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Abstract—Mutually Uncorrelated (MU) codes are a class of
codes in which no proper prefix of one codeword is a suffix
of another codeword. These codes were originally studied for
synchronization purposes and recently, Yazdi et al. showed their
applicability to enable random access in DNA storage. In this
work we follow the research of Yazdi et al. and study MU codes
along with their extensions to correct errors and balanced codes.
We first review a well known construction of MU codes and
study the asymptotic behavior of its cardinality. This task is
accomplished by studying a special class of run-length limited
codes that impose the longest run of zeros to be at most some
function of the codewords length. We also present an efficient
algorithm for this class of constrained codes and show how to use
this analysis for MU codes. Next, we extend the results on the run-
length limited codes in order to study (dh, dm)-MU codes that
impose a minimum Hamming distance of dh between different
codewords and dm between prefixes and suffixes. In particular, we
show an efficient construction of these codes with nearly optimal
redundancy. We also provide similar results for the edit distance
and balanced MU codes. Lastly, we draw connections to the
problems of comma-free and prefix synchronized codes.

Index Terms—DNA storage, mutually uncorrelated codes,
constrained codes, non-overlapping codes, cross–bifix-free codes,
comma-free codes.

1. INTRODUCTION

Mutually Uncorrelated (MU) codes satisfy the constraint in
which the prefixes set and suffixes set of all codewords are dis-
joint. This class of codes was first studied by Levenshtein [20]
for the purpose of synchronization, and has received attention
recently due to its relevance and applicability for DNA stor-
age [34]. Namely, these codes offer random access of DNA
blocks in synthetic DNA storage.

The potential of DNA molecules as a volume for storing
data was recognized due to its unique qualities of density
and durability. The first large scale DNA storage system was
designed by Church et al. [11] in 2012. Since then a few
similar systems were implemented for archival applications as
they did not support random access to the memory. Recently,
in [8], [34] two random access DNA storage systems were
proposed. To enable random access, the authors suggested
to equip the DNA information blocks with unique addresses,
also known as primers. Under this setup, the reading process
starts with a phase aimed to identify the requested DNA block.
During the identification process the complementary sequence
of the unique primer is sent to the DNA pool and stitches
to the primer part of the requested DNA block. By that, the
selection of the DNA block is done and only the selected block
is read.
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Obtaining a good set of primers is therefore a key property
in achieving the desired random access feature as it guarantees
the success of the chemical processes involved in the identi-
fication phase. The constraints that a good primers set should
satisfy are listed by Yazdi et al. in [34]. In this paper we focus
on three of the four listed constraints, described as follows:
1) the MU constraint is imposed as it avoids overlaps in two
primers, which are likely to cause erroneous identification of
DNA blocks, 2) both the writing and reading channels of DNA
introduce substitution errors, therefore we are interested in
large mutual Hamming distance, and 3) we require the primers
to be balanced since balanced DNA sequences increase the
chances of successful reads. In addition, the authors of [32]
mentioned that deletion errors are introduced during synthesis.
We therefore also extend our study to MU codes with edit
distance.

MU codes were rigorously studied in the literature under
different names such as codes without overlaps [23], [24],
non-overlapping codes [7] and cross-bifix-free codes [2], [6],
[10]. However, the basic problem of finding the largest MU
code is still not fully solved. Let us define by AMU (n, q)
the size of the largest MU code over a field of size q.
The best upper bound, found by Levenshtein [23], states
that AMU (n, q) < qn/(e(n − 1)), while the best known
constructive lower bound, given independently in [10], [13],
[20], states that AMU (n, q) & q−1

qe ·
qn

n . Hence, for the binary
case there is still a gap of factor 2 between the lower and
upper bounds. The construction of MU codes is explicit. Given
some k < n, one fixes the first k bits to be zero, followed by
a single one, and the last bit is one as well. The sequence
of the remaining n − k − 2 symbols needs to satisfy the
constraint that it does not have a zeros run of length k.
Previous results claimed that q−1

qe ·
qn

n is a lower bound on
the construction’s code size, when n = (qi − 1)/(q − 1),
however it was not known whether it is possible to achieve
codes with larger cardinality. We give an explicit expression of
the asymptotic cardinality of these codes for any value of n and
show that the lower bound q−1

qe ·
qn

n is indeed tight. This result
is accomplished by studying a special family of run-length
limited constrained codes, called k-run length limited (RLL)
codes, which impose the longest run of zeros to be of size at
most k − 1, where k is a function of the word’s length. We
also present an efficient encoding and decoding algorithm for
k-RLL codes with linear complexity which results in efficient
binary MU codes with dlog(n)e+ 4 redundancy bits.

Next, we extend the study of k-RLL codes to the window
weight limited constraint that imposes the Hamming weight
of every length-k subsequence to be at least some prescribed
number d. Accordingly, we study MU codes with error-
correction capabilities. A (dh, dm)-MU code is an MU code
with minimum Hamming distance dh, with the additional
property that every prefix of length i differs by at least
min{i, dm} symbols from all proper length suffixes. We show
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an upper bound on the size of (dh, dm)-MU codes and give
a construction of such codes with encoder and decoder of
linear complexity. The redundancy of the construction is⌊
dh+1

2

⌋
log(n) + (dm − 1) log log n + O(dm log dm), which

is nearly optimal with respect to our upper bound on the
code size. A similar constraint is imposed when studying MU
codes with edit distance. We give a general result of such
codes and study MU codes that can correct a single deletion
or insertion. For the latter case we use a systematic encoder
for the Varshamov Tenengolts codes [31]. Lastly, we study
balanced MU codes, that is, codes which are both MU and
balanced. We show that the achievable minimum redundancy
of these codes is approximately 1.5 log(n) and for an efficient
construction we use Knuth’s algorithm while the redundancy
is roughly 2 log(n) bits.

The rest of this paper is organized as follows. In Section 2,
we formally define the codes studied in the paper and review
related work. In Section 3, we analyze the redundancy of k-
RLL codes, when k is a function of the word’s length, and
propose efficient encoding and decoding algorithms for these
codes. We use this analysis in Section 4 in order to study
the asymptotic cardinality of the MU codes. We extend the
results on k-RLL codes in Section 5 to study the window
weight limited constraint and accordingly in Section 6, we
extend the class of MU codes to (dh, dm)-MU codes. We
continue in Section 7 to study MU codes that can correct
deletions and insertions, and in Section 8 we study balanced
MU codes. Furthermore, in Section 9 we draw connections to
the problems of comma-free and prefix synchronized codes.
Lastly, Section 10 concludes and summarizes the results in the
paper.

2. DEFINITIONS, PRELIMINARIES, AND RELATED WORK

For every two integers i ≤ k we denote by [i, k] the set of
integers {j | i ≤ j ≤ k} and use [k] as a shortening to [1, k].
We use the notation of Σ = {0, 1} as the binary alphabet and
Σq = {0, 1, . . . , q−1} is the notation for larger alphabets. For
two integers n, k, the notation 〈n〉k stands for n modulo k.
For a vector a = (a1, . . . , an) and i, j ∈ [n], i ≤ j, we denote
by aji the subvector (ai, . . . , aj) of a. For j < i, aji is the
empty word. The Hamming weight of a vector a is denoted
by wH(a) and dH(a,b) is the Hamming distance between a
and b. A zeros run of length r of a vector a is a subsequence
ai+r−1
i , i ∈ [n − r + 1] such that ai = · · · = ai+r−1 = 0.

The notation ai denotes the concatenation of the vector a i
times and ab is the concatenation of the two vectors a and b.
Let A,B be two sets of vectors over Σq . We denote the set
AB = {ab|a ∈ A, b ∈ B} and the set Ai = AA · · ·A, to be i
concatenations of the set A. For two functions f(n), g(n) we
say that f(n) . g(n) if limn→∞

f(n)
g(n) ≤ 1, and f(n) ≈ g(n)

if limn→∞
f(n)
g(n) = 1. The redundancy of a set A ⊆ Σnq is

defined as red(A) = n− logq |A|. If the base of the logarithm
is omitted then it is assumed to be 2.

Definition 2.1 Two not necessarily distinct words a, b ∈ Σnq
are mutually uncorrelated if any non-trivial prefix of a does
not match any non-trivial suffix of b. A code C ⊆ Σnq is a
mutually uncorrelated (MU) code if any two not necessarily
distinct codewords of C are mutually uncorrelated.

Let us denote by AMU (n, q) the largest cardinality of an
MU code of length n over Σq . Levenshtein showed in [23]
that for all n and q

AMU (n, q) ≤
(
n− 1

n

)n−1
qn

n
<

qn

e(n− 1)
, (1)

or in other words, the redundancy is lower bounded by log e+
log(n− 1).

We now recall a well studied family of MU codes. It
was suggested independently first by Gilbert in [13], later by
Levenshtein in [20] and recently by Chee et al. in [10].

Construction I Let n, k be two integers such that 1 ≤ k < n
and let C1(n, q, k) ⊆ Σnq be the following code:

C1(n, q, k) = {a ∈ Σnq | ∀i ∈ [k], ai = 0, ak+1 6= 0, an 6= 0,

an−1
k+2 has no zeros run of length k}.

We denote

C1(n, q) = max
1≤k<n

{|C1(n, q, k)|}.

It was proved in [10], [13], [20] that there exists an appropriate
choice of k for which the following lower bounds hold

C1(n, q) & q−
q

q−1 ln q
qn

n
, (2)

as n→∞, and more specifically

C1(n, q) &
q − 1

qe
· q

n

n
, (3)

where n → ∞ over the subsequence qi−1
q−1 , i ∈ N. However,

it was not established in these works what the asymptotic
cardinality of C1(n, q) is and for which k it is achieved.
We answer these questions in Section 4 and show that the
asymptotic inequalities in (2), (3) are asymptotically tight.

Additional interesting approach for constructing binary MU
codes was proposed in [6] and was later generalized in [2] to
alphabets of size q > 2. In this case, it was shown that for
some small values of n the approach in [2] achieves larger
cardinality than Construction I. Both works [2], [6] do not
offer asymptotic analysis of the constructions’ redundancy,
however, for the binary case it is commonly believed that
Construction I provides the best known asymptotic code size.
Furthermore, the author of [7] extended Construction I for
q > 2 and showed that if q is a multiple of n then this
extension results with strictly optimal codes. Lastly, we note
that in [4], [5] Gray codes were presented for listing the
vectors of the code C1(n, q, k).

Due to the structure of Construction I, the tools that we use
for analyzing its cardinality are taken from studies in the field
of constraint coding. We recall the well known Run Length
Limited (RLL) constraint in which the lengths of the zero runs
are limited to a fixed range of values.

Definition 2.2 Let k and n be two integers. We say that a
vector a ∈ Σnq satisfies the k-run length limited (RLL)
constraint, and is called a k-RLL vector, if n < k or
∀i ∈ [n− k + 1] : wH(ai+k−1

i ) ≥ 1.

In other words, a vector is called a k-RLL vector if it does
not contain a zeros run of length k. We denote by Aq(n, k)
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the set of all k-RLL length-n vectors over the alphabet Σq ,
and aq(n, k) = |Aq(n, k)|.

The definition of the k-RLL constraint is similar to the
(d, k)-RLL constraint from [26] that states that any zeros run
is of length at least d and at most k. In other words, the k-
RLL constraint is equivalent to the well studied (0, k−1)-RLL
constraint. We chose the notation of k-RLL for simplicity of
the following analysis to come.

The capacity of the k-RLL constraint, is defined for any
fixed values of k and q as

Ek,q = lim
n→∞

log(aq(n, k))

n
.

Kato and Zeger [16] provided the following result for the
binary case and later Jain et. al generalized it for q ≥ 2 in
[15]

Ek,q = log q − (q − 1) log e

qk+2
(1 + o(1)).

3. RUN LENGTH LIMITED CONSTRAINT

The k-RLL constraint was studied extensively in the lit-
erature previously by many works; see [26] and references
therein. However, this study was focused solely for the case
in which k is fixed, meaning k is independent of n. As it will
be explained later, the MU codes problem requires analysis
of values of k which are dependent on n. In Subsection 3.1,
we resort to previous results on the k-RLL constraint, when
k is fixed to provide a better understanding on the asymptotic
behavior of aq(n, k) when k depends on n. Later in Subsec-
tion 3.2 we present efficient encoding and decoding algorithms
to avoid zeros runs of length dlog ne+1, with linear time and
space complexity, and with only a single bit of redundancy.

A. Cardinality Analysis
We start by giving general bounds on aq(n, k) for most

values of n, k in Lemma 3.1 and Lemma 3.3. The intuition of
the proofs is as follows. In Lemma 3.1, we consider the set
of all length-n vectors which are a concatenation of multiple
length-2k k-RLL vectors, i.e. each length-2k vector satisfies
the k-RLL constraint. The set Aq(n, k) is a subset of this set
and hence aq(n, k) is upper bounded by its size. For the lower
bound we consider the set of all vectors of length n which
are again, a concatenation of multiple shorter k-RLL vectors,
however, now we extract vectors that start or end with dk/2e
zeros. The new set is a subset of Aq(n, k) and a lower bound
is derived accordingly.

In Lemma 3.3 we study the value aq(mn, k) and bound
it similarly to the bounds in Lemma 3.1 by considering a
concatenation of m vectors of length n. Both the upper and
lower bounds on aq(mn, k) will include the size aq(n, k)
and thus equivalent upper and lower bounds on aq(n, k) will
be established. We then derive the final bounds using the
expression Ek,q = limm→∞

log(aq(mn,k))
mn for the capacity.

Lemma 3.1 Let n, k be positive integers such that 5 ≤ k ≤ n,
then

qn(
q − 1

q
)
c2

n

qk−1 e
− c2

c1

n

q1.5k−1 ≤ aq(n, k) ≤ qn−c3
n−2k

qk ,

where c1 = (q−1)qdk/2e−k/2

2q , c2 =
b n

qk−1 c+1
n

qk−1
, c3 =

logq e(q−1)2

2q2 .

Proof:

Part 1: Upper Bound

We consider the set Aq(2k, k)b
n
2k c, that is, the set of vectors

which are a concatenation of b n2k c vectors from Aq(2k, k). We
then append it with the set of all length-〈n〉2k q-ary vectors.
The resulting set of length-n vectors is denoted by

Bq(n, k) = Aq(2k, k)b
n
2k cΣ〈n〉2kq .

Note that Aq(n, k) ⊆ Bq(n, k) and |Bq(n, k)| =
aq(2k, k)b

n
2k cq〈n〉2k , hence

aq(n, k) ≤ aq(2k, k)b
n
2k cq〈n〉2k . (4)

Let b(k) be the number of vectors of length 2k with a zeros
run of length exactly k and with no zeros run of length greater
than k. There are q2k−(k+1)(q − 1) vectors of length 2k that
start with a zeros run of length exactly k and q2k−(k+1)(q−1)
different vectors that end with such a run. There are 2k−(k−
1)−2 = k−1 other positions in which a zeros run of length k
can start within the 2k vector. For each such a position there
are q2k−(k+2)(q − 1)2 different vectors with a zeros run of
length exactly k. In total we have

b(k) = 2q2k−(k+1)(q − 1) + (k − 1)q2k−(k+2)(q − 1)2

= 2qk−1(q − 1) + (k − 1)qk−2(q − 1)2

≥ (k + 1)qk−2(q − 1)2.

All length-2k vectors with a zeros run of length exactly k are
not included in Aq(2k, k). Therefore,

aq(2k, k) ≤ q2k − b(k) ≤ q2k − (k + 1)qk−2(q − 1)2. (5)

By combining inequalities (4) and (5), we get

aq(n, k) ≤ (q2k − (k + 1)qk−2(q − 1)2)b
n
2k cq〈n〉2k

= (q2k(1− (k + 1)(q − 1)2

qk+2
))b

n
2k cq〈n〉2k

= qn(1− (k + 1)(q − 1)2

qk+2
)b

n
2k c

(a)

≤ qn(e
− (k+1)(q−1)2

qk+2 )b
n
2k c

≤ qn−logq e
(k+1)(q−1)2

qk+2 ( n
2k−1)

≤ qn−logq e
(q−1)2(n−2k)

2qk+2 ,

where (a) results from the inequality 1− x ≤ e−x for all x.

Part 2: Lower Bound

We start by giving an upper bound on the number of length-
n vectors with a zeros run of length at least k. There are
n − k + 1 positions in which a zeros run can start and for
each position we have at most qn−k different vectors. From
the union bound we have that the number of length-n vectors
with a zeros run of length at least k is upper bounded by
qn−k(n− k+ 1), and by excluding those vectors from the set
of all length-n vectors we get

aq(n, k) ≥ qn − qn−k(n− k + 1).
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This bound is irrelevant for values of k smaller than logq n as
it is less than zero. However, if we choose k ≥ logq n + 1 it
becomes useful and we get

aq(n, k) ≥ qn − qn−logq n−1(n− logq n)

= qn(1−
n− logq n

qn
)

≥ qn(1− n

qn
)

= qn−1(q − 1).

Since we are also interested in the case of k < logq n +
1, or equivalently n > qk−1, we continue our analysis by
breaking down the length-n vector to blocks of length qk−1

and applying the bound on them in the following manner.
For ` ≥ k we denote the set

Cq(`, k) = {a | a ∈ Aq(`, k),

a starts or ends with dk/2e zeros}
and cq(`, k) = |Cq(`, k)|. Note that

cq(`, k) ≤ 2 · q`−dk/2e.
We also denote Dq(`, k) = Aq(`, k) \ Cq(`, k) and

dq(`, k) = |Dq(`, k)| = aq(`, k)− cq(`, k)

≥ aq(`, k)− 2q`−dk/2e.

For k ≥ logq `+ 1, or equivalently ` ≤ qk−1 we have that

dq(`, k) ≥ q`−1(q − 1)− 2q`−dk/2e

= q`−1(q − 1)(1− 2q

(q − 1)qdk/2e
). (6)

Consider the set of vectors which are a concatenation of
b n
qk−1 c vectors from Dq(q

k−1, k) appended by a vector from
Dq(〈n〉qk−1 , k). We denote this set by

Eq(n, k) = Dq(q
k−1, k)

b n

qk−1 cDq(〈n〉qk−1 , k).

Note that Eq(n, k) ⊆ Aq(n, k) and

|Eq(n, k)| = dq(q
k−1, k)

b n

qk−1 cdq(〈n〉2k−1 , k).

Hence,

aq(n, k) ≥dq(qk−1, k)
b n

qk−1 cdq(〈n〉qk−1 , k)

Eq.(6)

≥ (qq
k−1−1(q − 1)(1− 2q

(q − 1)qdk/2e
))
b n

qk−1 c

·q〈n〉qk−1−1(q − 1)(1− 2q

(q − 1)qdk/2e
)

=qn(
q − 1

q
)
b n

qk−1 c+1
(1− 2q

(q − 1)qdk/2e
)
b n

qk−1 c+1
.

For all x < −1, it is known that (1 + 1
x )x+1 < e. We denote

x = − (q−1)qdk/2e

2q = −c1q
k
2 , for some constant c1 > 0. For

k ≥ 5, q ≥ 2 we have that x < −1 and we deduce that

(1− 2q

(q − 1)qdk/2e
)
b n

qk−1 c+1
=(1 +

1

x
)
(x+1)(b n

qk−1 c+1)/(x+1)

>e
(b n

qk−1 c+1)/(x+1)

(a)
= e

(c2
n

qk−1 )/(−c1q
k
2 )

=e
− c2

c1

n

q1.5k−1 ,

where (a) follows from a choice of c2 > 0 as the constant
which satisfies c2 n

qk−1 = b n
qk−1 c + 1. Finally, we conclude

that

aq(n, k) ≥qn(
q − 1

q
)
c2

n

qk−1 e
− c2

c1

n

q1.5k−1 .

From Lemma 3.1 we have that

c3
n− 2k

qk
≤red(Aq(n, k))

≤ log(
q

q − 1
)c2

n

qk−1
+

log(e)c2
c1

n

q1.5k−1
.

If n − 2k = Θ(n) the lower and upper bounds are of the
same order, meaning there exist constants C1, C2 > 0 such
that for large enough n

C1
n

qk
≤ red(Aq(n, k)) ≤ C2

n

qk
,

and the next corollary follows.

Corollary 3.2 Let f(n) be a function such that n−2(logq n−
f(n)) = Θ(n) and logq n − f(n) is a positive integer. Then,
the redundancy of Aq(n, logq n− f(n)) is Θ(qf(n)).

Note that f(n) can be negative. The result from Corol-
lary 3.2 provides us with a general understanding on how the
redundancy of the set Aq(n, k) behaves for different values
of k. We can conclude for example that for k = 0.5 logq n
the redundancy is Θ(

√
n). Motivated by the MU problem,

we are interested in further exploring the case in which
the redundancy is constant. According to the result from
Lemma 3.1 and Corollary 3.2, this holds when f(n) is a
constant function. That is, we are interested in the asymptotic
behavior of aq(n, dlogq ne+z), z ∈ Z up to a better precision
than the one suggested in Lemma 3.1. For this purpose, we
provide in the next Lemma additional results on the asymptotic
behavior of aq(n, k).

Lemma 3.3 Let n, k be integers such that 0 < k ≤ n. Then,

2nEk,q ≤ aq(n, k) ≤ 2nEk,q + 2qn−dk/2e.

Proof:

Part 1: Upper Bound
We use the notations Dq(n, k), dq(n, k) from the proof of

Lemma 3.1 and consider the set G(m) = Dq(n, k)m. We also
denote g(m) = |G(m)| = dq(n, k)m. Note that the set G(m)
satisfies the k-RLL constraint, and hence

lim
m→∞

log(g(m))

nm
≤ Ek,q.

We therefore get

lim
m→∞

log(dq(n, k)m)

nm
=

log(dq(n, k))

n
≤ Ek,q.

By using Equation (6) we have

log(aq(n, k)− 2qn−dk/2e)

n
≤ Ek,q,

and
aq(n, k) ≤ 2nEk,q + 2qn−dk/2e.
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Part 2: Lower Bound
For all positive integer m we have Aq(mn, k) ⊆ Aq(n, k)m

and therefore we deduce that

Ek,q = lim
m→∞

log(aq(mn, k))

mn

≤ lim
m→∞

log(aq(n, k)m)

mn

=
log(aq(n, k))

n
,

and the lower bound follows directly.
For some values of k the result from Lemma 3.3 gives

weaker bounds than the one presented in Lemma 3.1. However,
for the case of k = dlogq ne + z, z ∈ Z, we next show that
the lower and upper bound of Lemma 3.3 are asymptotically
tight.

Recall that Jain et. al showed in [15] that

Ek,q = log q − (q − 1) log e

qk+2
(1 + o(1)) (7)

or in other words,

lim
k→∞

(q − 1) log eq−k−2

log q − Ek,q
= 1. (8)

According to this result and the properties proved in Propo-
sition 3.4 and Lemma 3.5 we conclude in Lemma 3.6 what
the asymptotic behavior of 2nEk,q is. Then, in Theorem 3.7
we show that 2n−dk/2e+1 is negligible relatively to 2nEk,q ,
therefore the bounds in Lemma 3.3 meet and the asymptotic
behavior of aq(n, k) is established.

The following proposition will be in use in the proof of
Lemma 3.6 and its proof is given in Appendix A.

Proposition 3.4 Let f(n), g(n) be functions such that
limn→∞ g(n) = 1 and 1 ≤ f(n) ≤ C for a constants C.
Then,

f(n)g(n) ≈ f(n).

Note that the requirement that f(n) is bounded is essential,
otherwise the proposition does not hold. For example if
f(n) = 2n and g(n) = 1+ 1

n we have that limn→∞
f(n)g(n)

f(n) =
2.

Lemma 3.5 There exists an integer N such that for all n ≥ N
and k = dlogq ne+ z, z ∈ Z

log q − C

n
≤ Ek,q ≤ log q,

for some constant C > 0 which is independent of n.

Proof: First, Ek,q ≤ log q from the definition of Ek,q .
From Corollary 3.2 there exists a constant C ′ such that for
large enough n

red(Aq(n, dlogq ne+ z)) ≤ C ′,

and equivalently aq(n, dlogq ne + z) ≥ qn−C
′
. From

Lemma 3.3

Ek,q ≥
log(aq(n, k)− 2qn−dk/2e)

n

≥ log(qn−C
′ − 2qn−dk/2e)

n

=
n log q + log(q−C

′ − 2q−dk/2e)

n
.

There exists an integer N such that for all n ≥ N, 2q−dk/2e ≤
0.5q−C

′
. Thus,

Ek,q ≥
n log q + log(q−C

′ − 0.5q−C
′
)

n

=
n log q + log(0.5q−C

′
)

n

= log q − 1 + C ′ log q

n

and by choosing C = 1 + C ′ log q the result follows.
We are now ready to use the result of Jain et al. mentioned

in Equation (2), in order to establish the following result.

Lemma 3.6 For k = dlogq ne+ z, z ∈ Z,

2nEk,q ≈ qn

e(q−1)q∆n−z−1 ,

where ∆n = logq n− dlogq ne.

Proof: We use Proposition 3.4 with f(n) = 2n(log q−Ek,q)

and g(n) = (q−1) log eq−k−2

log q−Ek,q
. From Lemma 3.5, when k =

dlogq ne+ z,

1 ≤ 2n(log q−Ek,q) = f(n) ≤ 2C .

From Eq. (8) limn→∞ g(n) = 1 thus the requirements of the
proposition are satisfied and we get

2n(log q−Ek,q) ≈ 2n(q−1) log eq−(k−1)−2

.

We conclude that

2nEk,q = 2n log q+n(Ek,q−log q)

≈ 2n log q−n(q−1) log eq−k−1

≈ 2n log q−n(q−1) log eq−dlogq ne−z−1

≈ qn

e(q−1)q∆n−z−1 ,

where ∆n = logq n− dlogq ne.
Finally, we can now apply the result of Lemma 3.6

in Lemma 3.3 and obtain the asymptotic behavior of
aq(n, dlogq ne+ z) in the following theorem.

Theorem 3.7 For k = dlogq ne+ z, z ∈ Z,

aq(n, k) ≈ qn

e(q−1)q∆n−z−1 ,

where ∆n = log n− dlog ne.

Proof: Lemma 3.3 gives us

1 ≤ aq(n, k)

2nEk,q
≤ 1 +

2qn−dk/2e

2nEk,q
.

By using Lemma 3.6 we get that for k = dlogq ne+ z

lim
n→∞

2qn−dk/2e

2nEk,q
= lim
n→∞

2qn−dk/2e

qne−(q−1)q∆n−z−1 = 0,

and conclude that

1 ≤ lim
n→∞

aq(n, k)

2nEk,q
≤ lim
n→∞

1 +
2qn−dk/2e

2nEk,q
= 1.
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Therefore,
aq(n, k) ≈ 2nEk,q ,

and together with Lemma 3.6 the result follows directly.

Remark 3.1 We would like to note that the results in this
section match the results by Schilling [28] on the distribution
of the longest runs in arbitrary vectors. In particular, it is
stated in [28] that the typical length of the longest run in n
flips of a fair coin converges to log n − 1. However, we find
the proof in this section to be more accurate for the purpose
of exactly calculating the number of redundancy bits of k-RLL
codes.

B. Efficient Encoding and Decoding Algorithm
In this subsection we provide an algorithm to efficiently

encode and decode vectors which avoid zeros run of length
dlogq ne + 1. We show the algorithm for the binary case,
however, it is straightforward to extend it for q > 2. According
to Theorem 3.7 the redundancy of A2(n, log n+ 1) is approx-
imately log e

4 ≈ 0.36 when n = 2i, i ∈ N. The algorithm
described next uses one redundancy bit, however, it has linear
encoding and decoding complexities.

Algorithm 1 Zero Run-Length Encoding

Input: Sequence x ∈ Σn′ , n′ ≤ n
Output: y ∈ Σn′+1 with zeros run length ≤ dlogne

1: Define y = x1 ∈ Σn′+1

2: Set i = 1 and iend = n′

3: while i ≤ iend − dlogne do
4: if wH(yi+dlog ne

i ) = 0 then
5: remove the zeros run yi+dlog ne

i from y
6: p(i): binary representation of i with dlogne bits
7: append p(i)0 to the right of y
8: set iend = iend − dlogne − 1
9: else

10: set i = i + 1
11: end if
12: end while

The following lemma proves the correctness of Algorithm 1.

Lemma 3.8 For all n′ ≤ n, given any vector x ∈ Σn
′
,

Algorithm 1 outputs a sequence y ∈ Σn
′+1, where any zeros

run has length at most dlog ne and such that x can be
uniquely reconstructed given y. Furthermore, the time and
space complexity of the algorithm and its inverse is Θ(n).

Proof: The algorithm starts by initializing y = x1. We
then iterate over the indices of y that correspond to the indices
of the input word x. If we encounter an index in which a
dlog ne + 1 zeros run starts, we remove the run and append
p(i)0, which we call a pointer, to the right of y, where p(i) is
the binary representation of the index i.

First, notice that each appended pointer p(i)0 has the same
length as the corresponding removed run. Therefore through-
out the algorithm the length of y does not change. There
exists an index 1 ≤ t ≤ n′ such that the output y is of the
form yt11yn

′+1
t+2 where yt1 is the remainder of x after removing

the zeros runs and yn
′+1
t+2 is the list of the pointers (p(i), 0)

representing the indices of the removed zeros runs.

To reconstruct x given y we start by locating the separating
bit 1 on position t. We start from the right and check whether
the rightmost bit is 1 or 0. In case it is 0, the dlog ne bits to
the left correspond to a pointer, we skip them and repeat the
process until we encounter the separating 1. We then construct
the original x by inserting zeros runs of length dlog ne+ 1 to
the remainder part yt1 according to the pointers part yn

′+1
t+2 .

Next, we show that y does not contain a zeros run of length
greater than dlog ne. It is clear that yt1 does not contain such
a run. The separating 1 ensures that there is no zeros run
which starts in yt1 and ends in yn

′+1
t+2 . The structure of yn

′+1
t+2

is a sequence of concatenated pointers of the form p(i)0. It
suffices to show that any sub-vector of yn

′+1
t+2 of the form

p(j)0p(k) does not consist a zeros run of length greater than
dlog ne. Here, j and k represent the indices of two consecutive
locations where a dlog ne+1 zeros run was found in the while
loop in the algorithm and note that 0 < j ≤ k.

We consider the leftmost one in the binary representations
p(j) and p(k). Since j ≤ k, the position of the leftmost one
within p(j) is smaller or equal to the position of the leftmost
one within p(k), thus any window of length dlog ne+ 1 must
contain at least one of the leftmost ones from p(j) and p(k).

Note that since the indices of the input vector x are indexed
starting from 1, we do not write 0 in any of the pointers.
We do not write n′ either since the largest index we consider
for zeros runs is n′ − dlog ne. Lastly, the complexity of the
algorithm is O(n) since the complexity of each pointer update
when encountering a zeros run is Θ(log n) and the number of
these operations is at most n′/ log n.

The following example demonstrates how the encoding in
Algorithm 1 works.

Example 3.1 Let n′ = n = 13 and therefore dlog ne = 4 and
dlog ne+ 1 = 5. Consider the following sequence:

x = 1000000000001,

Let us go through the steps of Algorithm 1.
1) y = x1 = 10000000000011
2) i = 1 and iend = 13
3) i = 1: wH(y5

1) 6= 0, i = i+ 1
4) i = 2: wH(y6

2) = 0,
a) Remove y6

2 from y : y = 100000011
b) Define p(2) = 0010
c) Append p(2)0 = 00100 : y = 10000001100100
d) Set iend = 13− 5 = 8

5) i = 2: wH(y6
2) = 0,

a) Remove y6
2 from y : y = 101100100

b) Define p(2) = 0010
c) Append p(2)0 = 00100 : y = 10110010000100
d) Set iend = 8− 5 = 3

6) i = 2: wH(y6
2) 6= 0, i = i+ 1.

The decoding works as described in the proof of Lemma 3.8.

A similar algorithm to the problem solved by Algorithm 1
was recently proposed in [29] to efficiently encode sequences
that do not contain runs of zeros and ones of length k with a
single redundancy bit. Specifically, in [29] the authors showed
how to accomplish this task with k = dlog ne+4. Algorithm 1
can be slightly adjusted in order to solve the problem in [29]
with k = dlog ne + 2. Lastly, we note that Kauts presented
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in [17] an algorithm which encodes all words avoiding zeros
runs of any specific length with optimal redundancy. However,
the space complexity of this algorithm is Θ(n2).

Algorithm 1 solves the problem of avoiding zeros runs of
length dlog ne + 1. However, it can be extended to avoid
zeros runs of any length in the following manner. Assume
for example that we want to avoid zeros runs of length
0.5 log n. We start with a length-n vector, divide it into blocks
of length

√
n

2 and apply Algorithm 1 on each block since
0.5 log n = log(

√
n

2 ) + 1. We append 1 to each of the output
vectors and the final resulting vector is the concatenation of all
of them. This approach can be applied for any value of k and
it achieves optimal order of redundancy, with linear encoding
and decoding complexities.

4. MUTUALLY UNCORRELATED CODES

In this section we expand the study of MU codes. Specif-
ically, we show that the lower bounds in (2), (3) are asymp-
totically tight.

We are interested in maximizing the value of |C1(n, q, k)|
over all values of k. Notice that

|C1(n, q, k)| = (q − 1)2aq(n− k − 2, k),

and therefore the proof of the main theorem in this section
highly relies on the analysis in Section 3. However, in Sec-
tion 3 we analyzed the asymptotic size aq(n, k) while we are
actually interested in aq(n − k − 2, k). We chose to present
the analysis of aq(n, k) in Section 3 since it is similar to the
analysis of aq(n− k − 2, k) and we believe it will be of use
in other problems as well. In this section we complete some
missing parts to obtain the asymptotic behavior of the maximal
value of |C1(n, q, k)| = (q − 1)2aq(n − k − 2, k). We maily
focus on the trade-off formed by the choice of k: on one hand,
reducing the value of k results with a larger value for n−k−2
and thus smaller redundancy due to the fixed k-length prefix
in the construction. On the other hand, smaller k implies a
stronger k-RLL constraint which requires larger redundancy
in the remaining part.

We start by showing that it is sufficient to look only into
values of k which are of the form dlogq ne+ z, z ∈ Z.

Lemma 4.1 The value of k that minimizes the redundancy of
C1(n, q, k) is dlogq ne+ z, z ∈ Z.

Proof: From Corollary 3.2, in the case of k = dlogq ne+
z, z ∈ Z the redundancy of C1(n, q, k) is k + Θ(1) =
dlogq ne + z + Θ(1). Since the redundancy of C1(n, q, k) is
at least k, greater values of k i.e., k = dlogq ne + ω(1),
lead to higher redundancy, and so we disregard them. For
values k of the form logq n − f(n), where f(n) = ω(1)
we again turn to Corollary 3.2 to claim that the redundancy
is Θ(k + 2f(n)) = Θ(logq n − f(n) + 2f(n)) which is also
asymptoticly greater than dlogq ne + z + Θ(1). We therefore
summarize that the minimal redundancy, or the maximal
cardinality of C1(n, q, k) is achieved when k is of the form
k = dlogq ne+ z, z ∈ Z.

We next look further into the specific choice of k that
maximizes the cardinality and obtain the asymptotic behavior
of the maximal cardinality.

For the rest of this section we denote n′ = n−k−2. From
Lemma 3.3 we have that

2n
′Ek,q ≤ aq(n′, k) ≤ 2n

′Ek,q + 2qn
′−dk/2e. (9)

In the following lemma we establish how 2n
′Ek,q behaves

asymptotically for the values of k of interest to us. The proofs
of Lemma 4.2 and Lemma 4.3 are attached in Appendix B as
they share similar ideas to the proofs in Section 3.

Lemma 4.2 For k = dlogq ne+ z, z ∈ Z ,

2n
′Ek,q ≈ qn

n
· q∆n−z−2

e(q−1)q∆n−z−1 ,

where ∆n = logq n− dlogq ne.

We apply the result of Lemma 4.2 in the inequality (9) to
obtain the asymptotic behavior of aq(n′, dlog ne+ z).

Lemma 4.3 For z ∈ Z,

|C1(n, q, dlog ne+z)| ≈ qn

n

(q − 1

q

)2
q∆n−z−logq e(q−1)q∆n−z−1

where ∆n = logq n− dlogq ne.

Next we optimize this term over all values of z ∈ Z in order
to establish the maximal cardinality of C1(n, q, k).

Theorem 4.4

C1(n, q) ≈ qn

n
·
(q − 1

q

)2
qF (∆n) ≤ qn

n
· q − 1

eq
,

where ∆n = logq n− dlogq ne and

F (∆n) = max
z∈{−2,−1,0}

{
∆n − z − logq(e)(q − 1)q∆n−z−1

}
.

The inequality is tight when n→∞ over any subsequence of
n that satisfies ∆n = − logq(q − 1).

Proof: From Lemma 4.3, when k = dlogq ne+ z we get

|C1(n, q, k)| ≈ qn

n

(q − 1

q

)2
q∆n−z−logq e(q−1)q∆n−z−1

.

Let us denote

f(∆n, z) = ∆n − z − logq e(q − 1)q∆n−z−1.

We are interested in the value of z ∈ Z that maximizes the
size of C1(n, q, k), that is, the value of z ∈ Z that maximizes
f(∆n, z) for each ∆n.

∂f

∂z
= −1 + (q − 1)q∆n−z−1,

so the only maximum of the function f(∆n, z) is achieved for
z0 = logq(q− 1)− 1 + ∆n. However, z0 is not necessarily an
integer while we are interested in integers only. Since −1 <
∆n ≤ 0 we have −2 < z0 < 0 thus the maximum over z ∈ Z
is achieved by one of the options z ∈ {−2,−1, 0}.

We therefore obtain the following:

C1(n, q) ≈ qn

n

(q − 1

q

)2
qF (∆n),

where ∆n = logq n− dlogq ne and

F (∆n) = max
z∈{−2,−1,0}

{
∆n − z − logq(e)(q − 1)q∆n−z−1

}
.
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In Appendix B we analyze how F (∆n) behaves for each
value of ∆n and obtain that when q = 2

F (∆n) =

{
f(∆n,−2), for − 1 < ∆n ≤ log(ln 2)

f(∆n,−1), otherwise

and when q > 2

F (∆n) =

{
f(∆n,−1), for − 1 < ∆n ≤ δ0
f(∆n, 0), otherwise

for δ0 = − logq
(q−1)2

q ln q . We also discuss in Appendix B
the maximal value of F (∆n) which leads to the maximal
cardinality qn

n ·
q−1
eq

The result of Theorem 4.4 aligns with the results from [10],
[13], [20] which we recalled in Equations (2) and (3). The
lower bound from (2) states that

C1(n, q) & q−
q

q−1 ln q
qn

n
(2)

and it holds when n → ∞ over any series of n. The lower
bound (3) claims that

C1(n, q) &
q − 1

qe
· q

n

n
(3)

and it holds when n → ∞ over the subseries qi−1
q−1 , i ∈ N.

Observe that when n = qi−1
q−1 , limn→∞∆n = − logq(q − 1)

thus the result of Theorem 4.4 and the bound (3) agree.
The bounds in (2) and (3) provide lower asymptotic bounds

on the cardinality C1(n, q), while in Theorem 4.4 we obtain the
explicit expression of the asymptotic behavior for any value of
∆n and show that the lower bounds are asymptotically tight.
According to Lemma 4.3 the term

|C1(n, q, dlogq ne+ z)| · n
qn

depends only on z, q and ∆n = logq n−dlogq ne. Specifically
it does not grow with n. In Fig. 1 we plot this term for the
three interesting values of z ∈ {−2,−1, 0} as a function
of ∆n, alongside the lower bounds from (2) and (3). The
first, second graph in Fig. 1 corresponds to q = 2, q = 5,
respectively. When q = 5 for example, the maximal cardinality
is achieved when z = −2 or when z = −1, depending
on the value of ∆n. Among the range of values of ∆n,
δ0 = − log5( 16

5ln5 ) ≈ −0.43 yields the minimal cardinality
which aligns with the bound (2). The maximal cardinality is
achieved for δ1 = − logq(q−1) = − log5 4 ≈ −0.86 where it
meets the bound (3), and the maximal cardinality is q−1

qe ·
qn

n .
So far we referred to q as a constant, however, an interesting
fact to notice when q → ∞ and n → ∞, the maximal
cardinality q−1

qe ·
qn

n approaches the upper bound from [23],
qn

e(n−1) . This is illustrated in Fig. 2. Having said that, note
that in the binary case there is a gap of factor 2 between the
maximal cardinality and the upper bound and closing this gap
remains an open problem.

5. THE WINDOW WEIGHT LIMITED CONSTRAINT

In this section we introduce a natural extension to the RLL
constraint which we call the window weight limited constraint.
We study this constraint for the purpose of constructing a

-1 log(ln 2) 0

"n

ln 2
4

1
2e

C
a
rd

in
a
li
ty
"

n qn

z = !2
z = !1
z = 0
lower bound (2)
lower bound (3)

(a) Cardinalities for q = 2

-1 /1 /0 0

"n

0

ln 5
51:25

4
5e

C
a
rd

in
a
li
ty
"

n qn

z = !2
z = !1
z = 0
lower bound (2)
lower bound (3)

(b) Cardinalities for q = 5

Figure 1. Comparison between the construction’s cardinality according to
Lemma 4.3, multiplied by n

qn
for different values of z, and the bounds (2)

and (3) from [10], [13], [20].

new family of codes, called (dh, dm)-Mutually Uncorrelated
Codes, which will be presented later in Section 6. Our main
results in this section are an upper bound on the size of the
set of vectors satisfying the window weight limited constraint
and a construction with efficient encoding and decoding, and
almost optimal cardinality. We start with the definition of this
constraint.

Definition 5.1 Let d and k be positive integers. We say that
a vector a ∈ Σnq satisfies the (d , k)-window weight limited
(WWL) constraint, and is called a (d, k)-WWL vector, if n <
k or ∀i ∈ [n− k + 1] : wH(ai+k−1

i ) ≥ d.

We call a set of (d, k)-WWL vectors a (d, k)-WWL code and
we denote by Aq(n, k, d) the set of all (d, k)-WWL vectors
over Σnq . Lastly, aq(n, k, d) = |Aq(n, k, d)|.
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Figure 2. A comparison between the construction’s maximal cardinality
according to Theorem 4.4 and the upper bound of the cardinality of MU
codes from [23], mentioned in (1).

This constraint states that a vector a ∈ Σnq is a (d, k)-
WWL vector if the Hamming weight of every consecutive
subsequence of length k in a is at least d. A similar constraint
was studied in [27] when studying time space codes for phase
change memories. However, the authors of [27] studied the
opposite constraint in which the weight of every window of
length k is at most d. Furthermore, as will be explained later,
we are interested in the case where k depends on the word
length n as opposed to the analysis in [27] where k is fixed.
Notice that the (1, k)-WWL constraint is equivalent to the k-
RLL constraint. In the next lemma we provide an upper bound
on the size of Aq(n, k, d). The proof is deferred to Appendix C
since it shares similar ideas with the proof of the upper bound
in Lemma 3.1.

Lemma 5.1 Let n, k, d be positive integers such that d ≤ k ≤
n. Then, there exists a constant C > 0 such that for n large
enough

aq(n, k, d) ≤ qn−C
(n−2k)kd−1

qk .

For the rest of the paper we let F(n, d) be

F(n, d) = dlogq ne+ (d− 1)(dlogqdlogq nee+C) + 2, (10)

where C is a constant equal to the minimum integer such that
dlogqdlogq nee+C ≥ dlogq(F(n, d) + 2)e. From Lemma 5.1
we also have that

C
(n− 2k)kd−1

qk
≤ red(Aq(n, k, d)),

where C > 0 is a constant. By setting k to be
F(n, d) − f(n), f(n) > 0 we get that the redundancy of
Aq(n,F(n, d)− f(n), d) is Ω(qf(n)).

Next we present an explicit algorithm for encoding and
decoding (d,F(n, d))-WWL vectors with n′ ≤ n information
bits and d redundancy symbols.

Algorithm 2 Window Weight Limited Encoding

Input: x ∈ Σn′
q and an integer d > 1

Output: (d,F(n, d))-WWL vector y ∈ Σn′+d
q

1: Define y = x1d ∈ Σn′+d
q

2: Set i = 1 and iend = n′

3: while i ≤ iend −F(n, d) + 1 do
4: if wH(yi+F(n,d)−1

i ) < d then
5: remove yi+F(n,d)−1

i from y
6: p(i): q-ary representation of i with dlogq ne symbols
7: for j = 1, . . . , d− 1 do
8: if there are at least j ones in yi+F(n,d)−1

i then

9:
t(j) :q-ary index of the j-th 1 in yi+F(n,d)−1

i

with dlogqdlogq nee+ C symbols
10: else
11: t(j) = 1dlogqdlogq nee+C

12: end if
13: end for
14: append p(i)t(1) · · · t(d− 1)01 to the right of y
15: set iend = iend −F(n, d)
16: set i = i−F(n, d) + 1
17: else
18: set i = i + 1
19: end if
20: end while

The next lemma proves the correctness of Algorithm 2. Its
proof is deferred to Appendix C.

Lemma 5.2 For all n′ ≤ n, given any vector x ∈ Σn
′

q

Algorithm 2 outputs a (d,F(n, d))-WWL vector y ∈ Σn
′+d
q

such that x can be uniquely reconstructed given y. The time
and space complexity of the algorithm and its inverse is Θ(n).

Algorithm 2 solves the problem of WWL encoding by
replacing each subvector of small weight with the index of
the subvector (denoted by p(i)), appended by the indices of
the ones within it (denoted by t(j)s). The algorithm works
when the window’s length k is F(n, d) = logq n + (d −
1)(logq(logq n) + Θ(1)), with a constant number of redun-
dancy symbols. From Lemma 5.1, the redundancy in this case
is at least Θ(1), hence the redundancy of the algorithm is
optimal up to a constant number of bits. Lastly, we can also
extend this algorithm to encoding WWL vectors with smaller
values of k, that is k = F(n, d) − f(n), f(n) > 0, by
breaking down the length-n vector to qf(n) blocks of length
n/qf(n), applying Algorithm 2 on each block, and stitching
the output vectors with d ones between each two subvectors.
This approach yields redundancy of approximately 2dqf(n),
which is also optimal up to a constant factor, according to
Lemma 5.1 and the following corollary is established

Corollary 5.3 Let f(n) be a positive function such that
F(n, d) − f(n) is a positive integer. The redundancy of
Aq(n,F(n, d)− f(n), d) is Θ(qf(n)).

We hereby summarize our study on the k-RLL and the
(d, k)-WWL constraints. Our main results are presented in
Table I. Note that the first column of the k-RLL constraint
lists our result for all values of k such that n − 2k = Θ(n)
and provides the redundancy order in this case. On the other
hand, the second column is targeted towards specific values of
k and gives an exact value of the redundancy.
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Table I
REDUNDANCY SUMMARY OF k-RLL AND (d, k)-WWL CONSTRAINTS

Constraint k-RLL k-RLL (d, k)-WWL

Redundancy Θ( n
qk

) logq e(q − 1)q∆n−z−1 Θ(nkd−1

qk
)

Comments n− 2k = Θ(n) k = dlogne+ z, z ∈ Z,∆n = logq n− dlogq ne k = logn+ (d− 1) log logn− Ω(1)
Stated in Corollary 3.2 Theorem 3.7 Corollary 5.3

6. (dh, dm)-MUTUALLY UNCORRELATED CODES

Since substitution errors may also happen both in the
writing and reading processes of DNA molecules, we impose
in this section a stronger and more general version of the
mutual uncorrelatedness constraint, by requiring the prefixes
and suffixes to not only differ but also have a large Hamming
distance.

Definition 6.1 A code C ⊆ Σnq is called a (dh, dm)-MU code
if

1) the minimum Hamming distance of the code is dh,
2) for every two not necessarily distinct words a, b ∈ C,

and i ∈ [n− 1]: dH(ai1, b
n
n−i+1) ≥ min{i, dm}.

We set AMU (n, q, dh, dm) to be the largest cardinality of a
(dh, dm)-MU code over Σnq , and M(n, q, d) as the largest car-
dinality of a length-n code over Σnq with minimum Hamming
distance d. Motivated by Levenshtein’s upper bound [22], we
first provide an upper bound on the value AMU (n, q, dh, dm).

Theorem 6.1 For all positive integers n, q, dh, dm,

AMU (n, q, dh, dm) ≤ M(n, q, d)

bn/dmc
,

where d = min{dh, 2dm}.

Proof: Let C ⊆ Σnq be a (dh, dm)-MU code. We let

Ĉ = {(aa)n+i
i+1 |a ∈ C, i = α · dm, α ∈ [0, bn/dmc − 1]}.

That is, the code Ĉ consists all cyclic shifts of words from C
by αdm bits. For a,b ∈ C let â = (aa)n+i

i+1 , b̂ = (bb)n+j
j+1

with i = αidm and j = αjdm, αi, αj ∈ [0, bn/dmc − 1].
Note that â, b̂ ∈ Ĉ. We prove that if i 6= j or a 6= b, then
dH(â, b̂) ≥ min{dh, 2dm}. First, if i = j and a 6= b we
have that dH(a,b) = dH(â, b̂) ≥ dh. Otherwise, i 6= j and
we assume without loss of generality that i > j. Notice that
ân−jn−i+1 is a prefix of a and b̂

n−j
n−i+1 is a suffix of b. Moreover,

the length of ân−jn−i+1 is at least dm, therefore, from the

definition of (dh, dm)-MU code, dH(ân−jn−i+1, b̂
n−j
n−i+1) ≥ dm.

Similarly, b̂
n

n−j+1b̂
n−i
1 is a prefix of b and ânn−j+1ân−i1 is

a suffix of a, thus dH(ânn−j+1ân−i1 , b̂
n

n−j+1b̂
n−i
1 ) ≥ dm.

Therefore,

dH(â, b̂) = d(ân−i1 ân−jn−i+1ânn−j+1, b̂
i

1b̂
n−j
n−i+1b̂

n

n−j+1) ≥ 2dm.

We showed that dH(â, b̂) ≥ min{dh, 2dm} and thus

|Ĉ| = bn/dmc · |C| ≤M(n, q, d),

where d = min{dh, 2dm}, and the theorem follows directly.

According to the sphere packing bound we have that
M(n, q, d) ≤ qn/(Cnb

d−1
2 c) for some constant C, hence

the minimum redundancy of any (dh, dm)-MU code is⌊
d+1

2

⌋
logq n− logq dm +O(1).

We are now ready to show a construction of (dh, dm)-
MU codes. For the sake of simplicity, all the constructions
presented in the rest of the paper are for the binary case.

We say that a vector u ∈ Σ` is a d-auto-cyclic vector if for
every 1 ≤ i ≤ d, dH(u, 0iu`−i1 ) ≥ d. In the next construction
we use the following d-auto-cyclic vector u of length `(d) =
ddlog de+d, which is given by u = 1du0 · · · udlog de−1 ∈ Σ`(d)

such that ui = ((12i

02i

)d)d1. For example, if d = 5 we have
dlog de = 3 and u = 11111 10101 11001 11110.

Construction II Let n, k be two integers such that k ≥ `(dm)
and n ≥ k+ `(dm) + 2dm. Denote n′ = n−k− `(dm)−2dm
and let CH be a length-n′ (dm, k)-WWL code with minimum
Hamming distance dh. We define the following code.

C2(n, k, dh, dm) = {0ku1dmc1dm | c ∈ CH}.

The correctness of Construction II is proved in the next
theorem.

Theorem 6.2 The code C2(n, k, dh, dm) is a (dh, dm)-MU
code.

Proof: For simplicity of notation let C = C2(n, k, dh, dm)
and a,b ∈ C. The code C has minimum distance dh since
an−dmk+`(dm)+dm+1,b

n−dm
k+`(dm)+dm+1 ∈ CH and CH has minimum

distance dh. For the second part of the proof we use the
following claim. The proof is left to the reader.

Claim 6.3 Let x, y be two (d, k)-WWL vectors, then the vector
x1dy is also a (d, k)-WWL vector.

We show that for any a,b which are not necessarily distinct,
for all i ∈ [n−1]: dH(ai1,b

n
n−i+1) ≥ min{i, dm}. We consider

the following cases:
1) For i ∈ [1, dm], ai1 = 0i,bnn−i+1 = 1i, and thus

dH(ai1,b
n
n−i+1) = i = min{i, dm}.

2) For i ∈ [dm+ 1, k], ai1 = 0i,bnn−i+1 = bn−dmn−i+11dm , and
hence dH(ai1,b

n
n−i+1) ≥ dm.

3) For i ∈ [k + 1, n − dm], notice that bndm+1 =

0k−dm1dmu`(dm)
dm+11dmc1dm , where c ∈ CH , 0k−dm , and

u`(dm)
dm+1 are all (dm, k)-WWL vectors. From Claim 6.3

bndm+1 is also a (dm, k)-WWL vector. Since n − i +
1 > dm, bnn−i+1 is a subvector bndm+1 and as such,
its first k positions consist at least dm ones. Hence,
dH(ai1 = 0kaik+1,b

n
n−i+1) ≥ dm.

4) For i ∈ [n − dm + 1, n − 1], let j = n − i,
and â = ai1, b̂ = bnn−i+1 = bnj+1. Notice that

âk−j+`(dm)−1
k−j = 0ju`(dm)−j

1 and b̂
k−j+`(dm)−1

k−j = u. u
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is a dm-auto-cyclic vector, hence dH(0ju`(dm)−j
1 ,u) ≥

dm and we get dH(ai1,b
n
n−i+1) = dH(â, b̂) ≥

dH(âk−j+`(dm)
k−j , b̂

k−j+`(dm)

k−j ) ≥ dm.

Next, we are interested in determining the maximum value
of the codes’ cardinality from Construction II, when optimiz-
ing over all possible values of k. We start with the case dh = 1,
that is, the case in which we don’t require the codewords
to differ by more than one symbol, but we require the MU
property with distance dm.

Lemma 6.4 The redundancy of the code C2(n, k, 1, dm) is
minimized when k is of the form k = log n + (dm −
1) log log n + Θ(1). The minimal redundancy is k + Θ(1) =
log n+ (dm − 1) log log n+ Θ(1).

Proof: The construction’s redundancy includes the k + 2
fixed bits and the redundancy bits of CH . Therefore, values
of k of the form k = F(n, dm) + ω(1) result in redundancy
greater than log n + (dm − 1) log log n + Θ(1). When k =
F(n, dm)+Θ(1) we can use Algorithm 2 to construct CH with
Θ(1) redundancy bits and get total redundancy of log n+(d−
1) log log n+Θ(1) bits. Lastly, from Corollary 5.3, when k =
F(n, dm)−f(n), f(n) ≥ 0 the redundancy of C2(n, k, 1, dm)
is k+Θ(2f(n)) = log n+(d−1) log log n−f(n)+Θ(2f(n)).
This term is minimized when f(n) = Θ(1) and again, it yields
total redundancy of log n+ (d− 1) log log n+ Θ(1).

According to Lemma 6.4, Construction II provides existence
of (dh = 1, dm)-MU codes which are Θ(log log n) away
from the lower bound on redundancy in Theorem 6.1. Note
that the results so far did not include an explicit description
of an encoder and decoder for general values of dh, dm. In
order to provide such an efficient construction we present
in our next result a (dh, dm)-MU code with linear encoding
and decoding complexities, and bdh+1

2 c log n + (dm − 1) ·
log log n + O(dm log dm) redundancy bits. In this case, it
is also Θ(log log n) away from the bound on redundancy in
Theorem 6.1.

For the suggested construction, we choose k = F(n, dm)+1
in Construction II, and construct the code CH with Algorithm 2
to provide the WWL property. We also allow greater values of
dh by incorporating a systematic code of minimum hamming
distance dh. This result is stated in the following corollary.

Corollary 6.5 There exists a binary (dh, dm)-MU code with
redundancy

⌊
dh+1

2

⌋
log n+(dm−1) log log n+O(dm log dm)

and linear time and space encoding and decoding complexi-
ties.

Proof sketch: We use Algorithm 2 to generate a
(dm,F(n, dm))-WWL code of length ñ < n, where the choice
of ñ will be explained later. We then guarantee minimum
distance dh by applying a systematic BCH encoder on the
output from Algorithm 2. The approximately bdh−1

2 c log(ñ)
redundancy bits are spread within the ñ bits such that the dif-
ference in the positions of each two redundancy bits is greater
than F(n, dm)+1 (we assume that ñ is large enough to allow
this). That way the resulting vector is a (dm,F(n, dm) + 1)-
WWL vector. We denote this resulting set of vectors by C′, so
the code C′ is a (dm,F(n, dm)+1)-WWL code with minimum
distance dh and its length is a function of ñ denoted by f(ñ).

The redundancy of C′ is bdh−1
2 c log(ñ) +O(1). We construct

the code C2(n, k, dh, dm) by choosing k = F(n, dm) + 1 and
using C′ as CH . The choice of ñ is determined in a way that
f(ñ) = n′ = n−k− `(dm)− 2dm is satisfied. Thus, the total
redundancy of this construction is upper bounded by

F(n, dm) + `(dm) + 2dm + 1 +

⌊
dh − 1

2

⌋
log n+O(1)

=

⌊
dh + 1

2

⌋
log n+ (dm − 1) log log n+O(dm log dm).

Lastly, we note that Construction II improves upon Con-
struction 3 from [33], which solves the problem of (dh, dm =
1)-MU codes but requires O(

√
n) redundancy bits.

7. MU CODES WITH EDIT DISTANCE

In this section we turn to another extension of MU codes
which imposes a minimum edit distance between prefixes and
suffixes as well as on the code. This extension is motivated
by several works such as [32] which report on deletion errors
during the synthesis process of DNA strands.

The edit distance, denoted by dE(a,b), of two words a,b is
the minimum number of insertions and deletions that transform
a to b. The minimum edit distance of a code C is the minimal
d such that for any two distinct words a,b ∈ C, dE(a,b) ≥ d.
For a word a we say that (ai1ai2 . . . aik) is a subsequence of
a if 1 ≤ i1 < i2 < · · · < ik ≤ n. A common subsequence of
two words a,b is a sequence which is a subsequence of a and
b. We say that a sequence c is a largest common subsequence
(lcs) of a,b if there is no common subsequence of a and b
with length greater than the length of c. Note that every lcs of
a,b has the same length, which will be denoted by `(a,b).

Next, we list several commonly known claims that will be
helpful in the following proofs of this section. The claims’
proofs appear in Appendix D for completeness.

Claim 7.1 For a ∈ Σnq , b ∈ Σmq : dE(a, b) = n+m−2`(a, b).

Claim 7.2 For a ∈ Σnq , b ∈ Σnq , c ∈ Σmq , d ∈ Σmq :
dE(ac, bd) ≥ max{dE(a, b), dE(c, d)}.

Claim 7.3 For a ∈ Σnq , b ∈ Σnq , c ∈ Σmq , dE(ac, b) ≥
dE(a, b)/2.

Claim 7.4 For a = 0n, b ∈ Σnq , dE(a, b) = 2wH(b).

We are now ready to present the definition of MU codes
with edit distance.

Definition 7.1 A code C is called a (de, dm)-EMU code if
1) the minimum edit distance of the code is de,
2) for every two not necessarily distinct words a, b ∈ C, and

i, j ∈ [n− 1], if i, j ∈ [dm, n− dm]: dE(ai1, b
n
n−j+1) ≥

dm, otherwise dE(ai1, b
n
n−j+1) ≥ min{i, j, n− i, n−j}.

The second condition in Definition 7.1 is different from the
MU constraints we introduced so far since now we require
large distance of suffixes and prefixes of different lengths,
while in Section 6 we required large hamming distance be-
tween prefixes and suffixes of the same length. This choice
of the constraint will assure that suffixes and prefixes of
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the addresses will not get confused even if they experienced
deletions and insertions.

We set AEMU (n, q, de, dm) to be the largest cardinality
of any (de, dm)-EMU code over Σnq , and E(n, q, d) is the
largest cardinality of a code over Σnq with minimum edit
distance d. The following is an upper bound on the value
AEMU (n, q, de, dm).

Theorem 7.5 For all n, q, de, dm,

AEMU (n, q, de, dm) ≤ E(n, q, d)

bn/dmc
,

where d = min{de, dm}.

Proof: Given a (de, dm)-EMU code, C ⊆ Σnq , we define
Ĉ and â, b̂ ∈ Ĉ similarly to the proof of Theorem 6.1.
The code Ĉ is defined as the code of all cyclic shifts of
α · dm bits of codewords of C. If â, b̂ ∈ Ĉ are of the
same shift, their edit distance is at least de. Otherwise, we
denote â = (aa)n+i

i+1 , b̂ = (bb)n+j
j+1 , where a,b ∈ C, i, j are

multiples of dm, and we assume without loss of generality
that i > j. The subsequence ân−jn−i+1 is a prefix of a and

b̂
n−j
n−i+1 is a suffix of b. Moreover, the length of ân−jn−i+1 is

at least dm, therefore, from the definition of (de, dm)-EMU
codes, dE(ân−jn−i+1, b̂

n−j
n−i+1) ≥ dm. We now apply Claim 7.2

twice and get that

dE(â, b̂) ≥ dE(ân−jn−i+1, b̂
n−j
n−i+1) ≥ dm.

We showed that dE(â, b̂) ≥ min{de, dm}, thus

|Ĉ| = bn/dmc · |C| ≤ E(n, q, d),

where d = min{dh, de} and the theorem follows directly.
In [19], it was shown that

E(n, q, 4) ≤ qn − q
(q − 1)n

which aligns with the asymptotic upper bounds by [21], [30]
E(n, q, 4) . qn

(q−1)n . Theorem 7.5 therefore implies that the
minimum redundancy when min{de, dm} = 4 is at least
2 logq n+ Θ(1).

The following lemma is given without a proof as it shares
similar ideas with the proof of Theorem 7.7 that follows.

Lemma 7.6 The code C2(n, k, 1, dm) is a (2, dm)-EMU code.

Next, we slightly modify Construction II to allow values of
de greater than 2.

Construction III Let n, k be two integers such that k ≥ dm
and n ≥ k+2dm. Let n′ = n−k−2dm and CE be a (dm, k)-
WWL code of length n′ with minimum edit distance de. The
code C3(n, k, de, dm) is defined as follows,

C3(n, k, de, dm) = {0k1dmc1dm | c ∈ CE}.

The correctness of Construction III is proved in the next
theorem.

Theorem 7.7 The code C3(n, k, de, dm) is a (de, dm)-EMU
code.

Proof: We use the notation C = C3(n, k, de, dm)
for simplicity. Any two words a,b ∈ C satisfy
dE(an−dmk+dm+1,b

n−dm
k+dm+1) ≥ dE . Applying Claim 7.2 twice

gives us dE(a,b) ≥ dE .
We denote ai1 = x,bnn−j+1 = y. Notice that a word b ∈ C

has the following structure bndm+1 = 0k−dm1dmbn−dmk+dm+11dm

such that bn−dmk+dm+1 is a (dm, k)-WWL vector. Therefore,
according to Claim 6.3, bndm+1 is also a (dm, k)-WWL vector,
and since y is a subsequence of it, y is a (dm, k)-WWL vector
as well. The following cases are considered,

1) j ∈ [n − dm], i = j: in that case we show a
stronger property of x, y which claims that dE(x, y) ≥
2 min{dm, i, j}. If i = j ≤ k then x = 0i

and wH(y) ≥ min{dm, i, j} since y ends with
min{dm, i, j} 1s. From Claim 7.4 we get dE(x, y) ≥
2 min{dm, i, j}. If i = j > k, xk1 = 0k and
wH(yk1) ≥ dm as y is a (dm, k)-WWL vector. Claim 7.4
yields dE(xk1 , yk1) ≥ 2dm and dE(xk1xik+1, yk1yik+1) =
dE(x, y) ≥ max{2dm, wH(xik+1, yik+1)} ≥ 2dm ac-
cording to Claim 7.2.

2) j ∈ [n − dm], i 6= j we assume that i > j. xj1 = aj1
and y = bnn−j+1, hence dE(xj1, y) ≥ 2 min{dm, i, j}
following the previous case. Claim 7.3 implies
dE(xj1xij+1, y) = dE(x, y) ≥ 2 min{dm, i, j}/2 =
min{dm, i, j}. The proof for j > i is similar.

3) j ∈ [n − dm + 1, n − 1]: y = bnn−j+1 =

0k−(n−j)1dmbn−dmk+dm+11dm . Since n − j < dm and
bn−dmk+dm+1 is a (dm, k)-WWL vector, we deduce that y is
a (n−j, k)-WWL vector. In the case of i ≥ k, following
a similar path to the proof when j ∈ [n− dm] leads us
to dE(x, y) ≥ n− j ≥ min{i, j, n− i, n− j}. If i < k
then j − i > dm and hence dE(x, y) ≥ dm > n− j.

Even though Construction III provides a construction of
(de, dm)-EMU codes for all de and dm it heavily depends
on the existence of codes with edit distance. The knowledge
on codes with large minimum edit distance is quiet limited,
in the sense that there exist codes with rate 1, however their
structure is complex and there is no explicit expression for
their redundancy [9]. Hence, for the rest of this section we
focus on the case of edit distance four, i.e. codes correcting a
single deletion or insertion.

There exists an explicit efficient method to construct a
(dm,F(n, dm) + 1)-WWL codes with minimum edit distance
4, which will be used as the code CE in Construction III.
For this, we use Algorithm 2 and the well known Varshamov
Tenengolts (VT) codes with edit distance four in their system-
atic version [1], [31]. Namely, the VT code is defined for all
n and b ∈ [n+ 1] by

V T (b) = {a = (a1, . . . , an) ∈ Σn | Σni=1i·ai ≡ b( mod n+1)}.

The systematic version of a VT code converts any vector of
length n′ = n − dlog(n + 1)e to a VT vector of length n by
adding dlog(n+1)e redundancy bits in locations corresponding
to powers of 2 [1]. Any integer i ∈ [0, n] can be represented
by a sum of a subset of those indices (the subset corresponding
to its binary representation). We choose to represent in those
indices the integer that guarantees the fulfillment of the VT
constraint by the resulting vector. The complexity of the
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encoding and decoding of this method is linear, we use it
to achieve the following result.

Theorem 7.8 There exists a construction of (dm,F(n, dm)+
1)-WWL code of length n, with minimum edit distance 4,
redundancy log n+O(dm) and linear time and space encoding
and decoding complexities.

Proof sketch: To construct the code C which is a
(dm,F(n, dm)+1)-WWL code with minimum edit distance 4,
we start with a (dm,F(n, dm))-WWL code Cwwl of length n′,
where n′+2dm+dlog(n′+2dm)e = n. An efficient algorithm
for encoding and decoding of such a code was presented in
Lemma 5.2. We then define

Cewwl = {ai11 1dmai2i1+11dman
′

i2+1|a ∈ Cwwl}

where i1 ≤ i2 and the choice of their values will be explained
later. The extension to Cewwl is aimed to ensure that the
final resulting code satisfies the (dm,F(n, dm) + 1)-WWL
constraint. It is readily verified that the code Cewwl is also a
(dm,F(n, dm))-WWL code. We now apply the systematic VT
code on Cewwl to get the code C with minimum edit distance
4. The length of Cewwl is n′ + 2dm, hence the length of C
is n′ + 2dm + dlog(n′ + 2dm)e = n. We are only left with
showing that C is a (dm,F(n, dm) + 1)-WWL code.

Recall that the redundancy bits are located in indices which
are powers of 2. As a result, for any a ∈ C, an2dlogne+1 does
not include a window of length F(n, dm) = log n+ o(log n)
that consists of more than one redundancy bit. Combining it
with the fact that Cewwl is a (dm,F(n, dm))-WWL code we
get that an2dlogne+1 is a (dm,F(n, dm) + 1)-WWL vector.

Lastly, we can choose i1 and i2 when constructing the code
Cewwl such that a vector a ∈ C satisfies adlogne

dlogne−dm = 1dm

and a2dlogne
2dlogne−dm = 1dm , or in other words a = x1dmy1dmz

where x, y are of length dlog ne − dm and z of length n −
2dlog ne. In that case, we showed that z is a (dm,F(n, dm)+
1)-WWL vector and since the length of x, y is smaller than
F(n, dm) they are also (dm,F(n, dm) + 1)-WWL vectors.
Using Claim 6.3 we conclude that a ∈ C is a (dm,F(n, dm)+
1)-WWL vector.

We integrate the code C from the proof above as CE in
Construction III and conclude the result in the following
corollary.

Theorem 7.9 There exists a construction of (4, dm)-EMU
codes with redundancy 2 log n+ (dm − 1) log log n+O(dm)
and linear time and space complexity.

To summarize, in this section we first introduced in Theo-
rem 7.5 a lower bound on the redundancy of (de, dm)-EMU
codes. We then presented a general structure of a (de, dm)-
EMU code in Construction III, and used this structure to
obtain an explicit construction, with efficient encoder and
decoder, when de = 4. For this case, the construction is
(dm−1) log log n+Θ(1) redundancy bits away from the lower
bound in Theorem 7.5.

8. BALANCED MUTUALLY UNCORRELATED CODES

In this section we study yet another extension of MU codes.
Under this setup we seek the codes to be balanced. A binary

word of length n, when n is even, is said to be balanced if its
Hamming weight is n/2. It is well known that the number of
balanced words is

(
n
n/2

)
≈ 2n+1
√

2πn
. For the extension of q > 2,

when q is even, we follow the balanced definition from [33]
and say that a code C ⊆ Σnq is balanced if for any a ∈ C the
number of positions i such that ai ∈ [0, q2 − 1] is n/2. Hence,
the number of q-ary balanced words is

(
n
n/2

)
(q/2)n ≈ 2qn√

2πn
.

For the rest of this section we assume that n and q are even.
A code C ⊆ Σnq is said to be a balanced MU code if C is
balanced and is also an MU code. Let ABMU (n, q) denote
the maximum cardinality of balanced MU codes.

Theorem 8.1 For all n, q, ABMU (n, q) ≤ ( n
n/2)(

q
2 )

n

n ≈
2qn

n
√

2πn
. In particular, the redundancy of balanced MU codes

is at least 1.5 log n+O(1).

Proof: Assume that C is a balanced MU code and let Ĉ
be the following code.

Ĉ = {(a, a)i+n−1
i | a ∈ C, i ∈ [1, n]}.

That is, Ĉ is the code of all cyclic shifts of words from C.
The code C is balanced and hence Ĉ is balanced as well.
Furthermore, since the code C is an MU code, the cardinality
of Ĉ is n · |C|, and we obtain |Ĉ| = n · |C| ≤

(
n
n/2

)
(q/2)n.

Next we present a construction of binary balanced MU
codes.

Construction IV Let n, k be two integers such that 1 ≤ k <
n. The code C(n, k) ⊆ Σn is defined as follows,

C4(n, k) = {0k1c1 | wH(c) =
n

2
− 2,

c has no zeros run of length k}.

The correctness and redundancy result of Construction IV are
stated in the next theorem. It follows from the proof that the
redundancy of the maximal C4(n, k) is 1.5 log n + O(1) and
from Theorem 8.1, this result is optimal up to a constant
number of redundancy bits.

Theorem 8.2 The code C4(n, k) is a balanced MU code, and
for an integer k = log n + a, |C4(n, log n + a)| & C 2n

n
√
n

,
where C = 2a−1

22a+1
√

2π
.

Proof: The cardinality of C4(n, k) is the number of binary
words of length n′ = n−k−2 which consist of n/2−2 ones
and do not contain a zeros run of length k. To lower bound
the number of these words we count all words of length n′

and weight n/2− 2,
(

n′

n/2−2

)
, and reduce an upper bound on

the number of such words that contain a zeros run of length
k. For any word a ∈ Σn

′
of weight n/2 − 2 with zeros run

of length k there exists an index i ∈ [1, n′ − k + 1] such that
ai+k−1
i = 0k and the remaining n′ − k bits consist of exactly
n/2 − 2 1s. There are n′ − k + 1 possibilities for i, and for
any fixed i, there are

(
n′−k
n/2−2

)
possibilities for the remaining

n′ − k symbols. Therefore, the number of vectors of weight
n/2 − 2 that have a zeros run of length k is upper bounded
by (n′ − k + 1)

(
n′−k
n/2−2

)
. Based on this observation we show

that |C4(n, k)| & 2n

n
√
n

2a−1
22a+1

√
2π

. The technical details of this
step appear in Appendix E.
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The extension of Construction IV for non-binary is direct,
since every symbol can store q/2 values after the assignment
of binary values. Hence the number of redundancy sym-
bols remains the same, i.e., 1.5 logq n + O(1). This meets
the result from [33] where a balanced MU code over the
alphabet {A,C,G, T} was suggested, with redundancy of
1.5 log4(n)+O(1) symbols. However, our construction is also
applicable for the binary case as opposed to the one in [33].

Lastly, we discuss efficient implementation of Construc-
tion IV. In [18], Knuth presented an efficient (linear com-
plexity) algorithm to construct balanced words. His algorithm
is based on the observation that for every binary vector a
there exists an index i ∈ [1, n] such that the vector ai1ani+1
is balanced. To convert an arbitrary vector a to a balanced
vector, one can store the balanced vector ai1ani+1, and append
a binary balanced representation of the index i. The total
redundancy of this method is log n+ log log n+ o(log log n).
We extend Knuth’s method to provide an efficient construction
of balanced MU codes with linear encoding and decoding
complexity and redundancy 2 log n+ log log n+ o(log log n).

Theorem 8.3 There exists a construction of balanced MU
codes with 2 log n + log logn + o(log log n) redundancy bits
and linear time and space complexity.

Proof: We describe an algorithm for efficiently encod-
ing words of length n, that agree with the structure pre-
sented in Construction IV. We assume for simplicity that
log n, log log n, log log log n are integers and we denote by
#1(a),#0(a) the number of ones and zeros in a, respectively.
We start with a vector x of length

n′ = n− 2 log n− log log n− 2 log log log n− 14

and apply Algorithm 3.

Algorithm 3 Extended Knuth’s Algorithm for balanced MU
codes
Input: x ∈ Σn′

Output: balanced y ∈ Σn, y = 0log n+31y’1 where y’ does not
contain a run of zeros of length logn + 3.

1: Execute Algorithm 1 to remove zeros runs of length logn + 1
from x

2: Let v ∈ Σn′ , vi =
i∑

j=1

xj

3: v = 0log n+31v
4: If v is balanced set i = 0, otherwise find an index i such that

vi
1vn′

i+1 is balanced.
5: if 0.5 logn + 2 < i ≤ logn + 4 then
6: w = vlog n+4

1 vn′
log n+501

7: else
8: w = v10
9: end if

10: If w is balanced set i = 0, otherwise find an index i such that
wi

1wn′
i+1 is balanced

11: if i > logn + 4 then
12: p(i): balanced binary representation of i with logn +

log log n + 2 log log logn + 2 bits, such that it does not contain
a zero run of length logn

13: y = wi
11wn′

i+11p(i)0001
14: else (i ≤ 0.5 logn + 2)
15: ` = #0(w)−#1(w)
16: y = w1`z11 such that z11 is balanced and y ∈ Σn

17: end if

After Step 1, x has no zeros runs of length log n + 1.
According to Step 2, v is the integral vector of x, therefore,
it does not contain a zeros or ones run of length log n + 2.
Then, we add in Step 3 the required prefix 0logn+31. We are
now left with balancing the vector v. For that purpose, we
use Knuth’s Algorithm with some adaptations that ensure the
overall structure of the output vector remains as required by
Construction IV, i.e., with a prefix 0logn+31, followed by a
sequence with no zeros run of length log n+ 3, and ends with
1. As in Knuth’s algorithm, we first find an index i in v such
that vi1vn

′

i+1 is balanced. We consider the following cases in
Step 4:

1) i > log n+4 : in Step 8 we set w = v10 and in Step 10,
i > log n+4 is still satisfied. We then set y to wi11wn

′

i+1.
Since v originally did not have a zeros or ones run of
length log n+2 other than its prefix, w does not contain
a run of length log n + 3 and y = wi21wn

′

i+1 does not
contain a zeros run of length log n + 3. Similarly to
Knuth’s algorithm, we also append a balanced binary
representation of i. Such a representation is available
with log n + log log n + 2 log log log n bits. Since we
additionally require it to not include a zeros run of length
log n+3 we insert 10 in its log n’th position to get p(i).
The returned vector is appended with 0001 for balancing
purposes.

2) i < log n + 4, i 6= 0: here, we do not simply apply
the same approach as in the previous case because we
want to guarantee 0logn+31 is a prefix of y. vi1vn

′

i+1 is
balanced, hence

#0(vi1vn
′

i+1) = #1(vi1vn
′

i+1)

and since

#0(vi1vn
′

i+1) = i+ #1(v),#1(vi1vn
′

i+1) = #0(v)− i

we have that

2i = #0(v)−#1(v). (11)

a) If i ≤ 0.5 log n+ 2, then w = v10 and in Step 10
i remains the same. In Step 16,

` = #0(w)−#1(w) ≤ log n+ 4

and therefore we balance y by simply appending
the sequence 1`z11.

b) If 0.5 log n + 1 < i < log n + 4 then ` might
exceed our desirable redundancy number of bits.
Our alternative solution is to set w in Step 6 to
vlogn+4

1 vn
′

logn+501. After Step 6

#0(w) = #0(vlogn+4
1 vn

′

logn+501) = log n+3+#1(v),

#1(w) = #1(vlogn+4
1 vn

′

logn+501) = #0(v)−log n−1

and we have that

#0(w)−#1(w) = log n+ 3 + #1(v)

− (#0(v)− log n− 1)

= 2 log n+ 4− (#0(v)−#1(v))

Eq. (11)
= 2 log n+ 4− 2i

< log n+ 2.
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Therefore, after Step 10, similarly to Equation (11),

2i = #0(w)−#1(w) < log n+ 3

and the algorithm follows the path as in case 2a.
3) i = log n + 4 or i = 0: in both cases w is balanced

after the if clause in Step 5. In Step 10 i = 0, the
if statement in Step 11 is not satisfied and in Step 16
` = 0. We append some balanced suffix of the form z11
and of proper length such that y = w1`z11 is a balanced
length-n vector as expected.

The vector y is uniquely decodable in the following manner.
By looking at the two rightmost bits we can detect whether the
if statement in Step 11 was satisfied and reconstruct w. Then,
again, we look at the two rightmost bits to detect whether the
if statement in Step 5 was satisfied and reconstruct v. Finally, x
is derived from v by removing the prefix 0k1, and computing
the differences vector of v.

To conclude, we showed in Theorem 8.1 that the problem of
balanced MU codes can be solved with at least 1.5 log n+Θ(1)
redundancy bits. Construction IV and Theorem 8.2 provide
existence and structure of a balanced MU code with such
a redundancy. Lastly, in Theorem 8.3 we present an explicit
construction with efficient encoding and decoding algorithms,
with 2 log n+ Θ(1) redundancy bits.

9. OTHER RELATED FAMILIES OF CODES

In this section we present two families of codes which are
closely related to MU codes. Namely, comma-free codes [14]
and prefixed synchronized codes [13], [24]. We discuss these
codes and their connection with MU codes.

A. Comma-free codes
Comma-free codes were studied in [14], motivated by the

problem of word synchronization for block codes. A code C ⊆
Σnq is a comma-free code if for any two not necessarily distinct
vectors a,b ∈ C and i ∈ [2, n], (ab)n+i−1

i 6∈ C. We denote by
ACF (n, q) the maximal cardinality of a comma-free code of
length n over Σq . It was shown in [14] that

ACF (n, q) ≤ 1

n

∑
d|n

µ(d)qn/d,

where µ(d) is the Möbius function and the sum is taken over
all divisors of n. Later in [12], an optimal construction of odd
length comma-free codes was introduced leading to

ACF (n, q) =
1

n

∑
d|n

µ(d)qn/d ≈ qn

n

for odd n.
Note that the comma-free property is weaker than the MU

property, therefore an MU-code is a comma-free code but not
vice versa; in particular, AMU (n, q) ≤ ACF (n, q).

An extension to comma-free codes by Levenshtein [22]
states that C ⊆ Σnq is a (d, ρ) comma-free code if for any
a,b, c ∈ C, i ∈ [2, n], dH((ab)i+n−1

i , c) ≥ ρ, and C has a
minimum Hamming distance d.

Levenshtein proved that there exists a construction of
(d, ρ)-comma-free codes with redundancy of approximately
bd+1

2 c log n+ c(ρ) bits, where c(ρ) is a constant that depends

on ρ. However, the encoding and decoding of such codes
are complex. To allow efficient encoding and decoding, Lev-
enshtein suggested in [24] to use constructions based upon
cossets of linear codes. But, in this case, it was shown in [3]
that the redundancy is at least

√
ρn. Note that any (d, ρ)-

MU code is also a (d, ρ)-comma-free code, so Construction II
is a (d, ρ)-comma-free code and we can use the result of
Corollary 6.5 to construct efficient (d, ρ)-comma-free code
with significantly less redundancy, as described next.

Corollary 9.1 There exists a construction of a (d, ρ)-
comma-free code with efficient encoding and decoding and
bd+1

2 c log n+ (ρ−1) log log n+o(log log n) redundancy bits.

For the case of ρ ≥ d this construction is O(log log n)
away from the optimal possible redundancy according to [22].
The details of the construction are described in the proof of
Corollary 6.5.

B. prefix synchronized codes

For a set H ⊆ Σmq , a prefix synchronized code CH ⊆ Σnq
is defined to be the set of all words a ∈ Σnq such that for
any h ∈ H , the word ah contains a word from H only in
the first and last m positions [13], [24]. Construction I is in
fact a prefix synchronized code with the set H = {0k}. Prefix
synchronized codes can be defined for any set of prefixes H .
Another related problem is discussed in [22], namely, prefix
synchronized codes with index ρ. A code C ⊆ Σn is said to
be prefix synchronized with a set H ⊆ Σmq ,m ≤ n and index
ρ if for any a ∈ C, h ∈ H, i ∈ [2, n], dH((ah)i+m−1

i ,h) ≥ ρ.
Levenshtein stated in [22] that when n goes to infinity, a lower
bound on the redundancy of a prefix synchronized code with
index ρ is log n + (ρ − 1) log log n + log log log n. The next
theorem provides a prefix synchronized code which is close
to optimal.

Theorem 9.2 The code C2(n, k, 1, dm) is prefix synchronized
with H = {0ku} and ρ = dm.

Hence, by Corollary 6.5 we provide an efficient construction
to this problem with only o(log log n) additional bits of
redundancy.

10. CONCLUSION

In this work we studied MU codes and their extension to
MU codes with Hamming distance. For that purpose we looked
into two interesting constraints, the k-RLL and the (d, k)-
WWL constraints when k is a function of the word’s length,
n. The results of this study are presented in Table I. We then
continued to additional variations of MU codes, that is MU
codes with minimum Edit distance and balanced MU codes.
Similar techniques can be applied to construct balanced MU
codes together with minimum Hamming distance and thereby
satisfy three of the constraints listed in [33]. The results on
the variations of MU codes are summarized in Table II. For
each case we first give the lower bound on the redundancy,
then the construction that solves this case, and finally the best
redundancy we could get with linear encoding and decoding
complexity.
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Table II
REDUNDANCY SUMMARY FOR BINARY MU CODES

Property MU (dh, dm)- MU (4, dm)- EMU Balanced MU
Lower bound logn+ log(e) b d+1

2
c logn− log dm +O(1) 2 logn− log dm +O(1) 1.5 logn+ log

√
2π − 1

Construction Construction I Construction II Construction III Construction IV
Efficient dlogne+ 4 b dh+1

2
c logn+ (dm − 1) log logn 2 logn+ (dm − 1) log logn 2 logn+ log logn

upper bound +O(dm log dm) +O(dm) +o(log logn)
Comments d = min{2dm, dh} dm ≥ 4
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APPENDIX A

Proposition 3.4 Let f(n), g(n) be functions such that
limn→∞ g(n) = 1 and 1 ≤ f(n) ≤ C for a constant C
then

f(n)g(n) ≈ f(n)

Proof: For any 0 < δ < 1 we choose

δ′ = min{− log(1− δ)
logC

,
log(1 + δ)

logC
} > 0

such that 1− δ ≤ C−δ
′

and Cδ
′ ≤ 1 + δ are satisfied. There

exists N ′ such that for every n ≥ N ′

1− δ′ ≤ g(n) ≤ 1 + δ′.

Therefore, for every n ≥ N ′

C−δ
′
≤ f(n)−δ

′
≤ f(n)g(n)

f(n)
≤ f(n)δ

′
≤ Cδ

′

and from the choice of δ′ we get that for every n ≥ N ′

1− δ ≤ f(n)g(n)

f(n)
≤ 1 + δ

hence

lim
n→∞

f(n)g(n)

f(n)
= 1

APPENDIX B

Lemma 4.2 For k = dlogq ne+ z, z ∈ Z ,

2n
′Ek,q ≈ qn

n
· q∆n−z−2

e(q−1)q∆n−z−1 ,

where ∆n = logq n− dlogq ne.

Proof: From Lemma 3.5, when k = dlogq ne+z, and for
n large enough there exists a constant C ≥ 0 such that

1 ≤ 2n
′(log q−Ek,q) ≤ 2n

′ C
n ≤ 2C .

We use Proposition 3.4 with f(n) = 2n
′(log q−Ek,q)and g(n) =

(q−1) log eq−k−2

log q−Ek,q
to get

2n
′(log q−Ek,q) ≈ 2n

′(q−1) log eq−(k−1)−2

and conclude that

2n
′Ek,q = 2n

′ log q+n′(Ek,q−log q)

≈ 2n
′ log q−n′(q−1) log eq−k−1

= qn
′
e−n

′(q−1)q−k−1

.

The term n′(q − 1)q−k−1 satisfies

n′(q − 1)q−k−1 =

= (n− (dlogq ne+ z)− 2)(q − 1)q−(dlogq ne+z)−1

= (n− (dlogq ne+ z)− 2)(q − 1)
q∆n−z−1

n
= (q − 1)q∆n−z−1 + o(1).

Finally, we conclude that

2n
′Ek,q ≈ qn

′
e−(q−1)q∆n−z−1+o(1)

≈ qn

n

q∆n−z−2

e(q−1)q∆n−z−1

where ∆n = logq n− dlogq ne.

Lemma 4.3 For z ∈ Z,

|C1(n, q, dlog ne+z)| ≈ qn

n

(q − 1

q

)2
q∆n−z−logq e(q−1)q∆n−z−1

where ∆n = logq n− dlogq ne.

Proof: From (9) we have

1 ≤ aq(n
′, k)

2n
′Ek,q

≤ 1 +
2qn

′−dk/2e

2n
′Ek,q

.

By using Lemma 4.2 we get that for k = dlogq ne+ z

lim
n→∞

2qn
′−dk/2e

2n
′Ek,q

= lim
n→∞

2qn
′−dk/2e

qne−q∆n−z−1 = 0,

and conclude that

1 ≤ lim
n→∞

aq(n
′, k)

2n
′Ek,q

≤ lim
n→∞

1 +
2qn

′−dk/2e

2n
′Ek,q

= 1.

Hence,
aq(n

′, k) ≈ 2n
′Ek,q .

Recall that |C1(n, q, k)| = (q − 1)2aq(n
′, k). Together with

Lemma 4.2 the result follows directly.

Theorem 4.4

C1(n, q) ≈ qn

n
·
(q − 1

q

)2
qF (∆n) ≤ qn

n
· q − 1

eq
,

where ∆n = logq n− dlogq ne and

F (∆n) = max
z∈{−2,−1,0}

{
∆n − z − logq(e)(q − 1)q∆n−z−1

}
.
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The inequality is tight when n→∞ over any subsequence of
n that satisfies ∆n = − logq(q − 1).

Completion of the Proof of Theorem 4.4: In this part, we
complete the proof of Theorem 4.4 by analyzing the function
F (∆n). Recall that

f(∆n, z) = ∆n − z − logq e(q − 1)q∆n−z−1

and the value of z that achieves the only maximum of f(∆n, z)
over the real numbers is z0 = logq(q − 1) − 1 + ∆n. Since
we are interested in integers, we next investigate which z ∈ Z
maximizes f(∆n, z). We consider the following two cases.

1) q = 2: In this case, z0 = ∆n − 1, and therefore −2 <
z0 ≤ −1, so the maximal value is achieved for z ∈
{−2,−1}. Note that

∂f

∂∆n
= 1− (q − 1)q∆n−z−1 = 1− 2∆n−z−1,

and
∂f

∂∆n

∣∣∣∣
z=−1

= 1− 2∆n ≥ 0,

∂f

∂∆n

∣∣∣∣
z=−2

= 1− 2∆n+1 ≤ 0.

Hence f(∆n,−1) is increasing and f(∆n,−2) is de-
creasing when −1 < ∆n ≤ 0. Moreover, they meet in
∆n = log(ln 2) ≈ −0.53. From the analysis above we
summarize that when q = 2,

F (∆n) =

{
f(∆n,−2), for − 1 < ∆n ≤ log(ln 2)

f(∆n,−1), otherwise

To understand which ∆n achieves the maximal F (∆n)
we can consider the only two options ∆n ∈ {−1, 0}
and since we get f(−1,−2) = f(0,−2) = 1− log e we
can conclude that

C1(n, q) .
2n

4n
· 21−log e =

2n

2en
.

Lastly, when n → ∞ over any subsequence of n that
satisfies limn→∞∆n ∈ {−1, 0}, we have that

C1(n, q) ≈ 2n

2en
.

2) q > 2:
For any q > 2 and −1 < ∆n ≤ 0 we have that −2 <
z0 < 0, and so the maximum over z ∈ Z is achieved by
one of the options z ∈ {−2,−1, 0}. Note that

f(∆n,−1)−f(∆n,−2)

= ∆n + 1− logq e(q − 1)q∆n

− (∆n + 2− logq e(q − 1)q∆n+1)

= −1 + logq e(q − 1)2q∆n

≥ −1 +
(q − 1)2

q ln q
> 0,

where the last step holds for any q > 2. Therefore, we
are only left with maximizing over z ∈ {−1, 0}. The
functions f(∆n,−1) and f(∆n, 0) meet when ∆n =

δ0 = − logq
(q−1)2

q ln q . Since for q > 2, 1 ≤ (q−1)2

q ln q < q,
we have −1 < δ0 ≤ 0. In addition,

∂f

∂∆n

∣∣∣∣
z=0

= 1− q − 1

q
· q∆n > 0,

hence f(∆n, 0) is increasing for −1 < ∆n ≤ 0. Also,

∂f

∂∆n

∣∣∣∣
z=−1,∆n=δ0

= 1− (q− 1) · qδ0 = 1− q ln q

q − 1
< 0,

so f(∆n,−1) is decreasing at the point ∆n = δ0. We
conclude that for ∆n ≤ δ0, f(∆n, 0) ≤ f(∆n,−1) and
for ∆n ≥ δ0, f(∆n,−1) ≤ f(∆n, 0). That is,

F (∆n) =

{
f(∆n,−1), for − 1 < ∆n ≤ δ0
f(∆n, 0), otherwise

We next study that values of ∆n that maximize the
function F (∆n). We showed that f(∆n, 0) is increasing
so its maximal value is achieved when ∆n = 0 and it
is F (0) = f(0, 0) = q−1

q − 1. The maximal value of
f(∆n,−1) is achieved when

∂f

∂∆n

∣∣∣∣
z=−1

= 0,

that is, when ∆n = δ1 = − logq(q − 1). Since −1 ≤
δ1 ≤ δ0 we get F (δ1) = f(−1, δ1) = 1− logq(e(q−1))
and F (δ1) ≥ F (0). We are now ready to summarize and
conclude that

C1(n, q) .
qn

n

(q − 1

q

)2 · qF (δ1) =
qn

n

q − 1

eq

and when n → ∞ over any subsequence of n that
satisfies limn→∞∆n ∈ {−1, 0} we have

C1(n, q) ≈ qn

n

q − 1

eq
.

APPENDIX C

Lemma 5.1 Let n, k, d be positive integers such that d ≤ k ≤
n. Then, there exists a constant C > 0 such that for n large
enough

aq(n, k, d) ≤ qn−C
(n−2k)kd−1

qk .

Proof: We consider the set Aq(2k, k, d)b
n
2k c, that is, the

set of vectors which are a concatenation of b n2k c vectors from
Aq(2k, k, d). We then append it with the set of all length-
〈n〉2k q-ary vectors. The resulting set of length-n vectors is
denoted by Bq(n, k, d) = Aq(2k, k, d)b

n
2k cΣ

〈n〉2k
q . Note that

Aq(n, k, d) ⊆ Bq(n, k, d) and

|Bq(n, k, d)| = aq(2k, k, d)b
n
2k cq〈n〉2k .

Hence,
aq(n, k, d) ≤ aq(2k, k, d)b

n
2k cq〈n〉2k . (12)

Let b(k) be the number of vectors of length 2k with a
subsequence of the form [1, q − 1]du[1, q − 1]d where u is
a vector of length k and weight smaller than d and [1, q− 1]d
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corresponds to a sequence of d non zero symbols. The value
of b(k) is given by

b(k) = q2k−(k+2d)(q − 1)2d(2k − (k + 2d) + 1)

d−1∑
i=0

(
k

i

)

= qk−2d(q − 1)2d(k − 2d+ 1)

d−1∑
i=0

(
k

i

)
.

All those length 2k vectors are not included in the set
Aq(2k, k, d). Therefore,

aq(2k, k, d) ≤q2k − b(k) (13)

≤q2k − qk−2d(q − 1)2d(k − 2d+ 1)

d−1∑
i=0

(
k

i

)
.

We denote B =
∑d−1
i=0

(
k
i

)
. Note that B = Θ(kd−1), when d

is fixed and k is arbitrary large. Combining inequalities (12)
and (13) we get

aq(n, k, d) ≤ (q2k − qk−2d(q − 1)2d(k − 2d+ 1)B)b
n
2k cq〈n〉2k

= (q2k(1− (k − 2d+ 1)(q − 1)2dB

qk+2d
))b

n
2k cq〈n〉2k

= qn(1− (k − 2d+ 1)(q − 1)2dB

qk+2
)b

n
2k c

(a)

≤ qn(e
− (k−2d+1)(q−1)2dB

qk+2 )b
n
2k c

≤ qn−logq e
(k−2d+1)(q−1)2dB

qk+2 ( n
2k−1)

(b)

≤ q
n−C (n−2k)kd−1

qk ,

where (a) results from the inequality 1 − x ≤ e−x for all x
and (b) since there exists a constant C such that for n large
enough the inequality holds.

Lemma 5.2 For all n′ ≤ n, given any vector x ∈ Σn
′

q

Algorithm 2 outputs a (d,F(n, d))-WWL vector y ∈ Σn
′+d
q

such that x can be uniquely reconstructed given y. The time
and space complexity of the algorithm and its inverse is Θ(n).

Proof: First, we notice that according to the choice of
F(n, d) and C the length of y does not change throughout
the execution of the algorithm, therefore y ∈ Σn

′+d
q . There

exists an index 1 ≤ t ≤ n′ such that the output vector y
satisfies y = (yt1, 1d, y

n′+d
t+d+1), where yt1 is the remainder of x

after removing the low weight vectors and yn
′+d
t+d+1 is the list

of pointers of the form p(i)t(1) · · · t(d−1)01 representing the
indices of the low weight subvectors and the positions of the
ones inside each subvector.

To reconstruct x we first locate the index t by scanning y
from the right. We read the two rightmost symbols of y, if they
are 01 we conclude that the following F(n, d) − 2 symbols
are a pointer of the form p(i)t(1) · · · t(d−1)01, we skip them
and repeat that process until we encounter with two symbols
11. We then construct the original x by inserting proper low
weight vectors of length F(n, d) to the remainder part yt1. The
positions of the vectors we insert and the positions of the ones
within them are determined according to the indices listed in
the pointers part in yn

′+d
t+d+1.

We next show that y does not contain a vector of length
F(n, d) of weight less than d. The remainder part yt1 does
not contain such a vector since we removed all low weight
vectors within the while loop. Also, the separating part 1d

ensures that there is no vector of length F(n, d) that originates
in yt1 and ends in yn

′+d
t+d+1. Next we contradict the case of

low weight vector in the addressing part. Recall that the
structure of yn

′+d
t+d+1 is a concatenation of pointers of the form

p(i)t(1) · · · t(d−1)01. Note that the weight of every index p(i)
or t(j) is at least 1. Every vector of length F(n, d) in yn

′+d
t+d+1

consists at least d− 1 full indices (counting both pi and tjs)
and an additional one from the appended 01 pairs. Therefore
the total weight of such vectors is at least d as required.

Lastly, the algorithm’s complexity is Θ(n) since the com-
plexity of every pointer update Θ(log n) and there are at most
n/ log n updating operations.

APPENDIX D

Claim 7.1 For a ∈ Σnq , b ∈ Σmq : dE(a, b) = n+m−2`(a, b).

Proof: We say a series of insertions and deletions that
transforms a to b is canonic if all of its deletions are of
symbols from the original a. In other words, there were no
new symbols that were inserted and then deleted. To determine
the edit distance of a and b we are interested in the minimal
length of a series that transforms a to b. We therefore imit
our discussion, without loss of generality, to canonic series,
because if a series is not canonic there exists a shorter
equivalent canonic series to transform a to b.

Any canonic series is associated with a common subse-
quence of a and b which is received by applying all the dele-
tions in the series on a. We denote this common subsequence
by x ∈ Σ`q . The number of deletions in the initial canonic
series is n − ` and number of insertions is m − `, so the
length of the series is n+m− 2`. Equivalently, any common
subsequence of a and b, denoted by x ∈ Σ`q is associated with
a canonic series of length n+m−2` which consists deletions
of symbols of a that do not belong to x followed by insertions
of symbols of b that do not belong to x. Thus, there exists
a common subsequence of a and b of length ` if and only if
there exists a canonic series from a to b of length n+m−2`.
From the definition of edit distance, the claim follows.

Claim 7.2 For a ∈ Σnq , b ∈ Σnq , c ∈ Σmq , d ∈ Σmq :
dE(ac, bd) ≥ max{dE(a, b), dE(c, d)}.

Proof: Without loss of generality we assume that
dE(a,b) = max{dE(a,b), dE(c,d)}. We set `(a,b) =
`1, `(ac,bd) = `2. For any common subsequence x of ac,bd
of length ` ≥ m, the prefix of length `−m, x`−m1 is a common
subsequence of a,b hence `1 ≥ `−m. If we take x to be an
lcs of ac,bd we get that `1 ≥ `2 −m. Combining this with
Claim 7.1 we have

dE(ac,bd) = 2n+2m−2`2 ≥ 2n+2m−2`1−2m = dE(a,b).

Claim 7.3 For a ∈ Σnq , b ∈ Σnq , c ∈ Σmq , dE(ac, b) ≥
dE(a, b)/2.
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Proof: We will show that

max{dE(a,b)−m,m} ≤ dE(ac,b),

since every m satisfies dE(a,b)/2 ≤ max{dE(a,b)−m,m}
the claim follows directly. An lcs of ac,b is a subsequence
of b, therefore `(ac,b) ≤ n and from Claim 7.1, dE(ac,b) =
n+ n+m− 2`(ac,b) ≥ 2n+m− 2n = m.

We set `(a,b) = `1, `(ac,b) = `2. Note that since a and
b are of the same length, dE(a,b) is even. As in the proof
of claim 7.2, `1 ≥ `2 −m. Combining it with Claim 7.1 we
have dE(ac,b) = 2n + m − 2`2 ≥ 2n + m − 2`1 − 2m =
dE(a,b)−m.

Claim 7.4 For a = 0n, b ∈ Σnq , dE(a, b) = 2wH(b).

Proof: Since a = 0n the lcs of a,b is 0n−wH(b) and
`(a,b) = n − wH(b). From Claim 7.1 we get dE(a,b) =
2wH(b).

APPENDIX E

Theorem 8.2 The code C4(n, k) is a balanced MU code, and
for an integer k = log n + a, |C4(n, log n + a)| & C 2n

n
√
n

,
where C = 2a−1

22a+1
√

2π
.

Completion of the Proof of Theorem 8.2:

|C4(n, k)| ≥
(

n′

n/2− 2

)
− (n′ − k + 1)

(
n′ − k
n/2− 2

)
=

(
n′ − k
n/2− 2

)[k−1∏
i=0

n′ − i
n′ − (n/2− 2)− i

− n′ + k − 1

]

=

(
n− 2k − 2

n/2− 2

)[k−1∏
i=0

n− k − 2− i
n/2− k − i

− n+ 2k + 1

]

≥
(
n− 2k − 2

n/2− 2

)[
2k − n+ 2k + 1

]
=

(
n− 2k − 2

n/2− 2

)
n

[
2k + 2k + 1

n
− 1

]
.

Note that(
n− 2k − 2

n/2− 2

)
=

(
n− 2k − 2
n−2k−2

2

) n−2k−2
2 !

(n2 − 2)!

n−2k−2
2 !

(n2 − 2k)!

=

(
n− 2k − 2
n−2k−2

2

)
(n2 − k − 1)!

(n2 − 2)!

(n2 − k − 1)!

(n2 − 2k)!

=

(
n− 2k − 2
n−2k−2

2

) k−1∏
i=1

n
2 − k − i
n
2 − 1− i

≥
(
n− 2k − 2
n−2k−2

2

)( n
2 − 2k + 1

n
2

)k−1

=

(
n− 2k − 2
n−2k−2

2

)(
1− 4k − 2

n

)k−1

.

For k = log n+ a we get the following

=

(
n− 2k − 2
n−2k−2

2

)(
1− 4k − 2

n

) n
4k−2

(4k−2)(k−1)
n

≈
(
n− 2k − 2
n−2k−2

2

)
e−

(4k−2)(k−1)
n

≈
(
n− 2k − 2
n−2k−2

2

)
≈ 2n−2k−2+1

√
2πn− 2k − 2

≥ 2n

22a+1n2
√

2πn
.

Finally, we conclude that

|C4(n, k)| & 2n

22a+1n2
√

2πn
n

[
2k + 2k + 1

n
− 1

]
=

2n

22a+1n
√

2πn

[
n2a + 2 log n+ 2a+ 1

n
− 1

]
≈ 2n

n
√
n

2a − 1

22a+1
√

2π
.
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