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Abstract

Let Xi, i ∈ V form a Markov random field (MRF) represented by an undirected graph G = (V, E),

and V ′ be a subset of V . We determine the smallest graph that can always represent the subfield

Xi, i ∈ V ′ as an MRF. Based on this result, we obtain a necessary and sufficient condition for a

subfield of a Markov tree to be also a Markov tree. When G is a path so that Xi, i ∈ V form a

Markov chain, it is known that the I-Measure is always nonnegative and the information diagram

assumes a very special structure [11]. We prove that Markov chain is essentially the only MRF

such that the I-Measure is always nonnegative. By applying our characterization of the smallest

graph representation of a subfield of an MRF, we develop a recursive approach for constructing

information diagrams for MRFs. Our work is built on the set-theoretic characterization of an MRF

in [15].
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1 Introduction

A Markov random field (MRF) is often regarded as a generalization of a one-dimensional discrete-

time Markov chain in the sense that the time index for the latter is replaced by a space index for the

former. Historically, the study of MRFs stems from statistical physics. The classical Ising model,

which is defined on a rectangular lattice, was used to explain certain empirically observed facts

about ferromagnetic materials. In statistics, the dependencies between variables in a contingency

table may also be modeled as an MRF [7]. In image processing and computer vision, the dependen-

cies between pixels or image features are also commonly modeled by MRFs [21]. MRFs have also

been used in wireless and ad hoc networking [17, 20, 19]. In recent years, MRFs have been used as

a model for studying social networks [22, 23] and big data [24].

The foundation of the theory of MRFs may be found in [5] or [3] (also see [6] and [13]). It was

described in [5] that the theory can be generalized to the context of an arbitrary graph. In this paper,

we discuss such MRFs whose random variables are discrete. Before we present their formulation,

we first introduce some notations that are used throughout the paper.

In this paper, all random variables are discrete. Let X be a random variable taking values in an

alphabet X. The probability distribution for X is denoted as {pX(x), x ∈ X}, with pX(x) = Pr{X = x}.

When there is no ambiguity, pX is abbreviated as p. The support of X, denoted by SX , is the set

of all x ∈ X such that p(x) > 0. If SX = X, we say that p is strictly positive, denoted by p > 0.

Otherwise, p contains zero probability masses, and we say that p is not strictly positive. Note that

probability distributions with zero probability masses are in general very delicate, and they need to

be handled very carefully (see Example 1 below). All the above notations naturally extend to two

or more random variables.

Proposition 1. For random variables X,Y, and Z, X y Z | Y if and only if

p(x, y, z) = a(x, y)b(y, z) (1)

for all x, y, and z such that p(y) > 0, where a is some function of x and y and b is some function of

y and z.
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The example below illustrates the subtlety of conditional independence when the probability

distribution contains zero probability masses.

Example 1. Let p denote the joint distribution of three random variables X1, X2, and X3. In this

example, we show that

X1 y X2 | X3

X1 y X3 | X2

 ⇒ X1 y (X2, X3) (2)

holds if p > 0, but does not hold in general.

Assume that p > 0. Then for all x1, x2, and x3, by X1 y X2 | X3, we have

p(x1, x2, x3) =
p(x1, x3)p(x2, x3)

p(x3)
, (3)

and by X1 y X3 | X2, we have

p(x1, x2, x3) =
p(x1, x2)p(x2, x3)

p(x2)
. (4)

Equating (3) and (4), we have

p(x1, x3) =
p(x1, x2)p(x3)

p(x2)
.

Then

p(x1) =
∑
x3

p(x1, x2)p(x3)
p(x2)

=
p(x1, x2)

p(x2)
,

or

p(x1, x2) = p(x1)p(x2).

Substituting this into (4), we have

p(x1, x2, x3) = p(x1)p(x2, x3),

i.e., X1 y (X2, X3).

However, (2) does not hold in general, because if X1 = X2 = X3, we see that X1 y X2 | X3 and

X1 y X3 |X2 but X1 6y (X2, X3). Note that p is not strictly positive if X1 = X2 = X3.
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We now present the formulation of an MRF defined on an arbitrary graph. Let G = (V, E) be an

undirected graph, where V = {1, 2, · · · , n} is the set of vertices and E ⊂ V×V is the set of edges. We

assume that there is no edge in G which joins a vertex to itself. For any (possibly empty) subset U

of V , denote by G\U the graph obtained from G by removing all the vertices in U and all the edges

joining a vertex in U. Let s(U) be the number of components1 in G\U. Denote the sets of vertices

of these components by V1(U),V2(U), · · · ,Vs(U)(U). If s(U) > 1, we say that U is a cutset in G.

Throughout this paper, whenever we remove a subset of vertices U from G, we always assume that

we also remove all the edges joining a vertex in U.

Consider a collection of random variables Xi, i ∈ V whose joint distribution is specified by a

probability measure p on X1 × X2 × · · · × Xn, where random variable Xi is associated with vertex i

in graph G. We now define a few Markov properties for random variables X1, · · · , Xn pertaining to

a graph G = (V, E):

Definition 1 (Pairwise Markov Property). For all distinct i, j ∈ V such that {i, j} < E, Xi and X j are

independent conditioning on XV−{i, j}.

Definition 2 (Local Markov Property). For all i ∈ V, Xi and XV−N(i) are independent conditioning

on XN(i), where N(i) = { j ∈ V : {i, j} ∈ E} is the set of neighbors of vertex i and N(i) = N(i) ∪ {i}.

Definition 3 (Global Markov Property). Let {U,V1,V2} be a partition of V such that the sets of

vertices V1 and V2 are disconnected in G\U. Then the sets of random variables XV1 and XV2 are

independent conditioning on XU .

Proposition 2. Random variables Xi, i ∈ V satisfy the global Markov property if and only if for

all cutsets U in G, the sets of random variables XV1(U), · · · , XVs(U)(U) are mutually independent

conditioning on XU .

See [15] for a proof of Proposition 2. When U = ∅, this proposition states that if the graph

G has more than one component, i.e., s(∅) > 1, then the sets of random variables XV1(∅), · · · ,

1 A component of an undirected graph is a subgraph in which any two vertices are connected, and which is not

connected to any additional vertices in the supergraph.
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XV2(∅), · · · , XVs(∅)(∅) are mutually independent. Here we regard unconditional mutual independence

as a special case of conditional mutual independence.

Denote the Pairwise Markov Property, the Local Markov Property, and the Global Markov Prop-

erty by (P), (L), and (G), respectively. It can readily be seen from their definitions that (G) ⇒ (L)

⇒ (P).

Definition 4 (Markov Random Field). The probability measure p, or equivalently, the random

variables Xi, i ∈ V, are said to form an MRF represented by a graph G = (V, E) if and only if the

Global Markov Property is satisfied by Xi, i ∈ V.

If Xi, i ∈ V form an MRF represented by a graph G, we also say that Xi, i ∈ V form a Markov

graph G, Xi, i ∈ V are represented by G, or G is a (graph) representation for Xi, i ∈ V . When G is

a path,2 we say that Xi, i ∈ V form a Markov chain. When G is a tree, we say that Xi, i ∈ V form a

Markov tree.3 When G is a cycle graph,4 we say that Xi, i ∈ V form a Markov ring.

In general, Xi, i ∈ V can be represented by more than one graph. In particular, Xi, i ∈ V are

always represented by Kn, the complete graph with n vertices. The graph Kn specifies a degenerate

MRF, because for every U ( V , U is not a cutset in Kn. In other words, no Markov constraints are

imposed on Xi, i ∈ V by Kn.

Suppose the random variables Xi, i ∈ V are represented by both G = (V, E) and G′ = (V, E′),

where E′ ( E, i.e., G′ is a proper subgraph of G. Then G′ imposes a larger set of Markov constraints

on Xi, i ∈ V than G, because a cutset in G is also a cutset in G′ (but not vice versa). Thus we are

naturally interested in the “smallest” graph (to be discussed in Section 2.4) that represents Xi, i ∈ V .

Definition 5 (Subfield). A subset of the random variables forming an MRF is called a subfield of

the MRF.

Definition 6. A n-tuple x = (x1, x2, · · · , xn) ∈ X1 × X2 × · · · × Xn is called a configuration. A

probability measure p on X1 × X2 × · · · × Xn is strictly positive, denoted by p > 0, if p(x) > 0 for

2A path is a graph whose vertices can be linearly ordered so that every pair of consecutive vertices forms an edge.
3The term “Markov tree” is also used in the number theory literature in the context of the Markov number, but it is

not to be confused with the Markov tree in this paper.
4A cycle graph is a graph that consists of a single cycle.
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all configurations x.

If p > 0, it can be shown that (G) = (L) = (P) (see for example [13]). In general, however, a

probability measure P may contain zero probability masses, i.e., p(x) = 0 for some configuration x.

For example, if some random variables in X1, X2, · · · , Xn are functions of other random variables,

then p is not strictly positive.

In this paper, we study the structure of MRFs by means of an information-theoretic approach.

Specifically, structural properties of MRFs are obtained through the investigation of the set-theoretic

structure of Shannon’s information measures under the constraints imposed by the MRF. With this

approach, we do not have to manipulate the underlying probability measure directly.

An identity involving only Shannon’s information measures (i.e., entropy, mutual information,

and their conditional versions) is referred to as an information identity. The set-theoretic structure

of Shannon’s information measures was first studied in [1], where it was proved that for every

information identity, there is a corresponding set identity. This was further developed into the theory

of I-Measure in [9]. Under this framework, every Shannon’s information measure can formally be

regarded as the value of a unique signed measure called the I-Measure, denoted by µ∗, on a set

corresponding to that Shannon’s information measure. This establishes a complete set-theoretic

interpretation of Shannon’s information measures.

Subsequent to [9], the structure of the I-Measure for a Markov chain and more generally an

MRF was investigated in [11] and [15], respectively. In particular, it was proved in [11] that the

I-Measure for a Markov chain is always nonnegative, and an information diagram that displays the

special structure of the I-Measure for a Markov chain was obtained.

The current work, consisting of the following three main results, is built on [1, 9, 11, 15]:

1. Let Xi, i ∈ V be any set of random variables that form an MRF represented by a graph G, and

let Xi, i ∈ V ′, where V ′ ⊂ V , be any subfield of the MRF. We determine the smallest graph

G∗(V ′) that can always represent Xi, i ∈ V ′.

2. The I-Measure of an MRF is always nonnegative if and only if the MRF is represented by

either a path or a forest of paths.5

5A forest of paths is a graph with at least two components such that each component is a path.
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3. We develop a recursive approach for constructing an information diagram that displays the

special structure of the I-Measure for an MRF.

The rest of the paper is organized as follows. Section 2 contains an overview of the concepts and

tools to be used in this paper. In Section 3, we define the graph G∗(V ′) and establish that G∗(V ′) is

the smallest graph that can always represent the subfield Xi, i ∈ V ′. Applying this result to Markov

trees, we obtain in Section 4 a necessary and sufficient condition for a subfield of a Markov tree to

form a Markov subtree. In Section 5, we establish that Markov chains are essentially the only MRFs

for which the I-Measure is always nonnegative. In Section 6, we develop a recursive approach for

constructing an information diagram that displays the special structure of the I-Measure for an MRF.

The paper is concluded in Section 7.

2 Preliminaries

In this section, we introduce the notations and present the preliminaries for the rest of the paper. For

a detailed discussion, we refer the readers to [18, Chapters 3 and 12] and the references therein.

2.1 I-Measure

We first give an overview of the basics of the I-Measure. Let Xi, i ∈ V = {1, 2, · · · , n} be jointly

distributed discrete random variables, and X̃ be a set variable corresponding to a random variable X.

We note that the I-Measure does not have to be defined in the context of an MRF, but here we use

V (the vertex set of a graph) as the index set of the random variables for the sake of convenience.

Here we assume that H(Xi) < ∞ for 1 ≤ i ≤ n, so that the I-Measure [9] for p is well-defined.

Define the universal set ΩV to be
⋃

i∈V X̃i and let FV be the σ-field generated by {X̃i, i ∈ V}. The

atoms of FV have the form
⋂

i∈V Yi, where Yi is either X̃i or X̃c
i . Let AV ⊂ FV be the set of all the

atoms of FV except for
⋂

i∈V X̃c
i , which is equal to the empty set because⋂

i∈V

X̃c
i =

⋃
i∈V

X̃i

c

= (ΩV )c = ∅.

Note that |AV | = 2n − 1. In the rest of the paper, when we refer to an atom of FV , we always mean

an atom inAV unless otherwise specified.
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To simplify notation, we will use XU to denote (Xi, i ∈ U) and X̃U to denote
⋃

i∈U X̃i for any

U ⊂ V . We will not distinguish between i and the singleton containing i. It was shown in [9] that

there exists a unique signed measure µ∗ on FV which is consistent with all Shannon’s information

measures via the following substitution of symbols:

H/I → µ∗

, → ∪

; → ∩

| → −

where “−” denotes the set difference. For example,

µ∗((X̃1 ∪ X̃2) ∩ X̃3 − X̃4) = I(X1, X2; X3|X4).

For all A ∈ AV , µ∗(A) is a linear combination of H(XB) for nonempty subsets B of V .

Note that µ∗ in general is not nonnegative. However, if Xi, i ∈ V form a Markov chain, then µ∗

is always nonnegative [11]. See Section 5 for further discussions.

2.2 Full Conditional Mutual Independency

Definition 7. Let {T,Q1,Q2, · · · ,Qk} be a partition of V ′, where k ≥ 2 and V ′ ⊂ V. The tuple

K = (T ; Qi, 1 ≤ i ≤ k) defines the following conditional mutual independency (CMI) on Xi, i ∈ V:

XQ1 , XQ2 , · · · , XQk are mutually independent conditioning on XT .

If V ′ = V, K is called a full conditional mutual independency (FCMI).

Example 2. For n = 6, K = ({4}; {1, 3}, {2, 5}, {6}) defines the FCMI

(X1, X3), (X2, X5), X6 are mutually independent conditioning on X4.

However, for n = 7, K is not an FCMI because {{4}, {1, 3}, {2, 5}, {6}} is not a partition of {1, 2, · · · , 7}.
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Definition 8. Let K = (T ; Qi, 1 ≤ i ≤ k) be an FCMI on Xi, i ∈ V. The image of K, denoted by

Im(K), is the set of atoms of FV of the form k⋂
i=1

⋂
j∈Wi

X̃ j

 − X̃T∪(
⋃k

i=1(Qi−Wi)) (5)

where Wi ⊂ Qi, 1 ≤ i ≤ k, and there exist at least two i such that Wi , ∅.

The following proposition gives a more explicit expression for Im(K). The proof is elementary

and so is omitted.

Proposition 3. Let K = (T ; Qi, 1 ≤ i ≤ k) be an FCMI on Xi, i ∈ V. Then

Im(K) =

A ∈ An : A ⊂
⋃

1≤i< j≤k

(X̃Qi ∩ X̃Q j − X̃T )

 .
In the rest of paper, we denote the atom X̃1 ∩ X̃2 ∩ X̃c

3 of F{1,2,3} by 123̄, etc.

Example 3. Let n = 3 and consider the FCMI K = (∅; {1}, {2}, {3}). Then Im(K) is the set containing

all the atoms in (X̃1 ∩ X̃2) ∪ (X̃1 ∩ X̃3) ∪ (X̃2 ∩ X̃3), as given by Proposition 3. This is illustrated in

Fig. 1. Equivalently, the atoms in Im(K) are 123̄, 12̄3, 1̄23, and 123, as given by Definition 8. For

example, for the atom 123̄, we have W1 = {1}, W2 = {2}, and W3 = ∅, so there are at least two i such

that Wi , ∅.

The following theorem from [18] will be useful for proving some of the results in this work.

Theorem 1. Let K be an FCMI on Xi, i ∈ V. Then K holds if and only if µ∗(A) = 0 for all A ∈ Im(K).

Thus the effect of an FCMI K on the joint probability distribution of Xi, i ∈ V is completely

characterized by Im(K). We remark that if {T,Q1,Q2, · · · ,Qk} is a partition of V ′ where V ′ ( V ,

then K = (T ; Q1,Q2, · · · ,Qk) holds if and only if µ∗ vanishes on all the sets prescribed in (5),

although these sets are no longer atoms of FV .

Example 4. Following Example 3, the random variables X1, X2, and X3 are mutually independent

if and only if µ∗ vanishes on the atoms 123̄, 12̄3, 1̄23, and 123.
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Let A =
⋂

i∈V Ỹi be a nonempty atom of FV . Define the set

UA = {i ∈ V : Ỹi = X̃c
i }. (6)

Note that A is uniquely specified by UA because

A =

 ⋂
i∈V−UA

X̃i

 ∩
⋂

i∈UA

X̃c
i

 =

 ⋂
i∈V−UA

X̃i

 ∩
⋃

i∈UA

X̃i

c

=

 ⋂
i∈V−UA

X̃i

 − X̃UA .

Also note that in the definition of UA, its dependence on V is implicit, and what the set V is should

be clear from the context.

Define w(A) = n − |UA| as the weight of the atom A, the number of X̃i in A which are not

complemented. We now show that an FCMI K = (T ; Qi, 1 ≤ i ≤ k) is uniquely specified by Im(K).

First, by letting Wi = Qi for 1 ≤ i ≤ k in (5), we see that the atom ⋂
j∈

⋃k
i=1 Qi

X̃ j

 − X̃T

is in Im(K), and it is the unique atom in Im(K) with the largest weight. From this atom, T can be

determined. To determine Qi, 1 ≤ i ≤ k, we define a relation q on T c = V − T as follows. For

l, l′ ∈ T c, (l, l′) is in q if and only if one of the following is satisified:

i) l = l′;

ii) l , l′ and the atom

X̃l ∩ X̃l′ ∩

 ⋂
j∈V−{l,l′}

X̃c
j

 (7)

is not in Im(K).

The idea of ii) is that (l, l′) is in q if and only if l, l′ ∈ Qi for some 1 ≤ i ≤ k, which can be seen

as follows. If l, l′ ∈ Qi for some i, then the atom in (7) is not in Im(K) by Definition 8 because

{l, l′} ⊂ Wi and so Wi , ∅ but W j = ∅ for all j , i (an atom in Im(K) has at least two i such that

Wi , ∅). On the other hand, if l ∈ Qi and l′ ∈ Qi′ where i , i′, then by letting Wi = {l} and Wi′ = {l′},

we see that the atom in (7) is in Im(K).
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Then q is reflexive by i), and is symmetric because the definition of q is symmetrical in l and

l′. Moreover, q is transitive from the discussion above because if l, l′ ∈ Qi for some 1 ≤ i ≤ k and

l′, l′′ ∈ Qi′ for some 1 ≤ i′ ≤ k, then i = i′ and l, l′′ ∈ Qi. In other words, q is an equivalence

relation that partitions T c into {Qi, 1 ≤ i ≤ k}. Therefore, K can be recovered from Im(K), and so it

is uniquely specified by Im(K).

Let Π = {Kl, 1 ≤ l ≤ m} be a collection of FCMIs on Xi, i ∈ V , and define

Im(Π) =

k⋃
l=1

Im(Kl).

Since Π holds if and only if Kl holds for all l, it follows from Theorem 1 that Π holds if and only

if µ∗(A) = 0 for all A ∈ Im(Π). Thus the effect of a collection Π of FCMIs on the joint probability

distribution of Xi, i ∈ V is completely characterized by Im(Π).

Consequently, for two collections Π1 and Π2 of FCMIs, Π1 ⇒ Π2 if and only Im(Π1) ⊃ Im(Π2),

and Π1 = Π2 if and only Im(Π1) = Im(Π2).

One can interpret Im(K) as the “footprint” of an FCMI K. Then the footprint of a collection Π

of FCMIs is simply the union of the footprints of the individual FCMIs in Π. However, two different

collections of FCMIs may have the same footprints, as shown in the next example. Thus unlike an

FCMI, a collection of FCMIs is in general not uniquely specified by its image.

Example 5. Let n = 3. Let Π1 = {K1} and Π2 = {K2,K3}, where

K1 = (∅; {1}, {2}, {3})

K2 = (∅; {1, 2}, {3})

K3 = ({3}; {1}, {2}).

Then Π1 , Π2 but Im(Π1) = Im(Π2).

It was shown in [10, 12] that full conditional (mutual) independence are axiomatizable. This

can be regarded as an alternative characterization of FCMIs, which however is not in closed form.
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2.3 Markov Random Field

In the definition of an MRF, each cutset U in G specifies an FCMI on X1, X2, · · · , Xn, denoted by

[U]. Formally,

[U] : XV1(U), · · · , XVs(U)(U) are mutually independent

conditioning on XU .

Then in light of (6), for A ∈ An such that s(UA) > 1, [UA] is the FCMI induced by the cutset UA. It

follows that X1, X2, · · · , Xn form a Markov graph G if and only if∧
A∈An:s(UA)>1

[UA] 4= [UG], (8)

where ‘∧’ denotes ‘logical AND’. This is the collection of FCMIs induced by graph G.

Definition 9. Let G = (V, E) be a graph. For an atom A of FV , if s(UA) = 1, i.e., G\UA is connected,

then A is a Type I atom of G, otherwise, i.e., s(UA) > 1, A is a Type II atom of G. The sets of all

Type I and Type II atoms of G are denoted by TI(G) and TII(G), respectively.

Definition 10. For a graph G = (V, E), the image of G is defined by

Im(G) = Im([UG]).

Theorem 2. (cf. [18, Theorem 12.25]) Im(G) = TII(G).

The above theorem gives a precise characterization of Im(G). It follows from the discussion in

Section 2.2 that X1, X2, · · · , Xn form a Markov graph G if and only if µ∗(A) = 0 for all A ∈ TII(G),

i.e., µ∗ vanishes on all the Type II atoms of G.

Example 6. For the cycle graph G in Fig. 2, TII(G) = {12̄34̄, 1̄23̄4}. Random variables X1, X2, X3

and X4 are represented by G if and only if µ∗(12̄34̄) = µ∗(1̄23̄4) = 0.

A graph G = (V, E) and the collection [UG] of FCMIs it induces uniquely specify each other,

because for distinct u, v ∈ V , {u, v} ∈ E if and only if the FCMI (V − {u, v}; {u}, {v}) is not in

[UG]. This can be seen as follows. If {u, v} ∈ E, then V − {u, v} is not a cutset in G, and so
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(V − {u, v}; {u}, {v}) < [UG]. On the other hand, if (V − {u, v}; {u}, {v}) < [UG], then V − {u, v} is not a

cutset in G, which implies {u, v} ∈ E.

Although a collection of FCMIs is in general not uniquely determined by its image (cf. Exam-

ple 5), the following proposition asserts that a graph G (and hence [UG]) is uniquely determined by

its image Im(G).

Proposition 4. For a graph G = (V, E), {u, v} ∈ E if and only if the atom

X̃u ∩ X̃v − X̃V−{u,v} (9)

is not in Im(G).

Proof Denote the atom in (9) by A. If {u, v} < E, then G induces the FCMI K = (V − {u, v}; {u}, {v}).

Obviously, Im(K) = {A}, and hence A ∈ Im(K) ⊂ Im(G).

To prove the converse, assume that atom A is in Im(G), and specifically in some Im([UA′]) such

that s(UA′) > 1. It follows from Definition 8 that in order for A to be in Im([UA′]), it is necessary

for u and v to be in different sets in V1(UA′),V2(UA′), · · · , Vs(UA′ )(UA′). This implies that V − {u, v}

is a cutset in G, and hence {u, v} < E. �

With this proposition, a graph G can be recovered from Im(G) as follows. Start with the com-

plete graph Kn. If there exists an atom in Im(G) as prescribed by (9) for some distinct u, v ∈ V ,

then remove edge {u, v} from the graph. Repeat this step until no more edges can be removed. Note

that this algorithm produces a unique graph, i.e., G. As a corollary, the uniqueness of the Markov

graph induced by Im(G) is proved, i.e., for two graphs G = (V, E) and G′ = (V, E′) where E , E′,

Im(G) , Im(G′).

2.4 Smallest Graph Representation

As discussed in Section 1, we are interested in the “smallest” graph that can represent a given set of

random variables Xi, i ∈ V . To fix ideas, we first give a formal definition of this notion.

Definition 11. A graph G = (V, E) is the smallest graph representation for a set of random variables

Xi, i ∈ V if G is a representation for Xi, i ∈ V and is a subgraph of any representation G′ for Xi, i ∈ V.
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We know from Section 2.3 that a graph G = (V, E) can represent Xi, i ∈ V if and only if µ∗

vanishes on all the atoms in Im(G). Note that if G is a subgraph of G′, then a cutset in G′ is also a

cutset in G. It follows that [UG′] is a “subset” of [UG], and hence Im(G′) ⊂ Im(G).

For the given set of random variables Xi, i ∈ V , let AII be the set of nonempty atoms of FV on

which µ∗ vanishes. Following the last paragraph, if G is the smallest representation for Xi, i ∈ V ,

then Im(G) ⊂ AII and Im(G′) ⊂ Im(G) for any representation G′ for Xi, i ∈ V . The next theorem

gives a characterization of such a graph if it exists.

Theorem 3. For a given set of random variables Xi, i ∈ V, let AII be the set of nonempty atoms of

FV on which µ∗ vanishes. Let Ĝ = (V, Ê) be such that {u, v} ∈ Ê if and only if the atom in (9) is not

inAII. Then if the smallest graph representation for Xi, i ∈ V exists, it is equal to Ĝ.

We first prove the following two lemmas.

Lemma 1. Every graph that can represent Xi, i ∈ V contains Ĝ as a subgraph.

Proof Let G′ = (V, E′) be any graph that can represent Xi, i ∈ V . Consider any edge {u, v} in Ĝ,

i.e., {u, v} ∈ Ê. By construction, the atom in (9) is not inAII. Then {u, v} ∈ E′, otherwise the FCMI

(V − {u, v}; {u}, {v}) holds, i.e.,

I(Xu; Xv|XV−{u,v}) = µ∗(X̃u ∩ X̃v − X̃V−{u,v}) = 0,

which is a contradiction because the atom in (9) is not in AII. Thus if G′ can represent Xi, i ∈ V ,

then G′ contains Ĝ as a subgraph. �

Lemma 2. If {u, v} is an edge in every graph that can represent Xi, i ∈ V, then {u, v} is an edge in

Ĝ.

Proof Let {u, v} be an edge in every graph that can represent Xi, i ∈ V . If a graph does not contain

{u, v}, then it cannot represent Xi, i ∈ V . In particular, the graph Kn\{u, v} obtained by removing

{u, v} from the complete graph Kn cannot represent Xi, i ∈ V . Since the only FCMI imposed by

Kn\{u, v} is [{u, v}] (i.e., Xu and Xv are independent conditioning on XV−{u,v}), this means that Xu and

Xv are not independent conditioning on XV−{u,v}, or µ∗(X̃u ∩ X̃v − X̃V−{u,v}) > 0. In other words, the

atom X̃u ∩ X̃v − X̃V−{u,v} is not inAII, which implies that {u, v} is an edge in Ĝ. �
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Proof of Theorem 3 Assume the smallest graph representation for Xi, i ∈ V exists and let it be G̃.

By Lemma 1, Ĝ is a subgraph of G̃. On the other hand, since G̃ is a subgraph of every graph that

can represent Xi, i ∈ V , Lemma 2 implies that G̃ is a subgraph of Ĝ. Hence, G̃ = Ĝ. �

Corollary 1. The smallest graph representation for Xi, i ∈ V exists if and only if Ĝ is a representa-

tion for Xi, i ∈ V.

Proof Assume that the smallest graph representation for Xi, i ∈ V exists. By Theorem 3, it is equal

to Ĝ, and so Ĝ is a representation for Xi, i ∈ V . Conversely, if Ĝ is a representation for Xi, i ∈ V ,

then by Lemma 1, it is the smallest representation for Xi, i ∈ V . �

Example 7. Let n = 3 and consider µ∗ such that

AII = {123̄, 12̄3}. (10)

Accordingly, the graph Ĝ defined in Proposition 3 is illustrated in Fig. 3. However,

Im(Ĝ) = {123̄, 12̄3, 123} 1 AII,

i.e., Ĝ cannot represent X1, X2, and X3. Then by Corollary 1, there does not exist a smallest graph

representation of X1, X2, and X3.

The above example shows that the smallest graph representation may not exist for a given set of

random variables. However, if AII = Im(G) for some graph G, then G is in fact the smallest graph

representation for Xi, i ∈ V . This is proved in the next proposition.

Proposition 5. If AII = Im(G) for some graph G, then G is the smallest graph representation for

Xi, i ∈ V.

Proof We see that a graph G can be recovered from its image Im(G) using the algorithm described

at the end of Section 2.3, and in fact G = Ĝ. Therefore, Im(Ĝ) = Im(G) = AII, which implies that

Im(Ĝ) ⊂ AII. Hence, Ĝ is a graph representation for Xi, i ∈ V . It then follows from Theorem 3 that

Ĝ, i.e., G, is the smallest graph representation for Xi, i ∈ V . �
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To our knowledge, Corollary 1 is new. A related result can be found in [8], where it was proved that

if the underlying probability measure p is strictly positive, then the smallest graph representation

for Xi, i ∈ V always exists and is equal to Ĝ.

Example 8. In Example 7, the constraint (10) is equivalent to X1 y X2 | X3 and X1 y X3 | X2, while

[UĜ] = [U∅,U{2},U{3}] consists of the FCMIs

X1 y (X2, X3), X1 y X3 | X2, X1 y X2 | X3.

We have shown in Example 1 that

X1 y X2 | X3

X1 y X3 | X2

 ⇒ X1 y (X2, X3),

holds if the underlying probability distribution p is strictly positive, or p > 0, but does not hold in

general. This means that if p > 0, then Ĝ represents X1, X2, and X3, but in general it does not. These

conclusions are consistent with the result in [8] and the discussion in Example 7, respectively.

3 Subfield of a Markov Random Field

Let Xi, i ∈ V form an MRF represented by some graph G = (V, E). Note that such a graph G can

always be found, because Kn is always a representation of Xi, i ∈ V . Let V ′ be a subset of V . In this

section, we seek the smallest graph that can always represent the subfield Xi, i ∈ V ′.

Definition 12. Let G = (V, E) and G′ = (V ′, E′) where V ′ ⊂ V. If [UG]⇒ [UG′], we write G ⇒ G′.

Let Xi, i ∈ V form an MRF represented by a graph G. Following the definition above, if G ⇒ G′,

then Xi, i ∈ V ′ form an MRF represented by G′.

Definition 13. Let G = (V, E), and let V ′ ⊂ V. Let G∗(V ′) = (V ′, E′) be such that for distinct

u, v ∈ V ′, {u, v} ∈ E′ if and only if there exists a path between u and v in G on which all the

intermediate vertices are in V − V ′.

Obviously, G∗(V) = G. We will prove in Theorem 8, the main theorem of this section, that

G∗(V ′) is the smallest G′ such that G ⇒ G′.
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Example 9. Consider an MRF represented by the graph G in Fig. 4, which indeed is a Markov

chain. Let V ′ = {1, 3, 5, 6}. Then G∗(V ′) is illustrated as the overlay graph in grey.

Example 10. Consider an MRF represented by the more elaborate graph G in Fig. 5. Let V ′ =

{1, 2, 5, 6, 8, 9}. Then G∗(V ′) is illustrated as the overlay graph in grey.

Consider V ′′ ⊂ V ′ ⊂ V . The next proposition asserts that G∗(V ′′) can be obtained in two steps.

First obtain G∗(V ′) from G by applying Definition 13. Then obtain G∗(V ′′) from G∗(V ′) by applying

Definition 13 again with G∗(V ′) in place of G.

Proposition 6. Let G = (V, E) and V ′′ ⊂ V ′ ⊂ V. Then G∗(V ′′) = (G∗(V ′))∗(V ′′).

Proof See Appendix A.

Consider G\(V − V ′) = (V ′, E′′), where

E′′ = {{v,w} : v,w ∈ V ′ and {v,w} ∈ E}.

For distinct v,w ∈ V ′, if {v,w} ∈ E′′, then {v,w} ∈ E′ by the definition of G∗(V ′). In other words,

G∗(V ′) always contains G\(V − V ′) as a subgraph. However, G∗(V ′) , G\(V − V ′) in general.

In other words, G∗(V ′) is not necessarily a subgraph of G. The following proposition gives the

condition for G∗(V ′) to be exactly equal to G\(V − V ′).

Proposition 7. Let G = (V, E), and let V ′ ⊂ V. Let ρ(V ′) be the set of elements of V ′ such that some

of their neighbors are in V − V ′, i.e.,

ρ(V ′) = {v ∈ V ′ : {u, v} ∈ E for some u ∈ V − V ′}. (11)

Then G∗(V ′) = G\(V−V ′) if and only if for distinct v,w ∈ ρ(V ′), if {v,w} is not an edge in G\(V−V ′),

then there exists no path between v and w in G on which all the vertices other than v and w are in

V − V ′.

Proof Note that G∗(V ′) = G\(V − V ′) is equivalent to E′ = E′′. We already have proved that

E′′ ⊂ E′ always holds, so we only need to prove that the condition in the proposition for G∗(V ′) =

G\(V − V ′) is necessary and sufficient for E′ ⊂ E′′.
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For any distinct v,w, ∈ V ′, consider two cases. If either v or w is not in ρ(V ′), then {v,w} ∈ E′

implies {v,w} ∈ E′′. If both v and w are in ρ(V ′), then the condition in the proposition for G∗(V ′) =

G\(V − V ′) is necessary and sufficient for {v,w} ∈ E′ to imply {v,w} ∈ E′′. The proposition is

proved. �

Example 11. Consider the graph G in Fig. 6 and let V ′ = {2, 3, 4}. Here ρ(V ′) = V ′ because each

vertex in V ′ is connected to some vertex in V − V ′. Now {2, 4} is the only pair of vertices that is

not an edge in G\(V − V ′). Since there exists no path between vertices 2 and 4 on which all the

vertices other than 2 and 4 are in V − V ′ = {1, 5}, by Proposition 3, G∗(V ′) = G\(V − V ′), which is

illustrated as the overlay graph in grey.

Corollary 2. Let V = {1, 2, · · · , n} and V ′ = V − {n}, where n ≥ 2. Let Xi, i ∈ V be represented by

a graph G = (V, E) such that {n − 1, n} ∈ E and n − 1 is the only neighbor of n. Then Xi, i ∈ V ′ is

represented by G\{n}.

Proof This is a special case of Proposition 7 with ρ(V ′) = {n − 1}. �

As discussed above, G∗(V ′) always contains G\(V − V ′) as a subgraph. The next theorem gives an

alternative characterization of G∗(V ′) that describes the relation between G∗(V ′) and G\(V − V ′)

more explicitly. For U ⊂ V , let

φ(U) = {v ∈ V − U : {v,w} ∈ E for some w ∈ U}

be the set of neighbors of U in graph G,6 and

κ(U) = {{u, v} : u, v ∈ U}

be the set of edges of the clique formed by the vertices in U.

Theorem 4. Let G = (V, E). For V ′ ⊂ V, let G∗(V ′) = (V ′, E′) and G\(V − V ′) = (V ′, E′′). Then

E′ = E′′ ∪
s(V′)⋃
i=1

κ(φ(Vi(V ′)), (12)

where V1(V ′),V2(V ′), · · · ,Vs(V′)(V ′) are the components of G\V ′.

6Note that φ(U) = ρ(V − U), where ρ is defined in (11).
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Proof To facilitate our discussion, let Ẽ denote the set on the right hand side of (12). We first prove

that E′ ⊂ Ẽ. By Definition 13, if {u, v} ∈ E′, then there exists a path between u and v in G on which

all the intermediate vertices are in V − V ′. Denote this set of vertices in V − V ′ by S ′. If S ′ = ∅,

then we have {u, v} ∈ E′′. Otherwise, since the vertices in S ′ are connected in G\V ′, S ′ is a subset

of Vi(V ′) for some 1 ≤ i ≤ s(V ′). As such, u, v ∈ φ(Vi(V ′)) and hence {u, v} ∈ κ(φ(Vi(V ′)). This

completes the proof for E′ ⊂ Ẽ.

It remains to prove that Ẽ ⊂ E′. Let {u, v} ∈ Ẽ. If {u, v} ∈ E′′, then {u, v} ∈ E′ because E′′ ⊂ E′

as discussed. If {u, v} ∈ κ(φ(Vi(V ′)) for for some 1 ≤ i ≤ s(V ′), then u, v ∈ φ(Vi(V ′)), i.e., there

exists u′, v′ ∈ Vi(V ′) (u′ and v′ are not necessarily distinct) such that {u, u′}, {v, v′} ∈ E. Since u′ and

v′ are in the same component of G\V ′, namely Vi(V ′), they are connected and it follows that there

exists a path between u and v in G on which all the intermediate vertices are in V − V ′. Therefore,

{u, v} ∈ E′ and we conclude that Ẽ ⊂ E′. The theorem is proved. �

Corollary 3. In Theorem 4, if V ′ = V − {n}, then

E′ = E′′ ∪ κ(φ({n})).

Proof If suffice to observe that {n} forms the only component of G\V ′. �

Example 12. Refer to Example 10 and Fig. 5. Here V −V ′ = {3, 4, 7}. The components of G\V ′ are

{3, 4} and {7}, and φ({3, 4}) = {1, 2, 5, 6} and φ({7}) = {2, 5, 8, 9}. Then

E′ = E′′ ∪ κ({1, 2, 5, 6}) ∪ κ({2, 5, 8, 9}).

Theorem 5. If G ⇒ G′ = (V ′, E′), then {u, v} ∈ E′ if there exists a path between u and v in G on

which all the intermediate vertices are in V − V ′.

Proof Consider distinct u, v ∈ V ′ such that there exists a path between u and v in G on which all

the intermediate vertices are in V − V ′. Denote this set of vertices in V − V ′ by S ′. Consider

X̃u ∩ X̃v − X̃V′−{u,v} =
⋃

S⊂V−V′

X̃u ∩ X̃v ∩

⋂
t∈S

X̃t

 − X̃V−S−{u,v}

 . (13)
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Since S ′ ⊂ V − V ′, we see that

A′ = X̃u ∩ X̃v ∩

⋂
t∈S ′

X̃t

 − X̃V−S ′−{u,v}

is one of the atoms in the union in (13). Note that s(UA′) = 1 because u, v, and the vertices in S ′

form a path in G. Thus A′ is a Type I atom for G.

Now construct Xi, i ∈ V by letting

Xi =

 Z if i ∈ S ′ ∪ {u, v}

constant otherwise,

where Z is a random variable such that 0 < H(Z) < ∞. Then by the proof of Theorem 3.11 in [18],

for all A ∈ AV ,

µ∗(A) =

 H(Z) if A = A′

0 otherwise.

Now for Xi, i ∈ V so constructed, µ∗ vanishes on all the Type II atoms of G because A′, the only

atom on which µ∗ does not vanish, is a Type I atom. Then from the discussion following Theorem 2,

we see that Xi, i ∈ V satisfy [UG]. On the other hand, in light of (13), we have

µ∗
(
X̃u ∩ X̃v − X̃V′−{u,v}

)
=

∑
S⊂V−V′

µ∗
X̃u ∩ X̃v ∩

⋂
t∈S

X̃t

 − X̃V−S−{u,v}


= H(Z)

> 0,

i.e., Xu and Xv are not independent conditioning on XV′−{u,v}. Hence, for any G′ = (V ′, E′), if

G ⇒ G′, then V ′ − {u, v} is not a cutset in G′, which implies that {u, v} ∈ E′. The theorem is proved.

�

The next theorem is a rephrase of Theorem 5 in light of the definition of G∗(V ′) (Definition 13).

Theorem 6. If G ⇒ G′, then G′ contains G∗(V ′) as a subgraph.

Theorem 7. G ⇒ G∗(V ′).
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Proof Let Xi, i ∈ V be any set of random variables which satisfy [UG]. We need to prove that

Xi, i ∈ V ′ satisfy
[
UG∗(V′)

]
. For a fixed cutset T ⊂ V ′ in G∗(V ′), let k be the number of components in

G∗(V ′)\T and denote these components by Q1,Q2, · · · ,Qk. To prove that Xi, i ∈ V ′ satisfy
[
UG∗(V′)

]
,

it suffices to prove that for every cutset T in G∗(V ′), XQ1 , XQ2 , · · · , XQk are mutually independent

conditioning on XT .

Note that {T,Q1,Q2, · · · ,Qk} is a partition of
(
T ∪

(⋃
i Qi

))
( V . Following the discussion

immediately after Theorem 1, we see that it suffices to prove that µ∗ vanishes on the sets prescribed

in (5). The atoms of FV contained in a set prescribed in (5) have the form k⋂
i=1

⋂
j∈Wi

X̃ j

 ∩
⋂

t∈S

X̃t

 − X̃T∪(
⋃k

i=1(Qi−Wi))∪(V−V′−S ), (14)

where S ⊂ V − V ′, Wi ⊂ Qi, 1 ≤ i ≤ k, and there exist at least two i such that Wi , ∅.

We will prove that every atom prescribed in (14) is a Type II atom of G. Since Xi, i ∈ V satisfy

[UG], µ∗ vanishes on these atoms. It then follows that

µ∗


 k⋂

i=1

⋂
j∈Wi

X̃ j

 − X̃T∪(
⋃k

i=1(Qi−Wi))


=

∑
S⊂V−V′

µ∗


 k⋂

i=1

⋂
j∈Wi

X̃ j

 ∩
⋂

t∈S

X̃t

 − X̃T∪(
⋃k

i=1(Qi−Wi))∪(V−V′−S )


=

∑
S⊂V−V′

0

= 0,

i.e., µ∗ vanishes on the sets prescribed in (5), as is to be proved.

To prove that the atom in (14) is a Type II atom of G, we need to show that (T ∪ (
⋃k

i=1(Qi −

Wi)) ∪ (V − V ′ − S )) is a cutset in G. Now in (14), let 1 ≤ i′ < i′′ ≤ k be such that Wi′ ⊂ Qi′ and

Wi′′ ⊂ Qi′′ are nonempty, and let u ∈ Wi′ and v ∈ Wi′′ .We claim that u and v are disconnected in

G\(T ∪ (
⋃k

i=1(Qi−Wi))∪ (V −V ′−S )). Assume the contrary is true, i.e., there exists a path between

u and v in G\(T ∪ (
⋃k

i=1(Qi − Wi)) ∪ (V − V ′ − S )). First of all, both u and v are in V ′ − T and

they belong to different components in G∗(V ′)\T . Since T ⊂ V ′ ⊂ V , the vertices between u and v

on this path are either in V ′ − T or V − V ′. Then on this path (including u and v) there exists two

distinct vertices w and z in V ′ − T such that
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1) w and z are in different components in G∗(V ′)\T ;

2) all the vertices between w and z on the path are in V − V ′

(it is possible that w = u and z = v). Then 2) above implies that {w, z} is an edge in G∗(V ′) (cf.

Definition 13), which is a contradiction to 1). Therefore, we conclude that u and v are disconnected

in G\(T ∪ (
⋃k

i=1(Qi −Wi)) ∪ (V − V ′ − S )). Hence G\(T ∪ (
⋃k

i=1(Qi −Wi)) ∪ (V − V ′ − S )) has at

least two components and (T ∪ (
⋃k

i=1(Qi −Wi))∪ (V − V ′ − S )) is a cutset in G. This completes the

proof of the theorem. �

The following corollary gives a structural property of G∗(V ′).

Corollary 4. If T is a cutset in G∗(V ′), then T is also a cutset in G.

Proof In the proof of Theorem 7, we have proved that if T is a cutset in G∗(V ′), then (T∪(
⋃k

i=1(Qi−

Wi))∪ (V −V ′−S )) is a cutset in G. By setting S = V −V ′ and Wi = Qi for all i, this cutset becomes

T . This proves the corollary. �

Combining Theorem 6 and Theorem 7, we have proved the main result of this section.

Theorem 8. Let G = (V, E), and let V ′ ⊂ V. Then G∗(V ′) is the smallest G′ such that G ⇒ G′.

We end this section with a discussion. There has been much research along the line of MRFs in

the field of graphical models [25]. In particular, classes of graphical models that contain undirected

graph as a special case were defined in [26, 27], where a separation criterion was provided for which

the class of graphical models is stable under marginalization. In the context of the present paper,

their result can be described as follows. Let G = (V, E) be an undirected graph and V ′ ⊂ V . In

[26, 27], an algorithm is provided that takes G as the input and produces a graph as the output which

is essentially the same as G∗(V ′), and it was shown that if Xi, i ∈ V satisfy only those conditional

independencies induced by G (i.e., Xi, i ∈ V satisfy the conditional independencies induced by G

and no more), then Xi, i ∈ V ′ satisfy only those conditional independencies induced by G∗(V ′). This

implies that if G ⇒ G′, then G′ cannot be a subgraph of G∗(V ′), i.e., Theorem 8.
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Although the graph produced by the algorithm in [27] is essentially the same as G∗(V ′), it is

not given in closed form. By contrast, our closed-form characterizations of G∗(V ′) (Definition 13,

Theorem 4, and Corollary 3) facilitate the development of further results, including Proposition 6

and the recursive approach for constructing information diagrams for MRFs to be discussed in

Section 6.

It is also worth pointing out that our proof of Theorem 8, which is information-theoretic, is

interesting on its own because it is developed upon the view that an MRF is a collection of FCMIs.

As such, some of the results in this paper can potentially be generalized for general collections of

FCMIs, which is beyond the scope of graphical models.

4 Markov Tree

Suppose Xi, i ∈ V are represented by a graph G. If G is a tree, then Xi, i ∈ V form a Markov tree. If

G∗(V ′) is also a tree, we say that Xi, i ∈ V ′ form a Markov subtree. For the special case when G is

a path, it is easy to see that G∗(V ′) is always a path (see Example 9 for instance). In other words, if

Xi, i ∈ V form a Markov chain, then for any V ′ ⊂ V , Xi, i ∈ V ′ always form a Markov subchain.

However, if Xi, i ∈ V form a Markov tree, for an arbitrary subset V ′ of V , Xi, i ∈ V ′ may or may

not form a Markov subtree. The following theorem, which is an application of Theorem 8, gives a

necessary and sufficient condition for Xi, i ∈ V ′ to form a Markov subtree.

Theorem 9. Let Xi, i ∈ V form an MRF represented by a tree G = (V, E). For V ′ ⊂ V, G∗(V ′) is a

tree if and only if there do not exist u ∈ V − V ′ and v1, v2, v3 ∈ V ′ such that for i = 1, 2, 3, all the

vertices on the path between u and vi except for vi are in V − V ′.

Proof We first prove the “only if” part. Assume that G∗(V ′) = (V ′, E′) is a tree and there exist

u ∈ V − V ′ and v1, v2, v3 ∈ V ′ and such that for i = 1, 2, 3, all the vertices on the path between u

and vi except for vi are in V −V ′. By Definition 13, the edges (v1, v2), (v2, v3), and (v1, v3) are in E′.

Hence v1, v2, v3 form a cycle in G∗(V ′), a contradiction to the assumption that G∗(V ′) is a tree.

We now prove the “if” part. Assume that G∗(V ′) = (V ′, E′) is not a tree. Then there exists

a cycle w0,w1, · · · ,wm−1,w0 in G∗(V ′), where m ≥ 3 and w0,w1, · · · ,wm−1 ∈ V ′ are distinct. By
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Definition 13, for each 0 ≤ i ≤ m − 1, there exists a path between wi and wi+1 in T on which all

the intermediate vertices are in V − V ′, where ‘+’ in the subscript denotes modulo m addition. This

path is in fact unique because G is a tree, so we denote it by Path(wi,wi+1).

If all the vertices on the collection of paths Path(wi,wi+1), 0 ≤ i ≤ m−1, except for the endpoints,

are distinct, since w0,w1, · · · ,wm−1 are distinct, these paths together form a cycle in T which is a

contradiction because T is a tree. Otherwise, there exists a vertex u ∈ V − V ′ which is on both

Path(wi,wi+1) and Path(w j,w j+1) for some 0 ≤ i < j ≤ m− 1. Note that |{wi,wi+1} ∪ {w j,w j+1}| ≥ 3,

with equality if and only if j = i+1 mod m. Then there exist v1, v2, v3 ∈ {wi,wi+1}∪{w j,w j+1} ⊂ V ′

such that for i = 1, 2, 3, all the vertices on the path between u and vi except for vi are in V − V ′. The

theorem is proved. �

Example 13. Consider a Markov tree represented by the tree G in Fig. 7 and let V ′ = {1, 4, 8, 9, 12}.

The graph G∗(V ′), illustrated as the overlay graph in grey, is evidently a tree. We call G∗(V ′) a

Markov subtree. It can be checked that the condition in Theorem 9 is satisfied.

However, if V ′ also includes vertex 7, then G∗(V ′) as shown in Fig. 8 is not a tree. By letting

u = 6, v1 = 4, v2 = 7, and v3 = 8, we see that the condition in Theorem 9 is violated because u is

connected to each of v1, v2, and v3 by an edge in V − V ′.

5 Markov Chain

A Markov chain is a special case of a Markov tree. However, there are certain properties that are

possessed by a Markov chain but not by a Markov tree in general. Consider the graph Pn = (V, E),

where V = {1, 2, · · · , n} and the edges in E are {i, i + 1} for i = 1, 2, · · · , n − 1. Evidently, Pn is a

path. If Xi, i ∈ V is represented by Pn, then Xi, i ∈ V form the Markov chain X1 → X2 → · · · → Xn.

The following properties of a (finite-length) Markov chain were proved in [11]:

(C1) An atom A of FV is a Type I atom if and only if

UA = V − {l, l + 1, · · · , u} (15)

where 1 ≤ l ≤ u ≤ n, i.e., the indices of the set variables in A that are not complemented are

consecutive.
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(C2) The values of µ∗ on all the Type I atoms are nonnegative.

(C3) µ∗ vanishes on all the Type II atoms.

Since µ∗ vanishes on all the Type II atoms and is nonnegative on all the Type I atoms, it is a

measure on FV . Also, the I-Measure µ∗ of a finite-length Markov chain can be represented by a

2-dimensional information diagram as in Fig. 9, in which all the Type II atoms are suppressed.

Subsequently, (C3) was generalized for arbitrary finite undirected graphs [15]. However, the

nonnegativity of the I-Measure does not hold even for the simplest Markov tree that is not a Markov

chain [15].

Example 14. Let Z1 and Z2 be i.i.d. random variables each distributed uniformly on {0, 1}. Let

X1 = Z1, X2 = Z2, X3 = Z1 + Z2 mod 2, and X4 = (Z1,Z2). Since X1, X2, and X3 are functions of

X4, they are mutually independent conditioning on X4. Thus X1, X2, X3, and X4 form a Markov tree

represented by the “star” in Figure 10. It is not difficult to show that (see [18, Example 3.10])

µ∗(X̃1 ∩ X̃2 ∩ X̃3) = −1,

and hence µ∗ is not nonnegative.

Before explaining the significance of the nonnegativity of µ∗ for Markov chains, we first review

the following result in [11] which is instrumental in proving the nonnegativity of µ∗ for a Markov

chain. Prior to [11], the same result (and also the converse) was proved in [1] for the special case

UA = ∅.

Lemma 3. If X1 → X2 → · · · → Xn form a Markov chain, then for a Type I atom with UA defined

in (15),

µ∗(A) = µ∗
(
X̃l ∩ X̃l+1 ∩ · · · ∩ X̃u − X̃UA

)
= µ∗

(
X̃l ∩ X̃u − X̃UA

)
. (16)

Note that the first equality above follows directly from the definition of UA, and the quantity on

the right hand side is equal to I(Xl; Xu|XUA) which is always nonnegative. In other words, Lemma 3

asserts that the values of µ∗ on all the Type I atoms are nonnegative. Therefore, µ∗ is a measure.

24



As mentioned in Section 2.1, for all A ∈ AV , µ∗(A) is a linear combination of H(XB) for

nonempty subsets B of V . Then if X1 → X2 → · · · → Xn forms a Markov chain, any linear

information inequality involving Xi, i ∈ V can be expressed in the form∑
A ∈TI

cA µ
∗(A) ≥ 0,

where cA ∈ R. The following theorem gives a complete characterization of such inequalities that

always holds.

Theorem 10. If X1 → X2 → · · · → Xn forms a Markov chain, then∑
A ∈TI

cA µ
∗(A) ≥ 0 (17)

always holds if and only if cA ≥ 0 for all A ∈ TI.

Proof If X1 → X2 → · · · → Xn forms a Markov chain, then µ∗(A) ≥ 0 for all A ∈ TI. If cA ≥ 0 for

all A ∈ TI, then evidently (17) always holds.

To prove the converse, assume that cA′ < 0 for an atom A′ ∈ TI. Now construct Xi, i ∈ V by

letting

Xi =

 Z if i ∈ UA′

constant otherwise,

where Z is a random variable such that 0 < H(Z) < ∞. Then by the proof of Theorem 3.11 in [18],

for all A ∈ TI,

µ∗(A) =

 H(Z) if A = A′

0 otherwise.

It follows that ∑
A ∈TI

cA µ
∗(A) = cA′ µ

∗(A′) < 0

since cA′ < 0 and µ∗(A′) > 0. Hence, (17) does not always hold and the converse is proved. �

Remark Let X1 → X2 → · · · → Xn form a Markov chain and consider any inequality of the

form (17) that always holds. Theorem 10 asserts that the left hand side of (17) must be a conic

combination of µ∗(A), A ∈ TI. Since µ∗(A) is a Shannon’s information measure for all A ∈ TI,
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we see that (17) is implied by the nonnegativity of Shannon’s information measures and hence is a

Shannon-type information inequality (see [18, Ch. 14]). Therefore, we conclude that there exist no

non-Shannon-type information inequalities for a Markov chain.

Fix a graph G and let PG be the class of probability measures P on X1 × X2 × · · · × Xn such

that P forms an MRF represented by G. In the rest of this section, we prove that the I-Measure

µ∗ of every P ∈ PG is nonnegative if and only if G is either a path or a forest of paths. In other

words, the MRF represented by such a graph G is either a Markov chain or a collection of mutually

independent Markov chains. In this sense we say that the Markov chain is the only MRF for which

the I-Measure is always nonnegative.

In the following, we present a theorem which is a generalization of Lemma 3. Unlike Lemma 3

that applies only to Markov chains, this theorem applies to all MRFs.

Theorem 11. Let X1, X2, · · · , Xn form a Markov graph G = (V, E). For a Type I atom A of G with

|UA| ≤ n − 2,

µ∗(A) = µ∗

⋂
k∈B

X̃k − X̃UA

 , (18)

where

B = {k ∈ V − UA : s(UA ∪ {k}) = 1},

i.e., a vertex k < UA is in B if and only if upon removing all the vertices in UA and vertex k, the

graph remains connected.

Example 15. Consider an MRF represented by the graph in Fig. 11. For the Type I atom 1̄23̄45678,

using Theorem 11, B = {2, 7, 8}, and so

µ∗
(
X̃2 ∩ X̃4 ∩ X̃5 ∩ X̃6 ∩ X̃7 ∩ X̃8 − X̃{1,3}

)
= µ∗

(
X̃2 ∩ X̃7 ∩ X̃8 − X̃{1,3}

)
.

For the Type I atom 1̄2̄3454678̄, B = {3, 4, 6, 7}, and so

µ∗
(
X̃3 ∩ X̃4 ∩ X̃5 ∩ X̃6 ∩ X̃7 − X̃{1,2,8}

)
= µ∗

(
X̃3 ∩ X̃4 ∩ X̃6 ∩ X̃7 − X̃{1,2,8}

)
.

To gain insight into Theorem 11, we first state the next lemma. This lemma and the technical

lemma that follows will be proved in Appendix C.
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Lemma 4. In Theorem 11, |B| ≥ 2.

Remark When |B| = 2, the term on the right hand side of (18) becomes a (conditional) mutual

information, which is always nonnegative.

The following lemma will be used in the proof of Theorem 11.

Lemma 5. In Theorem 11, let W = V − UA − B. For any S ( W, s(UA ∪ (W − S )) > 1.

Proof of Theorem 11 Let W = V − UA − B. Consider

µ∗

⋂
k∈B

X̃k − X̃UA

 = µ∗

⋃
S⊂W


⋂

k∈B

X̃k

 ∩
⋂

t∈S

X̃t

 − X̃UA∪(W−S )




=
∑
S⊂W

µ∗


⋂

k∈B

X̃k

 ∩
⋂

t∈S

X̃t

 − X̃UA∪(W−S )

 .
In the above summation, for S ( W, s(UA ∪ (W − S )) > 1 by Lemma 5. Therefore, except for the

atom corresponding to S = W, i.e., A, all the atoms are Type II atoms of G. It then follows that

µ∗

⋂
k∈B

X̃k − X̃UA

 = µ∗


⋂

k∈B

X̃k

 ∩
⋂

t∈W

X̃t

 − X̃UA


= µ∗


 ⋂

k∈V−UA

X̃k

 − X̃UA


= µ∗(A).

The theorem is proved. �

Theorem 11 can be applied to identify atoms on which the value of µ∗ is always nonnegative,

because when |B| = 2, the term on the right hand side of (18) corresponds to a (conditional) mutual

information.

Consider the graph G = (V, E), where V = {1, 2, · · · , n} and the edges in E are {i, i + 1} for

i = 1, 2, · · · , n − 1 and {1, n}. Evidently, G is a cycle graph, and if random variables Xi, i ∈ V are

represented by G, they form a Markov ring. Then A is a Type I atom of G if and only if UA = ∅ or

UA is a consecutive subset of V in the cyclic sense (e.g., {1, n} is regarded as a consecutive subset

of V). An application of Theorem 11 reveals that X̃1 ∩ X̃2 ∩ · · · ∩ X̃n (i.e., UA = ∅) is the only
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atom on which µ∗ may take a negative value, because the value of µ∗ on any other Type I atom is a

conditional mutual information. This observation is instrumental in the proof of the next theorem,

the main result in this section.

Theorem 12. Let G be a connected graph. Then µ∗ is nonnegative for every P ∈ PG if and only if

G is a path.

The ‘if’ part of Theorem 12 is immediate because the I-Measure for a Markov chain is always

nonnegative. Toward proving the ‘only if’ part, we first classify all connected graphs into the fol-

lowing two classes:

K1: there exists a vertex whose degree is at least 3;

K2: all the vertices have degree less than or equal to 2.

We further classify the graphs in K2 into two subclasses:

K2-a: all the vertices have degree 2;

K2-b: some vertices have degree 1.

It is easy to see that a graph belonging to subclass K2-a is a cycle graph, and a graph belonging

to subclass K2-b is a path. Thus in order to establish Theorem 12, it suffices to prove Theorem 13

and Theorem 14 below which assert that µ∗ is not always nonnegative if Xi, i ∈ V are represented

by a graph belonging to K1 and K2-a, respectively.

Theorem 13. The I-Measure µ∗ for an MRF represented by a graph G belonging to K1 is not

always nonnegative.

Proof Consider a graph G = (V, E) in K1. Let u ∈ V be a vertex whose degree is at least 3, and

let {u, vl} ∈ E, where l = 1, 2, 3 and v1, v2, and v3 are distinct. Let Z and T be independent fair bits.
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Define random variables Xi, i ∈ V as follows:

Xi =



Z i = v1

T i = v2

Z + T mod 2 i = v3

(Z,T ) i = u

constant otherwise

Consider any cutset U of G:

1. If u < U, then u and v for all v ∈ {v1, v2, v3}\U are in the same component of G\U because u

and v are connected by an edge in G. Since Xi = constant for all i , u, v1, v2, v3, it is readily

seen that XV1(U), XV2(U), · · · , XVs(U)(U) are mutually independent conditioning on XU .

2. If u ∈ U, since Xvl , l = 1, 2, 3 are functions of Xu and Xi = constant for all i , u, v1, v2, v3, it is

readily seen that XV1(U), XV2(U), · · · , XVs(U)(U) are mutually independent conditioning on XU .

Thus in either case Xi, i ∈ V are represented by G. Then

µ∗

X̃u ∩ X̃v1 ∩ X̃v2 ∩ X̃v3 −
⋃

i,u,v1,v2,v3

X̃i

 = µ∗(X̃u ∩ X̃v1 ∩ X̃v2 ∩ X̃v3)

= −1,

where the first equality can be seen by expanding µ∗
(
X̃u ∩ X̃v1 ∩ X̃v2 ∩ X̃v3 −

⋃
i,u,v1,v2,v3 X̃i

)
using

[18, Theorem 3.19] into a linear combination of H( · | X̃i, i , u, v1, v2, v3) = H( · ), and the second

equality can easily be verified (cf. Problem 5, Ch. 12 in [18]). Hence, µ∗ for Xi, i ∈ V represented

by a graph G belonging to K1 is not always nonnegative.

Theorem 14. The I-Measure µ∗ for an MRF represented by a graph G belonging to K2-a is not

always nonnegative.

Proof Consider a graph G = (V, E) in K2-a, i.e., G is a cycle graph. For convenience, let V =

{0, 1, · · · , n−1}. The edge set E is specified by {u, v} ∈ E if and only if |u−v| = 1, where “−” denotes

modulo n subtraction. Let F denote a finite field containing at least n − 1 elements. Let Z and T be
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independent random variable, each taking values in F according to the uniform distribution. Now

define random variables Xi, i ∈ V as follows:

Xi =


Z i = 0

T i = 1

Z + αiT i = 2, 3, · · · , n − 1

where αi, i = 2, 3, · · · , n−1 are distinct nonzero elements of F. It is evident that Xi, i = 0, 1, · · · , n−1

are pairwise independent but not mutually independent, and that for any distinct i, i′, i′′, we have Xi′′

being a function of (Xi, Xi′).

We now show that Xi, i ∈ V is represented by G. Since G is a cycle graph, for any U ⊂ V , if the

vertices in U are connected in G, the vertices in V −U are also connected in G. Therefore, if U is a

cutest in G, the vertices in U are not connected in G. This implies that |U | ≥ 2. From the foregoing,

XV−U is a function of XU . Then we see that XV1(U), XV2(U), · · · , XVs(U)(U) are mutually independent

conditioning on XU . Therefore, Xi, i ∈ V is represented by G.

It remains to show that µ∗ is not nonnegative. For the sake of convenience, assume the loga-

rithms defining entropy are in the base |F|. Then for B ⊂ V such that B , ∅,

H(XB) =

 1 if |B| = 1

2 if 2 ≤ |B| ≤ n.
(19)

We will show that µ∗ is given by

µ∗

⋂
i∈W

X̃i −
⋃

j∈V−W

X̃ j

 =


0 if 1 ≤ |W | ≤ n − 2

1 if |W | = n − 1

−(n − 2) if |W | = n

(20)

for W ⊂ V . Toward this end, owing to the uniqueness of µ∗, we only need to verify that µ∗ as

prescribed by (20) satisfies (19). The details are given in Appendix B. Then the theorem is proved

because µ∗ is not nonnegative. �

Theorem 15. Let G be a graph with at least two components. Then µ∗ is nonnegative for every

P ∈ PG if and only if G is a forest of paths.

30



Proof We first prove the ‘only if’ part. Assume that G is not a forest of paths, i.e., there exists a

component of G which is not a path. Denote the vertices of this component by V ′ and let Xi, i ∈ V\V ′

be constant. Then by Theorem 12, we can construct Xi, i ∈ V such that µ∗(S ) < 0 for some

S ⊂ FV′ ⊂ FV , where FV′ is the σ-field generated by {X̃i, i ∈ V ′}. Hence µ∗ is not nonnegative, and

the ‘only if’ part is proved.

To prove the ‘if’ part, we need to prove that if an MRF is represented by a graph G which is

a forest of paths, then µ∗ is always nonnegative. Let m be the number of components of G, where

m ≥ 2, and denote the sets of vertices of these components by V1,V2, · · · ,Vm. Without loss of

generality, assume that the indices in each Vi are consecutive.

Now observe that a nonempty atom A of FV is a Type I atom of FV if and only if UA has the

form (15) and {l, l + 1, · · · , u} ⊂ Vi for some 1 ≤ i ≤ m. If l = u, then

µ∗(A) = H(X̃l|X̃V−{l}) ≥ 0.

If l < u, then by Theorem 11,

µ∗(A) = µ∗

 ⋂
l≤k≤u

X̃k − X̃UA

 = µ∗(X̃l ∩ X̃k − X̃UA) ≥ 0.

Hence µ∗ is nonnegative, and the theorem is proved. �

6 Information Diagrams for Markov Random Fields

As discussed in Section 5, the I-Measure µ∗ of a finite-length Markov chain can be represented

by a 2-dimensional information diagram as in Fig. 9. Such an information diagram is a “correct”

representation in the sense that the closed curves representing the set variables intersect with each

other in such a way that

1. all the Type I atoms are nonempty (not suppressed);

2. all the Type II atoms are empty (suppressed).

We call Fig. 9 an information diagram (customized) for a Markov chain, or more specifically an in-

formation diagram for the path Pn (as discussed in Section 5). With such an information diagram, it
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is relatively easy to discover information inequalities and identities pertaining to a Markov chain by

visualization, which may be difficult otherwise. A notable such example is an information identity

for a Markov chain of five random variables that was useful in proving an outer bound for multiple

descriptions [16] (see also [18, Example 3.18]).

Owing to its simple and regular structure, it is possible to construct an information diagram

for a Markov chain by trial and error. However, constructing an information diagram for a general

MRF requires a more systematic approach. In the rest of this section, we develop a method for this

purpose by using the characterization of a subfield of an MRF in Section 4.

To simplify notation, we use Nn to denote {1, 2, · · · , n}. Consider Xi, i ∈ V forming a Markov

graph G = (V, E) with V = Nn. Using Corollary 3 as the recipe, we can construct G∗(Nn−1). Then

by repeating this step with G∗(Nn−1) in place of G, we can construct (G∗(Nn−1))∗(Nn−2), which

from Proposition 6 is in fact equal to G∗(Nn−2). In the same fashion, we can construct the graphs

G∗(Nn−3), · · · ,G∗(N1) recursively.

In our method for constructing an information diagram for G, we construct a sequence of in-

formation diagrams for G∗(N1), G∗(N2), · · · ,G∗(Nn) = G recursively, with the last one being the

desired information diagram. Denote these information diagrams by D1,D2, · · · ,Dn. For the con-

venience of discussion, denote the closed curve representing X̃m by Cm for 1 ≤ m ≤ n.

Now the graph G∗(N1) consists of the single vertex 1 and no edge. Then an information diagram

consisting of any closed curve representing X̃1 would be a correct representation for G∗(N1). Call

this information diagramD1.

We observe that for m = 2, 3, · · · , n, an atom A ∈ ANm−1 generates the two atoms A ∩ X̃m and

A ∩ X̃c
m inANm , and there is the extra atom X̃c

1 ∩ X̃c
2 ∩ · · · ∩ X̃c

m−1 ∩ X̃m inANm that is not generated

by any atom inANm−1 .

For m = 2, 3, · · · , n, in constructing Dm from Dm−1, we add the closed curve Cm to the former

in a suitable way. In order for this recursive approach to work, we need to ensure that a Type II atom

of G∗(Nm−1) that is suppressed in Dm−1 would not generate a Type I atom of G∗(Nm) which is not

to be suppressed inDm. This is proved in the next theorem.

Theorem 16. For m = 2, 3, · · · , n, if A is a Type II atom of G∗(Nm−1), then both A∩ X̃m and A∩ X̃c
m
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are Type II atoms of G∗(Nm).

Proof Assume that A is a Type II atom of G∗(Nm−1). We first prove that A ∩ X̃c
m is a Type II

atom of G∗(Nm). From the discussion following Proposition 6, we know that G∗(Nm)\{m} is a

subgraph of G∗(Nm−1). As such, upon removing all the vertices in UA in both graphs, we see that

G∗(Nm)\({m} ∪ UA) is subgraph of G∗(Nm−1)\UA, where the latter is disconnected because A is a

Type II atom of G∗(Nm−1). It then follows that G∗(Nm)\({m}∪UA) is also disconnected. Upon noting

that UA∩ X̃c
m

= UA ∪ {m}, we see that G∗(Nm)\UA∩X̃c
m

= G∗(Nm)\({m} ∪ UA) which is disconnected.

Therefore, A ∩ X̃c
m is a Type II atom of G∗(Nm).

We now prove that A ∩ X̃m is a Type II atom of G∗(Nm). Let

γm =
{

j : { j,m} is an edge in G∗(Nm)
}

(21)

be the set of neighbors of vertex m in G∗(Nm). Note that γm ⊂ Nm−1. Let Ẽm and Ẽm−1 be the sets

of edges of G∗(Nm)\UA and G∗(Nm−1)\UA, respectively. Evidently,

Ẽm − Ẽm−1 = {{m, j} : j ∈ γm − UA} , (22)

where γm−UA is the set of neighbors of vertex m in G∗(Nm)\UA. We consider two cases for γm−UA.

γm − UA = ∅

This is the case when vertex m has no neighbor in G∗(Nm)\UA. Since A is a Type II atom of

G∗(Nm−1), G∗(Nm−1)\UA is disconnected. From (22), we have Ẽm − Ẽm−1 = ∅, so that Ẽm ⊂

Ẽm−1. This implies that G∗(Nm)\UA is also disconnected. Upon noting that UA∩X̃m
= UA, we have

G∗(Nm)\UA∩X̃m
= G∗(Nm)\UA which is disconnected. Therefore, A ∩ X̃m is a Type II atom of

G∗(Nm).

γm − UA , ∅

This is the case when vertex m has at least one neighbor in G∗(Nm)\UA. For any distinct vertices i1

and i2 that are both neighbors of vertex m in G∗(Nm)\UA (and therefore also neighbors of vertex m

in G∗(Nm)), according to Corollary 3, {i1, i2} is an edge in G∗(Nm−1) and hence {i1, i2} ∈ Ẽm−1

(because i1, i2 < UA), which implies that i1 and i2 belong to the same component in G∗(Nm−1)\UA.

Equivalently, if i1 and i2 belong to different components in G∗(Nm−1)\UA, then i1 and i2 cannot both
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be neighbors of m in G∗(Nm)\UA. Therefore, the neighbors of m in G∗(Nm)\UA all belong to the

same component in G∗(Nm−1)\UA, and we denote this component by V1.

Since G∗(Nm−1)\UA is disconnected, there exists another component V2 in G∗(Nm−1)\UA. Now

consider any i1 ∈ V1 and i2 ∈ V2. Since i1 and i2 are in different components in G∗(Nm−1)\UA, we

have {i1, i2} < Ẽm−1. Then we see from the discussion in the last paragraph that i1 and i2 cannot

both be neighbors of m in G∗(Nm)\UA. By Corollary 3, {i1, i2} is not an edge in G∗(Nm−1) and hence

not an edge in G∗(Nm)\UA because G∗(Nm)\UA is a subgraph of G∗(Nm−1). Therefore, (i1, i2) < Ẽm.

Also, since all the neighbors of vertex m in G∗(Nm)\UA are in V1, i2 is not a neighbor of vertex m in

G∗(Nm)\UA, and therefore {m, i2} < Ẽm.

Summarizing the above, we have proved that for any i ∈ V1 ∪ {m} and i2 ∈ V2, {i, i2} < Ẽm.

Hence, V1∪{m} and V2 are distinct components in G∗(Nm)\UA, so that G∗(Nm)\UA is disconnected.

Finally, upon noting that G∗(Nm)\UA∩X̃m
= G∗(Nm)\UA, we see that A ∩ X̃m is a Type II atom of

G∗(Nm). �

When we constructDm by adding X̃m toDm−1, for each Type I atom A of G∗(Nm−1), the closed

curve Cm is required to

(B1) Split A into two regions if both A ∩ X̃m and A ∩ X̃c
m are Type I atoms of G∗(Nm), so that both

A ∩ X̃m and A ∩ X̃c
m are not suppressed inDm;

(B2) Include A in X̃m if A ∩ X̃m and A ∩ X̃c
m are Type I and Type II atoms of G∗(Nm), respectively,

so that A ∩ X̃m is not suppressed and A ∩ X̃c
m is suppressed inDm; or

(B3) Exclude A from X̃m if A∩ X̃m and A∩ X̃c
m are Type II and Type I atoms of G∗(Nm), respectively,

so that A ∩ X̃m is suppressed and A ∩ X̃c
m is not suppressed inDm.

However, if both A ∩ X̃m and A ∩ X̃c
m are Type II atoms of G∗(Nm), there is no way the closed curve

Cm can be drawn such that both of these atoms are suppressed in Dm. Under this situation, our

recursive approach for constructing an information diagram for G would not work. The following

theorem (see Corollary 5) precludes this possibility.

Theorem 17. If A is a Type I atom of G∗(Nm−1), then
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i) if | γm − UA | = 0, then A belongs to (B3);

ii) if | γm − UA | = 1, then A belongs to (B1);

iii) if | γm − UA | ≥ 2, then A belongs to either (B1) or (B2).

Corollary 5. If A is a Type I atom of G∗(Nm−1), then at least one of A ∩ X̃m and A ∩ X̃c
m is a Type I

atom of G∗(Nm).

Proof of Theorem 17 Let E′m and E′′m be the edge sets of G∗(Nm−1) and G∗(Nm)\{m}, respectively.

By Corollary 3, we have

E′m = E′′m ∪ κ(γm), (23)

which implies

E′m − E′′m ⊂ κ(γm). (24)

Let Ẽ′m and Ẽ′′m be the edge sets of G∗(Nm−1)\UA and G∗(Nm)\({m} ∪UA), respectively. We see that

Ẽ′m and Ẽ′′m can be obtained respectively from E′m and E′′m by removing the edges joining at least one

vertex in UA from these sets. Then upon removing these edges from every set in (24), we obtain

Ẽ′m − Ẽ′′m ⊂ κ(γm − UA). (25)

Assume A is a Type I atom of G∗(Nm−1). We now prove the theorem for each of the three cases.

i) | γm − UA | = 0

We first prove that A ∩ X̃c
m is a Type I atom of G∗(Nm). Since | γm − UA | = 0, i.e., γm − UA = ∅, it

follows from (25) that Ẽ′m − Ẽ′′m = ∅, or Ẽ′m ⊂ Ẽ′′m. In fact,

Ẽ′m = Ẽ′′m (26)

because Ẽ′′m ⊂ Ẽ′m in general (cf. (23)). Now, if A is a Type I atom of G∗(Nm−1), then G∗(Nm−1)\UA

is connected. In view of (26), we see that G∗(Nm)\({m} ∪ UA) = G∗(Nm)\UA∩X̃c
m

is also connected.

Therefore, A ∩ X̃c
m is a Type I atom of G∗(Nm).

We now prove that A∩ X̃m is a Type II atom of G∗(Nm). From the last paragraph, G∗(Nm)\({m}∪

UA) is connected. Then all the vertices in Nm−1 − UA are connected in G∗(Nm)\({m} ∪ UA), and
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they remain connected in G∗(Nm)\UA because G∗(Nm)\({m} ∪ UA) is a subgraph of G∗(Nm)\UA.

On the other hand, since | γm − UA | = 0, {m, i} is not an edge in G∗(Nm) for all i ∈ Nm−1 − UA,

and so in in G∗(Nm), vertex m is not connected with any vertex in Nm−1 − UA. Since G∗(Nm)\UA

is a subgraph of G∗(Nm), we see that in G∗(Nm)\UA, vertex m is not connected with any vertex

in Nm−1 − UA. Thus G∗(Nm)\UA is disconnected. Hence, we conclude that G∗(Nm)\UA∩X̃m
=

G∗(Nm)\UA is disconnected, i.e. A ∩ X̃m is a Type II atom of G∗(Nm).

ii) | γm − UA | = 1

To prove that A∩X̃c
m is a Type I atom of G∗(Nm), we only have to observe that in (25), κ(γm−UA) = ∅

when | γm − UA | = 1. Then (26) holds and we can apply the same argument as in case i).

We now prove that A ∩ X̃m is a Type I atom of G∗(Nm). For the economy of presentation, we

will give a proof that also covers case iii), i.e., | γm − UA | ≥ 2.

It follows from (25) that for i, j ∈ Nm−1 − UA, if {i, j} ∈ Ẽ′m and {i, j} < Ẽ′′m, then {i, j} ∈

κ(γm − UA), i.e., i, j ∈ γm − UA. Equivalently, if i < γm − UA or j < γm − UA, then {i, j} < Ẽ′m or

{i, j} ∈ Ẽ′′M. In other words, if i and j are not both in γm − UA and {i, j} ∈ Ẽ′m, then {i, j} ∈ Ẽ′′m.

Since A is a Type I atom of G∗(Nm−1), G∗(Nm−1)\UA is connected. Then for any distinct α, β ∈

Nm−1 − UA, there exists a path between vertices α and β in G∗(Nm−1)\UA.

If such a path does not contain an edge with both endpoints in γm − UA, from the discussion in

the second last paragraph, we see that all the edges on the path are in G∗(Nm)\({m} ∪UA) and hence

are also in G∗(Nm)\UA because G∗(Nm)\({m} ∪UA) is a subgraph of G∗(Nm)\UA. In other words, α

and β are connected in G∗(Nm)\UA.

If the path contains any edge with both endpoints in γm − UA, we can construct another path

between α and β in G∗(Nm)\UA by replacing every such an edge {u, v} by edges {u,m} and {m, v}

which are both in G∗(Nm)\UA. Then we see that α and β are connected in G∗(Nm)\UA.

Finally, since γm 1 UA, there exists a vertex u ∈ γm − UA. Then for any α ∈ Nm−1 − UA, we

can readily see that vertices α and m are connected in G∗(Nm)\UA because α is connected with u

and u is connected with m. Summarizing the above, for any distinct α, β ∈ Nm − UA, α and β are

connected in G∗(Nm)\UA. This implies that G∗(Nm)\UA = G∗(Nm)\UA∩X̃m
is connected, i.e., A∩ X̃m

is a Type I atom of G∗(Nm).
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ii) | γm − UA | ≥ 2

To prove that A belongs to either (B1) or (B2), we only need to prove that A ∩ X̃m is a Type I atom

of G∗(Nm). This has already been proved in case ii). �

Now in light of Theorem 16 and Corollary 5, we can construct Dm from Dm−1 according to

the prescriptions in (B1)-(B3) for each Type I atom of G∗(Nm−1). Theorem 17 helps simplify the

checking of which of (B1) to (B3) these atoms belong to, as we now explain. The three conditions

for A in Theorem 17 are

i) | γm − UA | = 0: This means that A 1 X̃i for any i ∈ γm, or equivalently, A 1 X̃γm . In this case,

the closed curve Cm excludes the atom A.

ii) | γm − UA | = 1: This means that A ⊂ X̃i for only one i ∈ γm. In this case, the closed curve Cm

splits the atom A.

iii) | γm − UA | ≥ 2: This means that A ⊂ X̃i for more than one i ∈ γm. If A belongs to (B1), the

closed curve Cm splits the atom A, otherwise (A belongs to (B2)) it includes the atom A.

Note that if A satisfies condition iii), we still need to check whether it belongs to (B1) or (B2), which

is unavoidable. This is explained by the two examples in Figs. 12 and 13. In each of these examples,

we have n = 3 and γ3 = {1, 2}. Consider the Type I atom A = 12 of G∗(N2). Then UA = ∅ and

| γ3 − UA | = 2, i.e., A satisfies condition iii).

Example 16. We apply our method to construct an information diagram for the Markov chain

X1 → X2 → · · · → Xn. From Corollary 2, we see that for m = n, n − 1, · · · , 1, G∗(Nm) is the path

Pn defined in Section 5.

The information diagram D1, which consists of only the set variable X̃1, is completely trivial.

For 2 ≤ m ≤ n, when we constructDm fromDm−1, since γm = {m−1} (cf. (21)) is a singleton, every

Type I atom A ⊂ X̃m−1 in Dm−1 satisfies the condition that A ⊂ X̃i for only one i ∈ γm. Then based

on the discussion in the foregoing, the closed curve Cm excludes every Type I atom in Dm−1 that is

not contained in X̃m−1 and splits every Type I atom inDm−1 that is contained in X̃m−1. This way, we

can obtain the information diagram in Fig. 9.
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Our method is robust in the sense that it works for any labeling of the vertices. However, it

may be more convenient to construct the information diagram for one labeling than another. This is

illustrated in the following two examples.

Example 17. Consider the graph G in Fig. 14. Upon noting that γ3 and γ4 are singletons (both

equal to {2}), by using the technique in Example 16, we can readily construct the information dia-

gram in Fig. 15.

Example 18. Consider the graph G in Fig. 10, which is the same as the one in Fig. 14 except

that the vertices are labelled differently. Here, G∗(N3) is the complete graph K3, and so there is

no Type II atom in D3. Now γ4 = {1, 2, 3}. We have to consider all the atoms that are subsets of

X̃γ4 = X̃1 ∪ X̃2 ∪ X̃3, namely all the atoms inD3 because N3 − γ4 = ∅. For the atoms 12̄3̄, 1̄23̄, and

1̄2̄3 in D3, since each of them is a subset of X̃i for only one i ∈ γ4, the closed curve C4 splits each

of these atoms. For an atom A equal to 1̄23, 12̄3, or 123̄, we can check that A ∩ X̃4 ∈ TI(G) and

A ∩ X̃c
4 ∈ TII(G). Therefore, A belongs to (B2). For the atom 123, we can check that 1234 ∈ TI(G)

and 1234̄ ∈ TII(G), so this atom also belongs to (B2). As such, the closed curve C4 includes all

these four atoms, and we can construct the information diagram in Fig. 16. It can readily to checked

that this information diagram is equivalent to the one in Fig. 15 constructed in Example 17.

Example 19. Figs. 17 and 18 show a graph G and the corresponding information diagram, respec-

tively. In light of Corollary 2, we see that G∗(N4) is the path P4 defined in Section 5. Then we can

use the information diagram for X1 → X2 → X3 → X4 as D4 and add to it the closed curves C5

and C6 using the technique in Example 16 to obtain the information diagram in Fig. 18.

7 Conclusion

The theory of I-Measure proves to be a very useful tool for characterizing full conditional inde-

pendence structures and MRFs [15], because with the I-Measure, the fundamental set-theoretic

structure of the problem is revealed. In this paper, we apply this tool to obtain three main results

related to MRFs.
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For an MRF represented by an undirected graph, a subfield is a subset of the random variables

forming the MRF . We have determined the smallest undirected graph that can always represent a

subfield as an MRF. This is our first main result. As an application of this result, we have obtained

a necessary and sufficient condition for a subfield of a Markov tree to be also a Markov tree.

A Markov chain can be regarded a special case of an MRF. It was previously known that the

I-Measure of a Markov chain is always nonnegative [11]. Here, we have proved that the I-Measure

is nonnegative for every MRF represented by a given undirected graph if and only if the graph

is a forest of paths, i.e., the Markov random field is a collection of independent Markov chains.

This means that Markov chains are essentially the only MRFs such that the I-Measure is always

nonnegative. This is our second main result. In the course of proving this result, we have obtained

some interesting properties of the I-Measure pertaining to an MRF.

Our third main result is a nontrivial application of our first main result. In [11], a construction

of an information diagram for a Markov chain was presented. By applying our first main result,

we have developed a recursive approach for constructing information diagrams for MRFs. Such

diagrams not only reveal the special structure of the I-Measure for an MRF, but they also are very

useful for identifying information identities and inequalities pertaining to an MRF.

The work in our paper is based upon the the view that an MRF is a collection of full conditional

mutual independencies. As such, some of our results can potentially be generalized for Markov

structures beyond MRFs.

A Proof of Proposition 6

Let

G∗(V ′) = (V ′, E′),

G∗(V ′′) = (V ′′, E′′),

and

(G∗(V ′))∗(V ′′) = (V ′′, Ẽ′′).
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Consider any {u, v} ∈ E′′. By the definition of G∗(V ′′), there exists a path between u and v in G on

which all the intermediate vertices are in V−V ′′. Now on this path, let w1,w2, · · · ,wk be the vertices

in V ′ −V ′′ in the direction from u to v. Then the vertices between u and w1, the vertices between wi

and wi+1 for 1 ≤ i ≤ k−1, and the vertices between wk and v are all in (V−V ′′)− (V ′−V ′′) = V−V ′,

because V ′′ ⊂ V ′ ⊂ V . By the definition of G∗(V ′), the edges {u,w1}, {wi,wi+1} for 1 ≤ i ≤ k − 1,

and {wk, v} are in E′. In other words, there is a path between u and v in G∗(V ′) on which all the

intermediate vertices are in V ′ − V ′′. Then by the definition of (G∗(V ′))∗(V ′′), {u, v} ∈ Ẽ′′. This

proves that E′′ ⊂ Ẽ′′.

On the other hand, consider any {u, v} ∈ Ẽ′′. By the definition of (G∗(V ′))∗(V ′′), there exists a

path between u and v in G∗(V ′) on which all the intermediate vertices are in V ′ − V ′′. Let the edges

on this path be {u,w1}, {w1,w2}, · · · , {wk−1,wk}, and {wk, v}, where wi, 1 ≤ i ≤ k are in V ′ − V ′′.

Since {u,w1} ∈ E′, by the definition of G∗(V ′), there exists a path between u and w1 on which all the

intermediate nodes are in V − V ′. Similarly, there exists a path between wi and wi+1 for 1 ≤ i ≤ k,

and a path between wk and v, on which all the intermediate nodes are in V − V ′. Thus there exists a

path between u and v in G on which all the intermediate nodes are in (V −V ′)∪ (V ′−V ′′) = V −V ′′,

because V ′′ ⊂ V ′ ⊂ V . Then by the definition of G∗(V ′′), {u, v} ∈ E′′. This proves that Ẽ′′ ⊂ E′′.

Hence, we conclude that Ẽ′′ = E′′, i.e., (G∗(V ′))∗(V ′′) = G∗(V ′′). The proposition is proved.

B Verification of µ∗ in the Proof of Theorem 14

In this appendix, we verify that µ∗ as prescribed by (20) satisfies (19). First, for i ∈ V , consider

µ∗(X̃i) = µ∗

 ⋃
S⊂V−{i}

(
X̃i ∩ X̃S − X̃V−S−{i}

)
=

∑
S⊂V

µ∗
(
X̃i ∩ X̃S − X̃V−S−{i}

)
.

From (20), we see that µ∗(·) in the above summation vanishes if |S | ≤ n − 3, and so

µ∗(X̃i) =
∑
j,i

µ∗

⋂
k, j

X̃k − X̃ j

 + µ∗
(
X̃0 ∩ X̃1 ∩ · · · ∩ X̃n−1

)
= (n − 1) · 1 − (n − 2)

= 1. (27)
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This verifies (19) for the case |B| = 1. Next, for 0 ≤ i < j ≤ n − 1, consider

µ∗(X̃i ∩ X̃ j) =
∑

S⊂V−{i, j}

µ∗

X̃i ∩ X̃ j ∩

⋂
k∈S

X̃k

 −
 ⋃

l∈V−{i, j}−S

X̃l




=
∑

S⊂V−{i, j}
|S |≥n−3

µ∗

X̃i ∩ X̃ j ∩

⋂
k∈S

X̃k

 −
 ⋃

l∈V−{i, j}−S

X̃l




=
∑

m,i, j

µ∗

 ⋂
r∈V−{m}

X̃r − X̃m

 + µ∗

 n⋂
s=1

X̃s


= (n − 2) · 1 − (n − 2)

= 0. (28)

It follows from (27) and (28) that

µ∗(X̃i ∪ X̃ j) = µ∗(X̃i) + µ∗(X̃ j) − µ∗(X̃i ∩ X̃ j) (29)

= 1 + 1 − 0 (30)

= 2. (31)

This verifies (19) for the case |B| = 2. Now for 1 ≤ i < j < k ≤ n, consider

µ∗(X̃k − (X̃i ∪ X̃ j))

=
∑

S⊂V−{i, j,k}

µ∗

X̃k ∩

⋂
l∈S

X̃l

 −
X̃i ∪ X̃ j ∪

⋃
m∈V−{i, j,k}−S

X̃m


 .

In the above, since |k∪S | ≤ n−2, we see from (20) that every term in the above summation vanishes,

and so

µ∗(X̃k − (X̃i ∪ X̃ j)) = 0. (32)

Finally, consider B ⊂ V such that 3 ≤ |B| ≤ n and let i, j be two arbitrary elements of B. Then in

light of (31) and (32), we have

µ∗(X̃B) = µ∗(X̃i ∪ X̃ j) + µ∗
(
X̃B−{i, j} − (X̃i ∪ X̃ j)

)
≤ µ∗(X̃i ∪ X̃ j) +

∑
k∈B−{i, j}

µ∗(X̃k − (X̃i ∪ X̃ j))

= 2 + 0

= 2,
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where the inequality above is justified by the union bound because µ∗ is nonnegative on all the atoms

in X̃B−{i, j} − (X̃i ∪ X̃ j) (cf. (20)). On the other hand, we have

µ∗(X̃B) = µ∗(X̃i ∪ X̃ j) + µ∗
(
X̃B−{i, j} − (X̃i ∪ X̃ j)

)
≥ µ∗(X̃i ∪ X̃ j)

= 2,

again because µ∗ is nonnegative on all the atoms in X̃B−{i, j} − (X̃i ∪ X̃ j). Therefore, µ∗(X̃B) = 2,

verifying (19) for the case 3 ≤ |B| ≤ n.

C Proof of Lemmas 4 and 5

In this appendix, we prove Lemmas 4 and 5 via the following lemma.

Lemma 6. Let G = (V, E) be a connected undirected graph and B = {v ∈ V : s({v}) = 1}. Then

a) for any k ∈ V − B, we have B ∩ Ji , ∅ for all 1 ≤ i ≤ sk, where J1, J2, · · · , Jsk (sk ≥ 2) are

the components of G\{k};

b) s(R) > 1 for all nonempty subset R of V − B.

Proof We assume that B , V , since otherwise V − B = ∅ and the lemma has no assertion.

We first prove a). Let k ∈ V − B, and by the definition of B, we have sk ≥ 2. Consider

any spanning tree T of G. Note that T must contain at least one edge connecting k and each

Ji (1 ≤ i ≤ sk) because G is connected. For any fixed i, consider such an edge and call it e.

Upon removing e, T is disconnected with one component being a subtree containing k and the other

component being a subtree not containing k. For the latter subtree, all the vertices are in Ji, otherwise

there exists an edge connecting Ji and Ji′ (i′ , i), which is a contradiction because J1, J2, · · · , Jsk

are the components of G\{k}. Then this subtree must have at least one leaf in Ji, say l. Note that {l}

is not a cutset in T and hence not a cutset in G. Therefore B ∩ Ji , ∅, proving a).

We now prove b). Consider any nonempty subset R of V − B and fix k ∈ R. Since R ⊂ V − B, we

have R ∩ B = ∅. By a), B ∩ Ji , ∅ for all 1 ≤ i ≤ sk, with sk ≥ 2. Then the vertices in B are not all
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connected in G\{k}, and hence not all connected in G\R because k ∈ R and R ∩ B = ∅. This implies

that G\R is not connected, or s(R) > 1. The lemma is proved. �

Lemmas 4 and 5 can now be obtained as follows. In Theorem 11, UA is a Type I atom, and so

G\UA is connected. The same holds for Lemmas 4 and 5. Lemma 4 is trivial for |UA| = n − 2. For

|UA| < n − 2, it can be obtained by applying Part a) of Lemma 6 to G\UA. Finally, by applying Part

b) of Lemma 6 to G\UA with R = W − S , we obtain Lemma 5.
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Figure 1: The information diagram for Example 3.
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Figure 2: The graph G in Example 6.
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Figure 3: The graph Ĝ corresponding to the setAII in Example 7.
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Figure 4: The graphs G (black) and G∗(V ′) (grey) in Example 9, with V ′{1, 3, 5, 6}.
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Figure 5: The graphs G (black) and G∗(V ′) (grey) in Example 10, with V ′ = {1, 2, 5, 6, 8, 9}.
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Figure 6: The graphs G (black) and G∗(V ′) (grey) in Example 11, with V ′ = {2, 3, 4}.

51



1
2

3

4

5
7

9

10

11

12
6

8

Figure 7: The trees G (black) and G∗(V ′) (grey) in Example 13, with V ′ = {1, 4, 8, 9, 12}.
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Figure 8: The tree G (black) and the graph G∗(V ′) (grey) in Example 13, with V ′ = {1, 4, 7, 8, 9, 12}.
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X 1 X 2 X n -1 X n 

Figure 9: The information diagram for the Markov chain X1 → X2 → · · · → Xn.
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Figure 10: The “star” representing the Markov tree in Example 14.
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Figure 11: The graph in Example 15.

56



1 2

3

G G⇤({1, 2})

1 2

Figure 12: In this example, A = 12 ∈ TI(G∗({1, 2})), A ∩ X̃3 = 123 ∈ TI(G), and A ∩ X̃c
3 = 123̄ ∈

TII(G). Therefore, A belongs to (B2).
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1 2

Figure 13: In this example, A = 12 ∈ TI(G∗({1, 2})), A ∩ X̃3 = 123 ∈ TI(G), and A ∩ X̃c
3 = 123̄ ∈

TI(G). Therefore, A belongs to (B1).
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Figure 14: The graph G in Example 17.
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Figure 15: The information diagram in Example 17.
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Figure 16: The information diagram in Example 18.
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Figure 17: The graph G in Example 19.
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Figure 18: The information diagram in Example 19.
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