r, s) =

(
(m+ 1)θ(r) − (m+ 1)θ(r)

(m+ 1)θ(r) −mθ(r)

)
︸ ︷︷ ︸

=0

mθ(s) +

(
(m+ 1)θ(r) −mθ(r)

(m+ 1)θ(r) −mθ(r)

)
︸ ︷︷ ︸

=1

(m+ 1)θ(s)

(390)

= (m+ 1)θ(s), (391)

φ(m+ 1, (m+ 1)θ(r); r, s) =

(
(m+ 2)θ(r) − (m+ 1)θ(r)

(m+ 2)θ(r) − (m+ 1)θ(r)

)
︸ ︷︷ ︸

=1

(m+ 1)θ(s) +

(
(m+ 1)θ(s) − (m+ 1)θ(r)

(m+ 2)θ(r) − (m+ 1)θ(r)

)
︸ ︷︷ ︸

=0

(m+ 2)θ(s)

(392)

= (m+ 1)θ(s); (393)

i.e, it holds that

φ(m, (m+ 1)θ(r); r, s) = φ(m+ 1, (m+ 1)θ(r); r, s) (394)

for every m ∈ N and r, s ∈ (0, 1) ∪ (1,∞]. Since t 7→ φ(m, t; r, s) is linear in t (cf. (376)), combining (388) and

(394), we have that for any fixed 0 < r < s ≤ ∞,

• if γ(r, s) > 1, then t 7→ min{φ(m, t; r, s) | m ∈ N} is a piecewise linear function of t ∈ J (r), whose its slope

never increases as t increases, i.e., it is concave in t ∈ J (r),

• if γ(r, s) < 1, then t 7→ min{φ(m, t; r, s) | m ∈ N} is a piecewise linear function of t ∈ J (r), whose its slope

never decreases as t increases, i.e., it is convex in t ∈ J (r).
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Moreover, it also follows from (388) and (394) that

φ(m′, t; r, s) = min{φ(m, t; r, s) | m ∈ N} if γ(r, s) > 1, (395)

φ(m′, t; r, s) = max{φ(m, t; r, s) | m ∈ N} if γ(r, s) < 1 (396)

for every m′ ∈ N and t ∈ Jm′(r); thus, we get from (370) that

φ(btθ(r)c, t; r, s) = min{φ(m, t; r, s) | m ∈ N} if γ(r, s) > 1, (397)

φ(btθ(r)c, t; r, s) = max{φ(m, t; r, s) | m ∈ N} if γ(r, s) < 1 (398)

for every t ∈ J (r). Combining (377), (379), (397), and (397), we obtain

‖w(N−1r (w : t))‖s ≤ min{φ(m, t; r, s) | m ∈ N} if γ(r, s) > 1, (399)

‖w(N−1r (w : t))‖s ≥ max{φ(m, t; r, s) | m ∈ N} if γ(r, s) < 1 (400)

for every t ∈ J (r) and 0 < r < s ≤ ∞. Therefore, it γ(r, s) < 1, we obtain

Ns(X | Y )
(8)
= E

[
‖PX|Y (· | Y )‖s

]
(401)

(a)
≥ E

[
‖w(N−1r (w : ‖PX|Y (· | Y )‖r))‖s

]
(402)

(400)
≥ E

[
max
m∈N

φ(m, ‖PX|Y (· | Y )‖r; r, s)
]

(403)

≥ max
m∈N

E
[
φ
(
m, ‖PX|Y (· | Y )‖r; r, s

)]
(404)

(b)
= max

m∈N
φ
(
m,E

[
‖PX|Y (· | Y )‖r

]
; r, s

)
(405)

(8)
= max

m∈N
φ
(
m,Nr(X | Y ); r, s

)
(406)

(398)
= φ

(⌊
Nr(X | Y )θ(r)

⌋
, Nr(X | Y ); r, s

)
(407)

(380)
= Ns(U(r) | V(r)) (408)

for every pair of RVs (X,Y ) and 0 < r < s ≤ ∞, where (a) follows by Theorem 2, and (b) follows by the linearity

of t 7→ φ(m, t; r, s) (cf. (376)). Analogously, it can also be verified that if γ(r, s) > 1, then

Ns(X | Y ) ≤ Ns(U(r) | V(r)) (409)

for every pair of RVs (X,Y ) and 0 < r < s ≤ ∞.

Finally, we define

fα(t) := lim
u→α

u

1− u
ln t (410)

for α ∈ (0,∞] and t > 0. Since

• it holds that Hα(X | Y ) = fα(Nα(X | Y )) for every 0 < α ≤ ∞,

• if γ(α, β) > 1, then t 7→ fβ(t) is a strictly decreasing function of t > 0,

• if γ(α, β) < 1, then t 7→ fβ(t) is a strictly increasing function of t > 0
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for every 0 < α < β ≤ ∞, it follows from (408) and (409) that

Hβ(X | Y ) ≤ Hβ(U(α) | V(α)) (411)

for every pair of RVs (X,Y ) and 0 < α < β ≤ ∞. In a similar way to the above discussions, we can also prove

that

Hβ(X | Y ) ≥ Hβ(U(α) | V(α)) (412)

for every pair of RVs (X,Y ) and 0 < β < α ≤ ∞. This completes the proof of Theorem 8.

Note that if α = 1, then sharp bounds in a similar situation to Theorem 8 were already derived in [29, Theorem 2

and Corollary 1]. We further mention that Theorem 8 has no constraint in the size of support |supp(PX)|, i.e., the

RV X may take values from a countably infinite alphabet.

We now compare Theorem 8 to the inequality

Hβ(X | Y ) ≤ Hα(X | Y ) for 0 ≤ α ≤ β ≤ ∞ (413)

proved by Fehr and Berens [13, Proposition 5], which shows that α 7→ Hα(X | Y ) is decreasing for its order

α ∈ [0,∞]. It follows from (366) and (413) that

Hβ(U(α) | V(α)) ≤ Hα(X | Y ) for 0 < α ≤ β ≤ ∞, (414)

which implies that (368) of Theorem 8 is tighter than (413).

V. APPLICATIONS

In Section IV, we established sharp bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) for distinct orders α 6= β.

In this section, we introduce applications of these sharp bounds to other information measures. If an information

measure is a strictly monotone function of Hα(X | Y ), then our results can be applicable to it.

As an example, we can apply Theorems 5 and 8 to the minimum average probability of error Pe(X | Y ) =

exp(−H∞(X | Y )) defined in (13); and then, we can obtain a generalization of Fano’s inequality from H(X | Y )

to Hα(X | Y ), as with [33]. We organize this discussion in the next subsection.

A. Generalized Fano’s Inequality: Interplay Between Conditional Rényi Entropy and Average Probability of Error

In this subsection, we examine interplay between the conditional Rényi entropy and the probability of error, as a

generalization of Fano’s inequality. We first show an unconditional version of it in the following corollary.

Corollary 1 (Unconditional version of Fano’s inequality for the Rényi entropy, see also [33, Corollary 3 and

Theorem 2]). Let X be a discrete RV taking values from a countable alphabet X . Then, it holds that

Hα(X) ≥ 1

1− α
ln

[⌊
1

1− ε

⌋
(1− ε)α +

(
1−

⌊
1

1− ε

⌋
(1− ε)

)α]
(415)
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for every α ∈ (0, 1) ∪ (1,∞) and ε ∈ [0, Pe(X)], where the minimum average probability of error Pe(X) for

guessing X is defined by

Pe(X) := min
x̂∈X

Pr(X 6= x̂). (416)

In addition, if supp(PX) is finite, i.e., |supp(PX)| ≤ n for some n ∈ N, then

Hα(X) ≤


1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
if ε ≤ n− 1

n
,

lnn if ε >
n− 1

n

(417)

for every α ∈ (0, 1) ∪ (1,∞) and ε ∈ [Pe(X), 1].

Proof of Corollary 1: Let X be a discrete RV. It follows from Theorem 4 that

Hα(X) ≥ Hα(w(H−1∞ (w : H∞(X)))) (418)

= Hα(w(‖PX‖∞)) (419)

= Hα(w(1− Pe(X))) (420)

=
1

1− α
ln

[⌊ 1

1− Pe(X)

⌋
(1− Pe(X))α +

(
1−

⌊ 1

1− Pe(X)

⌋
(1− Pe(X))

)α]
(421)

(a)
≥ 1

1− α
ln

[⌊
1

1− ε

⌋
(1− ε)α +

(
1−

⌊
1

1− ε

⌋
(1− ε)

)α]
(422)

for every α ∈ (0, 1) ∪ (1,∞) and ε ∈ [0, Pe(X)], where (a) follows from the fact that p 7→ Hα(w(p)) is strictly

decreasing19 for p ∈ (0, 1].

On the other hand, we suppose that supp(PX) is finite, i.e., |supp(PX)| = k ∈ N. It follows from Theorem 3 that

Hα(X) ≤ Hα(vk(H−1∞ (vk : H∞(X)))) (423)

= Hα(vk(‖PX‖∞)) (424)

= Hα(vk(1− Pe(X))) (425)

=
1

1− α
ln
[
(1− Pe(X))α + (k − 1)1−α Pe(X)α

]
(426)

(a)
≤ 1

1− α
ln
[
(1− Pe(X))α + (n− 1)1−α Pe(X)α

]
(427)

(b)
≤ 1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
(428)

for every α ∈ (0, 1) ∪ (1,∞), n ≥ |supp(PX)|, and ε ∈ [Pe(X), (n− 1)/n], where (a) follows from the fact that

the right-hand side of (427) is strictly increasing for n > 1, and (b) also follows from the fact that the right-hand

side of (428) is strictly increasing for ε ∈ [0, 1]. Finally, since 0 ≤ Pe(X | Y ) ≤ (k− 1)/k ≤ (n− 1)/n, Inequality

19This monotonicity follows from Lemma 1 and the monotonicity of t 7→ (α/(1− α)) ln t.
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(428) can be rewritten by

Hα(X) ≤


1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
if ε ≤ n− 1

n
,

lnn if ε >
n− 1

n

(429)

for every α ∈ (0, 1) ∪ (1,∞), n ≥ |supp(PX)|, and ε ∈ [Pe(X), 1]. This completes the proof of Corollary 1.

In the following corollary, we give sharp upper and lower bounds on Hα(X | Y ) with a fixed probability of error,

i.e., the following corollary shows generalizations of Fano’s inequality and the reverse of Fano’s inequality.

Corollary 2 (Conditional version of Fano’s inequality for the Rényi entropy, see also [33, Theorems 3 and 11]).

Let X be a discrete RV, and let Y be an arbitrary RV. Then, it holds that

Hα(X | Y ) ≥ α

1− α
ln

[(
1 +

⌊ 1

1− ε

⌋)1/α(
1− (1− ε)

⌊ 1

1− ε

⌋)
−
⌊ 1

1− ε

⌋1/α(
ε− (1− ε)

⌊ 1

1− ε

⌋)]
(430)

for every α ∈ (0, 1) ∪ (1,∞) and ε ∈ [0, Pe(X | Y )], where the minimum average probability of error Pe(X | Y )

is defined in (13). In addition, if supp(PX) is finite, i.e., |supp(PX)| ≤ n for some n ∈ N, then

Hα(X | Y ) ≤


1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
if ε ≤ n− 1

n
,

lnn if ε >
n− 1

n

(431)

for every α ∈ (0, 1) ∪ (1,∞) and ε ∈ [Pe(X | Y ), 1].

Proof of Corollary 2: Let X be a discrete RV, and let Y be an arbitrary RV. It follows from Theorem 8 that

Hα(X | Y ) ≥ Hα(U(∞) | V(∞)) (432)

(361)
=

α

1− α
ln
[
λm(1/α)−1 + (1− λ) (1 +m)(1/α)−1

]
(433)

(352)
=

α

1− α
ln

[(
(1 +m)−1 −N∞(X | Y )

(1 +m)−1 −m−1

)
m(1/α)−1 +

(
N∞(X | Y )−m−1

(1 +m)−1 −m−1

)
(1 +m)(1/α)−1

]
(434)

=
α

1− α
ln

[
m(1/α)−1 (1 +m)−1 −m−1 (1 +m)(1/α)−1

(1 +m)−1 −m−1
+N∞(X | Y )

(
(1 +m)(1/α)−1 −m(1/α)−1

(1 +m)−1 −m−1

)]
(435)

=
α

1− α
ln

[(
(1 +m)1/α −m1/α

)
+N∞(X | Y )

(
m1/α (1 +m)−m (1 +m)1/α

)]
(436)

=
α

1− α
ln

[
(1 +m)1/α

(
1−mN∞(X | Y )

)
−m1/α

(
1− (1 +m)N∞(X | Y )

)]
(437)

(351)
=

α

1− α
ln

[(
1 +

⌊ 1

N∞(X | Y )

⌋)1/α(
1−

⌊ 1

N∞(X | Y )

⌋
N∞(X | Y )

)

−
⌊ 1

N∞(X | Y )

⌋1/α(
1−

(
1 +

⌊ 1

N∞(X | Y )

⌋)
N∞(X | Y )

)]
(438)
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=
α

1− α
ln

[(
1 +

⌊ 1

1− Pe(X | Y )

⌋)1/α(
1−

⌊ 1

1− Pe(X | Y )

⌋(
1− Pe(X | Y )

))

−
⌊ 1

1− Pe(X | Y )

⌋1/α(
1−

(
1 +

⌊ 1

1− Pe(X | Y )

⌋)(
1− Pe(X | Y )

))]
(439)

(a)
≥ α

1− α
ln

[(
1 +

⌊ 1

1− ε

⌋)1/α(
1− (1− ε)

⌊ 1

1− ε

⌋)
−
⌊ 1

1− ε

⌋1/α(
1− (1− ε)

(
1 +

⌊ 1

1− ε

⌋))]
(440)

for every α ∈ (0, 1) ∪ (1,∞) and ε ∈ [0, Pe(X | Y )], where (a) follows from the fact that the right-hand side of

(440) is strictly increasing for ε ∈ [0, 1). Note that this monotonicity can be verified as with the proof of Lemma 1.

On the other hand, we suppose that supp(PX) is finite, i.e., |supp(PX)| = k ∈ N. It follows from Theorem 5 that

Hα(X | Y ) ≤ Hα(vk(H−1∞ (vk : H∞(X | Y )))) (441)

= Hα(vk(N∞(X | Y ))) (442)

= Hα(vk(1− Pe(X | Y ))) (443)

=
1

1− α
ln
[
(1− Pe(X | Y ))α + (k − 1)1−α Pe(X | Y )α

]
(444)

(a)
≤ 1

1− α
ln
[
(1− Pe(X | Y ))α + (n− 1)1−α Pe(X | Y )α

]
(445)

(b)
≤ 1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
(446)

for every α ∈ (0, 1) ∪ (1,∞), n ≥ |supp(PX)|, and ε ∈ [Pe(X | Y ), (n− 1)/n], where (a) follows from the fact

that the right-hand side of (445) is strictly increasing for n > 1, and (b) also follows from the fact that the right-hand

side of (446) is strictly increasing for ε ∈ [0, 1]. Finally, since 0 ≤ Pe(X | Y ) ≤ (k− 1)/k ≤ (n− 1)/n, Inequality

(446) can be rewritten by

Hα(X | Y ) ≤


1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
if ε ≤ n− 1

n
,

lnn if ε >
n− 1

n

(447)

for every α ∈ (0, 1)∪ (1,∞), n ≥ |supp(PX)|, and ε ∈ [Pe(X | Y ), 1]. This completes the proof of Corollary 2.

In Fig. 3, we illustrate feasible regions of pairs (Pe(X | Y ), Hα(X | Y )) established by the upper and lower

bounds of Corollary 2. The well-known bounds 0 ≤ Hα(X | Y ) ≤ ln |supp(PX)|, e.g., [13, Proposition 3],

immediately follow by Corollary 2. In addition, Corollary 2 also implies that

Hα(X | Y )→ 0 ⇐⇒ Pe(X | Y )→ 0, (448)

Hα(X | Y )→ ln |supp(PX)| ⇐⇒ Pe(X | Y )→ |supp(PX)| − 1

|supp(PX)|
(449)

for every α ∈ (0, 1) ∪ (1,∞).

February 3, 2017 DRAFT



47

Pe(X | Y )

[nats]
H

1
/
3
(X
|Y

)

low
er

bo
un

d (43
0)

upper bound (431)

fea
sib

le reg
ion

(a) Case of α = 1/3.

Pe(X | Y )

[nats]

H
3
(X
|Y

)

low
er

bo
un

d (43
0)

up
pe

r bo
un

d (43
1)

fea
sib

le
re

gio
n

(b) Case of α = 3.

Fig. 3. Plot of the upper and lower bounds on Hα(X | Y ) with a fixed Pe(X | Y ) in the case of |supp(PX)| ≤ n = 16 (cf. Corollary 2).

We now consider RVs X and Y taking values from same finite alphabet X . Since Pe(X | Y ) ≤ Pr(X 6= Y ),

note that (431) also holds with ε = Pr(X 6= Y ). If ε = Pr(X 6= Y ) ≤ 1− 1/|X |, then (431) approaches to

H(X | Y ) ≤ h2
(
Pr(X 6= Y )

)
+ Pr(X 6= Y ) ln

(
|X | − 1

)
(450)

as α → 1, where h2 : t 7→ −t ln t − (1 − t) ln(1 − t) denotes the binary entropy function. Thus, Ineq. (431)

is a part of generalized Fano’s inequality in terms of Arimoto’s conditional Rényi entropy. Unlike (431), since

Pe(X | Y ) ≤ Pr(X 6= Y ), note that (430) does not hold with ε = Pr(X 6= Y ) in general. In fact, the reverse of

Fano’s inequality (cf. [12, Theorem 1], [23, Eq. (15)], [36, Eq. (6)]) is a sharp lower bound on the conditional

Shannon entropy H(X | Y ) with not fixed Pr(X 6= Y ) but fixed ε = Pe(X | Y ) as

H(X | Y ) ≥
(

1− (1− ε)
⌊ 1

1− ε

⌋)(
1 +

⌊ 1

1− ε

⌋)
ln
(

1 +
⌊ 1

1− ε

⌋)
−
(
ε− (1− ε)

⌊ 1

1− ε

⌋)⌊ 1

1− ε

⌋
ln
⌊ 1

1− ε

⌋
.

(451)

Since (430) approaches to (451) with ε = Pe(X | Y ) as α → 1, Inequality (430) can be seen as a generalized

reverse of Fano’s inequality in terms of Arimoto’s conditional Rényi entropy. Indeed, it can be verified that the

right-hand side of (451) is same as the right-hand side of (362).

We now compare Corollary 2 with another generalized Fano’s inequality, which is an upper bound on another

definition of conditional Rényi entropy

HH
α (X | Y ) :=

1

1− α
lnE

[ ∑
x∈supp(PX|Y (·|Y ))

PX|Y (x | Y )α
]

(452)

proposed by Hayashi [19]. Iwamoto and Shikata [22] investigated many information theoretic properties of HH
α (X | Y ).

Then, they derived a different type of Fano’s inequality, as shown in the following theorem.
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Theorem 9 ([22, Theorem 7]). Let X and Y be RVs taking values from same finite alphabet X . Define

g1(α, ε, n) :=
1

1− α
ln
[
(1− ε)α + (n− 1)1−α εα

]
, (453)

g2(α, ε, n) :=
1

1− α
ln
[
(1− ε) + εα−1 (1− (1− ε)2−α) (n− 1)1−α

]
. (454)

Then, it holds that

HH
α (X | Y ) ≤ max

{
g1
(
α,Pr(X 6= Y ), |X |

)
, g2
(
α,Pr(X 6= Y ), |X |

)}
(455)

for every α ∈ (0, 1) ∪ (1,∞) whenever20 0 < Pr(X 6= Y ) < 1.

Since

HH
α (X | Y ) ≤ Hα(X | Y ) (456)

(cf. [22, Theorem 1]), Inequality (431) of Corollary 2 can be relaxed by replacing Hα(X | Y ) by HH
α (X | Y ).

Moreover, since the right-hand side of (431) is equal to g1(α, ε, n) for 0 ≤ ε ≤ (n − 1)/n, Inequality (431) of

Corollary 2 can also be relaxed by replacing the right-hand side of (431) by the right-hand side of (455) for

0 ≤ ε ≤ (n− 1)/n. Thus, Inequality (431) of Corollary 2 is tighter than (455) of Theorem 9 when 0 ≤ Pr(X 6=

Y ) ≤ (|X | − 1)/|X |.

Finally, we give sharp bounds on Pe(X | Y ) with a fixed Hα(X | Y ) by using the results of Section IV, as

shown in the following corollary.

Corollary 3 (see also [33, Theorems 5 and 12]). Let X be a discrete RV, and let Y be an arbitrary RV. Then, it

holds that

Pe(X | Y ) ≤ 1−

(
1 +

⌊
exp

(
Hα(X | Y )

)⌋)1/α
−
⌊

exp
(
Hα(X | Y )

)⌋1/α
− exp

(1− α
α

Hα(X | Y )
)

⌊
exp

(
Hα(X | Y )

)⌋ (
1 +

⌊
exp

(
Hα(X | Y )

)⌋)1/α
−
⌊

exp
(
Hα(X | Y )

)⌋1/α (
1 +

⌊
exp

(
Hα(X | Y )

)⌋)
(457)

for every α ∈ (0, 1) ∪ (1,∞). In addition, if supp(PX) is finite, i.e., |supp(PX)| = n for some n ∈ N, then

Pe(X | Y ) ≥ 1−H−1α (vn : Hα(X | Y )) (458)

for every α ∈ (0,∞), where H−1α (vn : ·) is defined in (47). In particular, if either α = 1/2 or α = 2, then the

following closed-form bounds hold:

Pe(X | Y ) ≥ 1−
n (n− 1)− (n− 2) exp

(
H1/2(X | Y )

)
+ 2

√
exp

(
H1/2(X | Y )

)
(n− 1)

(
n− exp

(
H1/2(X | Y )

))
n2

,

(459)

Pe(X | Y ) ≥ 1−
1 +

√
exp

(
−H2(X | Y )

)
(n− 1)

(
n− exp

(
H2(X | Y )

))
n

(460)

20Note that g2(α, 0, n) is undefined if α ∈ (0, 1) and g2(α, 1, n) is also undefined if α ≥ 2. In [22, Theorem 7], the limiting value was

considered as Pr(X 6= Y )→ 0.
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with n = |supp(PX)|.

Proof of Corollary 3: Let X be a discrete RV, and let Y be an arbitrary RV. It follows from Theorem 8 that

H∞(X | Y ) ≤ H∞(U(α) | V(α)) (461)

= − ln
[
λm−1 + (1− λ) (1 +m)−1

]
(462)

= − ln

[(
(1 +m)(1/α)−1 −Nα(X | Y )

(1 +m)(1/α)−1 −m(1/α)−1

)
m−1 +

(
Nα(X | Y )−m(1/α)−1

(1 +m)(1/α)−1 −m(1/α)−1

)
(1 +m)−1

]
(463)

= − ln

[(
m−1 (1 +m)(1/α)−1 −m(1/α)−1 (1 +m)−1

(1 +m)(1/α)−1 −m(1/α)−1

)
+Nα(X | Y )

(
(1 +m)−1 −m−1

(1 +m)(1/α)−1 −m(1/α)−1

)]
(464)

= − ln

[(
(1 +m)1/α −m1/α

m (1 +m)1/α −m1/α (1 +m)

)
−Nα(X | Y )

(
1

m (1 +m)1/α −m1/α (m+ 1)

)]
(465)

= ln

[
m (1 +m)1/α −m1/α (1 +m)

(1 +m)1/α −m1/α −Nα(X | Y )

]
(466)

= ln


⌊

exp
(
Hα(X | Y )

)⌋ (
1 +

⌊
exp

(
Hα(X | Y )

)⌋)1/α
−
⌊

exp
(
Hα(X | Y )

)⌋1/α (
1 +

⌊
exp

(
Hα(X | Y )

)⌋)
(

1 +
⌊

exp
(
Hα(X | Y )

)⌋)1/α
−
⌊

exp
(
Hα(X | Y )

)⌋1/α
− exp

(1− α
α

Hα(X | Y )
)


(467)

for every α ∈ (0, 1) ∪ (1,∞). Along with (467), the equation

H∞(X | Y ) = ln

[
1

1− Pe(X | Y )

]
(468)

yields (457).

On the other hand, we suppose that |supp(PX)| = n for some n ∈ N. It follows from Theorem 5 that

H∞(X | Y ) ≥ H∞(vn(H−1α (vn : Hα(X | Y )))) (469)

= − lnH−1α (vn : Hα(X | Y )) (470)

for every α ∈ (0,∞). Combining (468) and (470), we have (458). Finally, Inequalities (459) and (460) can be

obtained by substituting (458) into the closed-forms of Fact 1. This completes the proof of Corollary 3.

In Fig. 4, we illustrate feasible regions of pairs (Hα(X | Y ), Pe(X | Y )) established by the upper and lower

bounds on Corollary 3. In this subsection, we examined interplay between Hα(X | Y ) and Pe(X | Y ) as a

generalization of Fano’s inequality. In the next subsection, we further consider applications of the results of this

study to other information measures.
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Fig. 4. Plot of the upper and lower bounds on Pe(X | Y ) with a fixed Hα(X | Y ) in the case of |supp(PX)| ≤ n = 6 (cf. Corollary 3).

B. Other Related Information Measures

We now consider the Bhattacharrya parameter [25, Definition 17] of X given Y , defined by

Z(X | Y ) :=
1

|X | − 1

∑
x,x′∈X :
x 6=x′

E
[√

PX|Y (x | Y )PX|Y (x′ | Y )

]
, (471)

where X is an RV taking values from a finite alphabet X , and Y is an arbitrary RV. This quantity Z(X | Y ) is

useful to analyze rate of polarization for |X |-ary polar codes [25, Section VII-B], [31, Section 4.1.2]. After some

algebra, we have

H1/2(X | Y )
(7)
= lnN1/2(X | Y ) (472)

(8)
= lnE

[
‖PX|Y (· | Y )‖1/2

]
(473)

(2)
= lnE

[(∑
x∈X

√
PX|Y (x | Y )

)2]
(474)

= lnE
[ ∑
x,x′∈X

√
PX|Y (x | Y )PX|Y (x′ | Y )

]
(475)

= lnE
[∑
x∈X

(
PX|Y (x | Y ) +

∑
x′∈X :x′ 6=x

√
PX|Y (x | Y )PX|Y (x′ | Y )

)]
(476)

= ln

(
1 + E

[ ∑
x,x′∈X :x′ 6=x

√
PX|Y (x | Y )PX|Y (x′ | Y )

])
(477)

(471)
= ln

(
1 + (|X | − 1)Z(X | Y )

)
; (478)
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therefore, our results can be applicable to Z(X | Y ). Fortunately, if α = 1/2, i.e., in the case of (478), our results

can be expressed in closed-forms by Facts 1 and 2. In the following corollary, we show sharp upper and lower

bounds on Z(X | Y ) with fixed Pe(X | Y ) and |X |.

Corollary 4 (Sharp bounds on Bhattacharrya parameter with a fixed average probability of error). Let X be an RV

taking values from a finite alphabet X , and let Y be an arbitrary RV. Then, it holds that

1

|X | − 1

(⌊ 1

1− ε1

⌋
+
(

1 +
⌊ 1

1− ε1

⌋)(
1− (1− ε1)

⌊ 1

1− ε1

⌋)
− 1

)
≤ Z(X | Y ) ≤

(
|X | − 2

|X | − 1

)
ε2 + 2

√
ε2 (1− ε2)

|X | − 1

(479)

for every 0 ≤ ε1 ≤ Pe(X | Y ) ≤ ε2 ≤ (|X | − 1)/|X |.

Proof of Corollary 4: It follows from (430) of Corollary 2 and (478) that

Z(X | Y ) ≥ 1

|X | − 1

[(
1 +

⌊ 1

1− ε

⌋)2(
1− (1− ε)

⌊ 1

1− ε

⌋)
−
⌊ 1

1− ε

⌋2(
1− (1− ε)

(
1 +

⌊ 1

1− ε

⌋))
− 1

]
(480)

=
1

|X | − 1

[(
1 + 2

⌊ 1

1− ε

⌋)
− (1− ε)

⌊ 1

1− ε

⌋(
1 +

⌊ 1

1− ε

⌋)
− 1

]
(481)

=
1

|X | − 1

[⌊ 1

1− ε

⌋
+
(

1 +
⌊ 1

1− ε

⌋)(
1− (1− ε)

⌊ 1

1− ε

⌋)
− 1

]
(482)

for every ε ∈ [0, Pe(X | Y )]. In addition, it also follows from (431) of Corollary 2 and (478) that

Z(X | Y ) ≤ 1

|X | − 1

[(√
1− ε+

√
(|X | − 1) ε

)2
− 1

]
(483)

=
1

|X | − 1

[(
(1− ε) + 2

√
(|X | − 1) ε (1− ε) + (|X | − 1) ε

)
− 1

]
(484)

=
1

|X | − 1

[
2
√

(|X | − 1) ε (1− ε) + (|X | − 2) ε

]
(485)

=

(
|X | − 2

|X | − 1

)
ε+ 2

√
ε (1− ε)
|X | − 1

(486)

for every ε ∈ [Pe(X | Y ), (|X | − 1)/|X |]. This completes the proof of Corollary 4.

In Fig. 5, we illustrate a feasible region of pairs (Pe(X | Y ), Z(X | Y )) established by the upper and lower

bounds of Corollary 4. In a similar way to the proof of Corollary 4, we can also derive sharp upper and lower

bounds on Pe(X | Y ) with fixed Z(X | Y ) and |X |, as shown in the following corollary.

Corollary 5 (Sharp bounds on minimum average probability of error with a fixed Bhattacharrya parameter, see also

[25, Lemma 22]). Let X be an RV taking values from a finite alphabet X , and let Y be an arbitrary RV. Then, it
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Fig. 5. Plot of the upper and lower bounds on Z(X | Y ) with a fixed Pe(X | Y ) in the case of |X | = 4 (cf. Corollary 4).

holds that

|X | − 1

|X |2

(
2 + (|X | − 2)Z(X | Y )− 2

√
(1− Z(X | Y ))(1 + (|X | − 1)Z(X | Y ))

)

≤ Pe(X | Y ) ≤ 1 +
(|X | − 1)Z(X | Y )− 2

⌊
1 + (|X | − 1)Z(X | Y )

⌋
⌊
1 + (|X | − 1)Z(X | Y )

⌋(
1 +

⌊
1 + (|X | − 1)Z(X | Y )

⌋) .
(487)

Proof of Corollary 5: Let X be an RV taking values from a finite alphabet X , and let Y be an arbitrary

RV. For simplicity, let Z = Z(X | Y ), let ε = Pe(X | Y ), and let n = |X |. Substituting α = 1/2 and

exp(H1/2(X | Y )) = 1 + (|X | − 1)Z(X | Y ) (see (478)) into (457), we have

ε ≤ 1− (1 + b1 + (n− 1)Zc)2 − b1 + (n− 1)Zc2 − (1 + (n− 1)Z)

b1 + (n− 1)Zc (1 + b1 + (n− 1)Zc)2 − b1 + (n− 1)Zc2 (1 + b1 + (n− 1)Zc)
(488)

= 1 +
(n− 1)Z − 2b1 + (n− 1)Zc

b1 + (n− 1)Zc (1 + b1 + (n− 1)Zc)
, (489)

which is the upper bound of (487).

On the other hand, consider the right-hand inequality of (479). We readily see that

Z ≤
(
n− 2

n− 1

)
ε+ 2

√
ε (1− ε)
n− 1

(490)
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⇐⇒ Z −
(
n− 2

n− 1

)
ε ≤ 2

√
ε (1− ε)
n− 1

(491)

⇐⇒ Z2 − 2Z

(
n− 2

n− 1

)
ε+

(
n− 2

n− 1

)2

ε2 ≤ 4 ε (1− ε)
n− 1

(492)

⇐⇒

((
n− 2

n− 1

)2

+
4

n− 1

)
ε2 −

(
2Z

(
n− 2

n− 1

)
+

4

n− 1

)
ε+ Z2 ≤ 0. (493)

By the quadratic formula, we have

n− 1

n2

(
2 + (n− 2)Z − 2

√
(1− Z)(1 + (n− 1)Z)

)
≤ ε ≤ n− 1

n2

(
2 + (n− 2)Z + 2

√
(1− z)(1 + (n− 1)Z)

)
;

(494)

and the left-hand inequality is indeed the lower bound of (487). This completes the proof of Corollary 5.

Corollary 5 is equivalent to [25, Lemma 22]; and thus, this study gives an alternative proof of it. Note that

Corollary 5 also shows same feasible regions as Fig. 5.

So far, in this section, we presented applications of the sharp bounds on Hβ(X | Y ) with a fixed Hα(X | Y ) in

the case of either α = ∞ or β = ∞. However, the results of this study enable us to consider the sharp bounds

on Hβ(X | Y ) with a fixed Hα(X | Y ) in the case of that both α and β are finite orders. As an example, the

following corollary shows sharp bounds on H2(X | Y ) with a fixed H1/2(X | Y ).

Corollary 6. Let X be a discrete RV, and let Y be an arbitrary RV. Then, it holds that

H2(X | Y ) ≤ ln

[⌊
exp

(
H1/2(X | Y )

)⌋ (
1 +

⌊
exp

(
H1/2(X | Y )

)⌋)]
− 2 ln

[(
1 +

⌊
exp

(
H1/2(X | Y )

)⌋)3/2
−
⌊

exp
(
H1/2(X | Y )

)⌋3/2
+ exp

(
H1/2(X | Y )

)(√⌊
exp

(
H1/2(X | Y )

)⌋
−
√

1 +
⌊

exp
(
H1/2(X | Y )

)⌋)]
.

(495)

In addition, if |supp(PX)| = n for some n ∈ N, then the following lower bounds hold:

• if 0 ≤ H1/2(X | Y ) ≤ 2 ln(1 +
√
n− 1)− ln 2, then

H2(X | Y ) ≥ ln

(
n− 1

nH−11/2(vn : H1/2(X | Y ))2 − 2H−11/2(vn : H1/2(X | Y )) + 1

)
, (496)

where H−11/2(vn : ·) is already shown in Fact 1, and

• if 2 ln(1 +
√
n− 1)− ln 2 < H1/2(X | Y ) ≤ lnn, then

H2(X | Y ) ≥ 2 ln
[
n− 2

√
n− 1

]
+ ln

[
n (n− 1)

]
− 2 ln

[
2 + exp

(
H1/2(X | Y )

)(
2
√
n− 1− n

)
+ n

(
n−
√
n− 1− 2

)]
. (497)
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Fig. 6. Plot of upper and lower bounds on H2(X | Y ) with a fixed H1/2(X | Y ) in the case of |supp(PX)| ≤ n = 8 (cf. Corollary 6).

Proof of Corollary 6: Let X be a discrete RV, and let Y be an arbitrary RV. It follows from Theorem 8 that

H2(X | Y ) ≤ H2(U(1/2) | V(1/2)) (498)

= −2 ln
[
λm−1/2 + (1− λ) (1 +m)−1/2

]
(499)

= −2 ln

[(
(1 +m)−N1/2(X | Y )

)
m−1/2 +

(
N1/2(X | Y )−m

)
(1 +m)−1/2

]
(500)

= −2 ln

[(
(1 +m)−N1/2(X | Y )

)
m−1/2 +

(
N1/2(X | Y )−m

)
(1 +m)−1/2

]
(501)

= 2 ln

[ √
m (1 +m)(

(1 +m)−N1/2(X | Y )
)√

1 +m+
(
N1/2(X | Y )−m

)√
m

]
(502)

= ln
[
m (1 +m)

]
− 2 ln

[(
(1 +m)−N1/2(X | Y )

)√
1 +m+

(
N1/2(X | Y )−m

)√
m

]
(503)

= ln
[
m (1 +m)

]
− 2 ln

[
(1 +m)3/2 −m3/2 +N1/2(X | Y )

(√
m−

√
1 +m

)]
. (504)

Substituting (351) into (504), we obtain (495).

On the other hand, we suppose that supp(PX) is finite. Let n = |supp(PX)|. By Fact 2, the following identities

hold:

p∗(n; 1/2, 2) =
1

2
, (505)
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t∗(n; 1/2, 2) = ‖vn(p∗(n; 1/2, 2))‖1/2 (506)

= ‖vn(1/2)‖1/2 (507)

=

(√
1

2
+

√
n− 1

2

)2

(508)

=
1

2

(
1 +
√
n− 1

)2
, (509)

‖vn(p∗(n; 1/2, 2))‖2 = ‖vn(1/2)‖2 (510)

=

√
1

22
+

1

22(n− 1)
(511)

=
1

2

√
n

n− 1
, (512)

H1/2(vn(p∗(n; 1/2, 2))) = H1/2(vn(1/2)) (513)

= ln

(
1

2

(
1 +
√
n− 1

)2)
(514)

= 2 ln
(

1 +
√
n− 1

)
− ln 2. (515)

Hence, it follows from (322) and (323) that

H(a)
n (1/2, 2) =

(
2 ln(1 +

√
n− 1)− ln 2, lnn

]
, (516)

H(b)
n (1/2, 2) =

[
0, 2 ln(1 +

√
n− 1)− ln 2

]
, (517)

respectively, where note that if n = 2, then

H(a)
2 (1/2, 2) = ∅, (518)

H(b)
2 (1/2, 2) = [0, ln 2]. (519)

If n ≥ 3 and H1/2(X | Y ) ∈ H(a)
n (1/2, 2), then it follows from Theorem 7 that

H2(X | Y ) ≥ H2(S(1/2,2) | T(1/2,2)) (520)

= −2 ln
[
(1− δ)n−1/2 + δ ‖vn(p(a))‖2

]
(521)

= −2 ln

[
(1− δ)

√
1

n
+ δ

1

2

√
n

n− 1

]
(522)

= −2 ln

[(
2N1/2(X | Y )− 2

√
n− 1− n

n− 2
√
n− 1

)√
1

n
+

(
n−N1/2(X | Y )

n− 2
√
n− 1

)√
n

n− 1

]
(523)

= 2 ln
[
n− 2

√
n− 1

]
− 2 ln

[
2N1/2(X | Y )− 2

√
n− 1− n

√
n

+

(
n−N1/2(X | Y )

)√
n

√
n− 1

]
(524)

= 2 ln
[
n− 2

√
n− 1

]
+ 2 ln

[√
n (n− 1)

]
− 2 ln

[(
2N1/2(X | Y )− 2

√
n− 1− n

)√
n− 1 +

(
n−N1/2(X | Y )

)
n

]
(525)

= 2 ln
[
n− 2

√
n− 1

]
+ ln

[
n (n− 1)

]
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− 2 ln

[
N1/2(X | Y )

(
2
√
n− 1− n

)
− 2 (n− 1) + n

(
n−
√
n− 1

)]
(526)

= 2 ln
[
n− 2

√
n− 1

]
+ ln

[
n (n− 1)

]
− 2 ln

[
2 + exp

(
H1/2(X | Y )

)(
2
√
n− 1− n

)
+ n

(
n−
√
n− 1− 2

)]
; (527)

thus, we have (497). Moreover, if n ≥ 3 and H1/2(X | Y ) ∈ H(b)
n (1/2, 2), then it also follows from Theorem 7 that

H2(X | Y ) ≥ H2(S(1/2,2) | T(1/2,2)) (528)

= H2(vn(H−11/2(vn : H1/2(X | Y )))) (529)

= − ln

(
H−11/2(vn : H1/2(X | Y ))2 +

(
1−H−11/2(vn : H1/2(X | Y ))

)2
n− 1

)
(530)

= ln

(
n− 1

nH−11/2(vn : H1/2(X | Y ))2 − 2H−11/2(vn : H1/2(X | Y )) + 1

)
. (531)

Finally, if n = 2, then Theorem 6 also yields (531). Hence, we have (496). This completes the proof of Corollary 6.

Analogously, we can also establish closed-form sharp bounds on H1/2(X | Y ) with a fixed H2(X | Y ) in a

similar way to the proof of Corollary 6.

Furthermore, since Hα(X | Y ) is closely related to Gallager’s reliability function E0 [14] and α-mutual information

[21], [35] (cf. [2], [41]), we can also establish sharp bounds on them in some situation, as with [29, Theorem 5].

APPENDIX A

PROOF OF LEMMA 4

Proof of Lemma 4: The identity g(n, z; r, s) = −g(n, z; s, r) is trivial from the definition (55). Hence, suppose

throughout this proof that 0 < r < s <∞, and we only consider the function g(n, z; r, s). We first prove the first

assertion of Lemma 4 for z ∈ (0, 1). It is clear that if z ∈ (0, 1), then r 7→ zr is strictly decreasing for r ∈ R.

In addition, for each fixed z ∈ (0, 1) ∪ (1,∞), the function r 7→ lnr z is strictly decreasing for r ∈ R (cf. [29,

Lemma 1]). Therefore, we obtain

g(n, z; r, s)
(55)
=
(
zr + (n− 1)

)
lnr z −

(
zs + (n− 1)

)
lns z (532)

>
(
zr + (n− 1)

)
lnr z −

(
zr + (n− 1)

)
lnr z (533)

= 0 (534)

for every n ∈ N, z ∈ (0, 1), and 0 < r < s <∞, which is the first assertion of Lemma 4 for z ∈ (0, 1).

We next consider the second and third assertions of Lemma 4 for z ∈ (1,∞). Consider two functions

f1(z; r, s) := zr lnr z − zs lns z, (535)

f2(n, z; r, s) := (n− 1)
(

lnr z − lns z
)

(536)

February 3, 2017 DRAFT



57

satisfying

g(n, z; r, s) = f1(z; r, s) + f2(n, z; r, s). (537)

Direct calculations show the following derivatives:

∂f1(z; r, s)

∂z

(535)
=

∂

∂z

(
zr lnr z − zs lns z

)
(538)

=

(
∂zr

∂z

)
lnr z + zr

(
∂ lnr z

∂z

)
−
(
∂zs

∂z

)
lns z − zs

(
∂ lns z

∂z

)
(539)

= r zr−1 lnr z + zr z−r − s zs−1 lns z − zs z−s (540)

= r zr−1 lnr z + 1− s zs−1 lns z − 1 (541)

= r zr−1 lnr z − s zs−1 lns z (542)

= r zr−1
z1−r − 1

1− r
− s zs−1 z

1−s − 1

1− s
(543)

=
r

r − 1

(
zr−1 − 1

)
− s

s− 1

(
zs−1 − 1

)
(544)

∂2f1(z; r, s)

∂z2
(544)
=

∂

∂z

(
r

r − 1

(
zr−1 − 1

)
− s

s− 1

(
zs−1 − 1

))
(545)

=
r

r − 1

(
∂zr−1

∂z

)
− s

s− 1

(
∂zs−1

∂z

)
(546)

= r zr−2 − s zs−2, (547)

∂f2(n, z; r, s)

∂z

(536)
=

∂

∂z

(
(n− 1)

(
lnr z − lns z

))
(548)

= (n− 1)

[(
∂ lnr z

∂z

)
−
(
∂ lns z

∂z

)]
(549)

= (n− 1)
(
z−r − z−s

)
, (550)

∂2f2(n, z; r, s)

∂z2
(550)
=

∂

∂z

(
(n− 1)

(
z−r − z−s

))
(551)

= (n− 1)

[(
∂z−r

∂z

)
−
(
∂z−s

∂z

)]
(552)

= (n− 1)
(
s z−(1+s) − r z−(1+r)

)
. (553)

We readily see that

g(n, 1; r, s)
(55)
=
((
zr + (n− 1)

)
lnr z −

(
zs + (n− 1)

)
lns z

)∣∣∣
z=1

(554)

= (1 + (n− 1)) (lnr 1)︸ ︷︷ ︸
=0

− (1 + (n− 1)) (lns 1)︸ ︷︷ ︸
=0

(555)

= 0, (556)

lim
z→∞

g(n, z; r, s)
(55)
= lim

z→∞

((
zr + (n− 1)

)
lnr z −

(
zs + (n− 1)

)
lns z

)
(557)

= lim
z→∞

z

(
zr−1 lnr z − (n− 1)

(
lnr z

z

)
− zs−1 lns z + (n− 1)

(
lns z

z

))
(558)
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(a)
= lim
z→∞

z
(
zr−1 lnr z − zs−1 lns z

)
(559)

(b)
= lim

z→∞
z
(

lns

(1

z

)
− lnr

(1

z

))
(560)

= lim
u→0+

(
lns u− lnr u

u

)
(561)

(c)
= −∞, (562)

∂g(n, z; r, s)

∂z

∣∣∣∣
z=1

(537)
=

∂f1(z; r, s)

∂z

∣∣∣∣
z=1

+
∂f2(n, z; r, s)

∂z

∣∣∣∣
z=1

(563)

(544)
=

(
r

r − 1

(
zr−1 − 1

)
− s

s− 1

(
zs−1 − 1

))∣∣∣∣
z=1

+
∂f2(n, z; r, s)

∂z

∣∣∣∣
z=1

(564)

(550)
=

(
r

r − 1

(
zr−1 − 1

)
− s

s− 1

(
zs−1 − 1

))∣∣∣∣
z=1

+
(

(n− 1)
(
z−r − z−s

))∣∣∣
z=1

(565)

=
r

r − 1
(1− 1)− s

s− 1
(1− 1) + (n− 1) (1− 1) (566)

= 0, (567)

sgn

(
∂2g(n, z; r, s)

∂z2

∣∣∣∣
z=1

)
(537)
= sgn

(
∂2f1(z; r, s)

∂z2
+
∂2f2(n, z; r, s)

∂z2

)∣∣∣∣
z=1

(568)

(547)
= sgn

((
r zr−2 − s zs−2

)
+
∂2f2(n, z; r, s)

∂z2

)∣∣∣∣
z=1

(569)

(553)
= sgn

((
r zr−2 − s zs−2

)
+ (n− 1)

(
s z−(1+s) − r z−(1+r)

))∣∣∣∣
z=1

(570)

= sgn
((
r − s

)
+ (n− 1) (s− r)

)
(571)

= sgn(n− 2) sgn(s− r) (572)

=

0 if n = 2,

1 if n ≥ 3

(573)

for every n ∈ N≥2 and 0 < r < s <∞, where (a) follows from the limiting value

lim
x→∞

(
lnq x

x

)
=


0 if q > 0,

1 if q = 0,

∞ if q < 0,

(574)

(b) follows from the fact that

lnq x = −x1−q lnq

( 1

x

)
, (575)

and (c) follows from the limiting value

lim
u→0+

(
lns u− lnr u

)
=


−∞ if s > 1,

r − s
(1− r) (1− s)

if s < 1
(576)

February 3, 2017 DRAFT



59

for every 0 < r < s <∞.

In particular, if n = 2, then we get

∂2g(2, z; r, s)

∂z2
(537)
=

∂2f1(z; r, s)

∂z2
+
∂2f2(2, z; r, s)

∂z2
(577)

(547)
=
(
r zr−2 − s zs−2

)
+
∂2f2(2, z; r, s)

∂z2
(578)

(553)
=
(
r zr−2 − s zs−2

)
+
(
s z−(1+s) − r z−(1+r)

)
(579)

=
r (zr − z1−r)− s (zs − z1−s)

z2
(580)

(a)
<

(r − s) (zr − z1−r)
z2

(581)

(b)
≤ 0 if r ≥ 1/2 (582)

for every z ∈ (1,∞) and 1/2 ≤ r < s <∞, where (a) and (b) follow from the facts that

• for each fixed z ∈ (1,∞), the function t 7→ zt − z1−t is strictly increasing for t ∈ R,

• r − s < 0 whenever r < s,

• (zt − z1−t)|t=1/2 =
√
z −
√
z = 0 for every z ∈ [0,∞).

It follows from (567), (573), and (582) that for each fixed 1/2 ≤ r < s < ∞, the function z 7→ g(2, z; r, s) is

strictly decreasing for z ∈ [1,∞); and therefore, we observe from (556) that

g(2, z; r, s) < 0 (583)

for every z ∈ (1,∞) and 1/2 ≤ r < s <∞, which is the second assertion of Lemma 4.

We further consider the third assertion of Lemma 4, i.e., the case: n ∈ N≥3. It follows from (567) and (573) that

for any n ∈ N≥3 and 0 < r < s <∞, there exists η(n; r, s) ∈ (1,∞) such that

sgn

(
∂g(n, z; r, s)

∂z

)
=

0 if z = 1,

1 if 1 < z < η(n; r, s),

(584)

which implies that z 7→ g(n, z; r, s) is strictly increasing for z ∈ [1, η(z; r, s)]. By this strict monotonicity, it follows

from (556) that

sgn
(
g(n, z; r, s)

)
=

0 if z = 1,

1 if 1 < z ≤ η(n; r, s).

(585)

for every n ∈ N≥3 and 0 < r < s <∞. From (562) and (585), the intermediate value theorem shows that for any

n ∈ N≥3 and 0 < r < s <∞, there exists ζ(n; r, s) ∈ (η1(n; r, s),∞) such that

sgn
(
g(n, z; r, s)

)
=

0 if z = 1 or z = ζ(n; r, s),

1 if 1 < z < ζ(n; r, s).

(586)

It is clear from (586) that

∂g(n, z; r, s)

∂z

∣∣∣∣
z=ζ(n;r,s)

≤ 0 (587)
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for every n ∈ N≥3 and 0 < r < s <∞. Since

g(n, z; r, s)
(537)
= f1(z; r, s) + f2(n, z; r, s) (588)

(536)
= f1(z; r, s) + (n− 1)

(
lnr z − lns z

)
(589)

(536)
= f1(z; r, s) + (n− 1) f2(2, z; r, s), (590)

we get from (586) and (587) that

f1
(
ζ(n; r, s); r, s

)
= −(n− 1) f2

(
2, ζ(n; r, s); r, s

)
, (591)

∂f1(z; r, s)

∂z

∣∣∣∣
z=ζ(n;r,s)

≤ −(n− 1)
∂f2(2, z; r, s)

∂z

∣∣∣∣
z=ζ(n;r,s)

(592)

for every n ∈ N≥3 and 0 < r < s <∞. Since (582) shows

∂2f1(z; r, s)

∂z2
< −∂

2f2(2, z; r, s)

∂z2
(593)

for every z ∈ (1,∞) and 1/2 ≤ r < s <∞, it follows from (592) that

∂f1(z; r, s)

∂z
< −(n− 1)

∂f2(2, z; r, s)

∂z
(594)

for every n ∈ N≥3, z > ζ1(n; r, s), and 1/2 ≤ r < s <∞; thus, we have from (591) that

f1
(
z; r, s

)
< −(n− 1) f2

(
2, z; r, s

)
(595)

for every n ∈ N≥3, z > ζ(n; r, s), and 1/2 ≤ r < s <∞. Therefore, combining (586), (590), and (595), we have

sgn
(
g(n, z; r, s)

)
=


−1 if ζ(n; r, s) < z <∞,

0 if z = 1 or z = ζ(n; r, s),

1 if 1 < z < ζ(n; r, s)

(596)

for every n ∈ N≥3, z ∈ [1,∞), and 1/2 ≤ r < s <∞, which is the third assertion of Lemma 4. This completes

the proof of Lemma 4.
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[6] C. Bunte and A. Lapidoth, “Encoding tasks and Rényi entropy,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5065–5076, Sept. 2014.
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[10] Z. Daróczy, “Generalized information functions,” Inf. Control, vol. 16, no. 1, pp. 36–51, Mar. 1970.

[11] R. M. Fano, “Class notes for Transmission of Information,” Course 6.574, MIT, Cambridge, MA, 1952.

February 3, 2017 DRAFT



61

[12] M. Feder and N. Merhav, “Relations between entropy and error probability,” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp. 259–266, Jan.

1994.
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[26] A. Rényi, “On measures of information and entropy,” Proc. 4th Berkeley Symp. Math. Statist. Prob., Berkeley, Calif., vol. 1, Univ. of Calif.

Press, pp. 547–561, 1961.

[27] Y. Sakai and K. Iwata, “Feasible regions of symmetric capacity and Gallager’s E0 function for ternary-input discrete memoryless channels,”

Proc. 2015 IEEE Int. Symp. Inf. Theory (ISIT’2015), Hong Kong, pp. 81–85, June 2015.

[28] ———, “Sharp bounds between two Rényi entropies of distinct positive orders,” May 2016. [Online]. Available at https://arxiv.org/abs/

1605.00019.

[29] ———, “Relations between conditional Shannon entropy and expectation of `α-norm,” Proc. 2016 IEEE Int. Symp. Inf. Theory, (ISIT’2016)

Barcelona, Spain, pp. 1641–1645, July 2016.

[30] ———, “Extremal relations between shannon entropy and `α-norm,” Proc. 2016 Int. Symp. Inf. Theory Appl., (ISITA’2016), Monterey, CA,

USA, pp. 433–437, Jan. 2016.
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