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Universal Random Access Error Exponents for

Codebooks of Different Word-Lengths
Lóránt Farkas and Tamás Kói

Abstract

Csiszár’s channel coding theorem for multiple codebooks is generalized allowing the codeword lenghts differ

across codebooks. Also in this case, for each codebook an error exponent can be achieved that equals the random

coding exponent for this codebook alone, in addition, erasure detection failure probability tends to 0. This is proved

even for sender and receiver not knowing the channel. As a corollary, a substantial improvement is obtained when

the sender knows the channel.

Index Terms

error exponent, variable length, asynchronous, random access, erasure

I. INTRODUCTION

The discrete memoryless channel (DMC) coding theorem of Csiszár [5] analyzes the performance of a codebook

library of several constant composition codebooks consisting of codewords of the same length. The rate and the

type of the codewords may be different for each codebook. The number of codebooks is subexponential in the

codeword length. It is shown that simultaneously for each codebook the same error exponent can be achieved as the

random coding exponent of this codebook alone. In other words, for transmitting messages that may be of different

kinds, with specified rates: with the sender using different codebooks for different kinds of messages, the same

reliability can be guaranteed for each message kind as if it were known that only messages of this kinds occur, with

the given rates. Note that this theorem is used in [5] to the engineeringly different problem of joint source-channel

coding. As noted in [5] the result is also relevant in unequal protection of messages: for better protection, important

messages may be encoded via "more reliable" (smaller) codebooks, see for example Borade, Nakiboglu and Zheng

[2], Weinberger and Merhav [18] and Shkel, Tan and Draper [17] for more recent results.

Luo and Ephremides in [12] analyze a similar model in the context of random access communication for

multiple access channel (MAC) which brings classical information theory closer to packet based random access

communications models. Not using their concepts of standard communication rate and generalized random coding,
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the model of [12] can be summarized as follows. Each user employs a random codebook partitioned into classes

corresponding to different rate options. If the vector of the senders’ actual rate choices belongs to a preselected

operation rate region, the decoder should reliably decode the messages sent, otherwise it should report collision.

Wang and Luo in [16] derive Gallager type error exponents for this model. In a slightly modified model Farkas

and Kói in [8] give error exponents employing a mutual information based universal decoder, with application to

joint source-channel coding for MAC.

This paper generalizes the mentioned result of [5] in a different direction, not addressing MACs. As in [5], the

sender is assumed to have a codebook library of several codebooks, each consisting of codewords of the same length

and type. Before each message transmission, the sender chooses the codebook he will use, the receiver is unaware

of this choice. As a new feature compared to [5], here not only the rate and type but also the codeword length

may vary across codebooks, thus a model in between fixed and variable length coding is addressed. This model

appears natural, e.g., for communication situations where a channel is used alternatingly for transmitting messages

of different kinds such as audio, data, video etc. We believe that this paper, though of theoretical nature providing

asymptotic achievability results, may contribute to a better understanding of such communication situations.

For channels with positive zero-error capacity, the above model does not provide mathematical challenges. Indeed,

in that case (as noted also in [5]) prior to each message transmission the sender can communicate his codebook

choice over the channel without error, using codewords of length o(n). This reduces the introduced model to the

standard case of a single codebook.

In the more common case of zero error capacity equal to 0, no such simple strategy is available, and the fact

that codewords of different length are used causes a certain asynchronism at the receiver, who should also estimate

the boundaries of the codewords and avoid error propagation. To meet these challenges we introduce a mutual

information based two-stage decoder.

It is not obvious what to mean by decoding error in our model. By the definition we adopt, the j’th message is

correctly decoded if the decoder correctly assigns this message to the time slot where the corresponding codeword

is sent, including correct identification of the codeword boundaries. The receiver is not required to learn that this

message has been sent as the j’th one (taking care of the possibility that at previous instances erroneously less or

more messages have been decoded than actually sent).

Our main result extends the result in [5] to the above scenario, showing that simultaneously for each codebook

choice the same error exponent can be achieved as the random coding error exponent for the chosen codebook

alone. This is proved under the technical assumption that all codeword length ratios are between D and 1
D for some

D ∈ (0, 1] and the number of codebooks is subexponential in length-bound n. Recall that even in the standard case

of a single codebook, a positive error exponent is achievable only for rate less than the mutual information over

the channel with input distribution equal to the type of the codewords, and under this condition the random coding

exponent is positive. It is desirable that when this condition fails, the decoder can report that reliable decoding is

not possible. This feature is present in [12] and [8] (but not in [5]). In [12] and [8], addressing MACs, the term

collision detection is used, in our one-sender context we will use the term erasure detection. As part of main result,

our universal decoder is shown suitable also for erasure detection: When the chosen codebook has random coding
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exponent 0, an erasure is reported with probability approaching 1, though here we do not obtain exponential speed

of convergence (for more on this see Remark 5). This has been achieved with a completely universal construction:

Neither the design of the codebook library nor the decoder depends on the channel.

A corollary of the main theorem improves the result when the sender knows the channel while maintaining the

universality of the decoder. The improvement leads to exponent also for erasure declaration failure probability,

and shows that for each message kind the maximum of the random coding error exponent over the possible input

distributions is achievable. Even the special case of this corollary for transmitting messages of a single kind is of

interest, yielding a universal coding result for this classical problem that, to our knowledge, does not appear in the

literature, see Remark 8.

The proofs rely on the subtype technique of Farkas and Kói [9] and [10]. The hardest kind of error to deal with

has been that of detecting the right codeword in a wrong position, partially overlapping with the correct one. This

obstacle has been overcome employing a new concept of γ-independent sequences, and also second order types.

We are aware of only one prior work extending results in [5] in a direction like here, by Balakirsky [1] on joint

source-channel coding error exponent for variable length codes. Channel coding with multiple codebooks is not

explicitly mentioned in [1] but some ideas in our paper are similar to those there, due to the close mathematical

relationship of these problems.

Note that the topic of the paper is also connected (see the Discussion for details) to the area of strong asynchro-

nism, see Tchamkerten, Chandar and Wornell [15] and Polyanskiy [14], and even more to Yıldırım, Martinez and

Fàbregas [19] concerning error exponents.

II. NOTATION

The notation follows [5], [13] and [9] whenever possible. All alphabets are finite and log denotes logarithm

to the base 2. The set {1, 2, . . . ,M} is denoted by [M ]. The notation subexp(n) denotes a quantity growing

subexponentially as n → ∞ (i.e. 1
n log(subexp(n)) → 0), that could be given explicitly. For some subexpontial

sequences individual notations are used and the parameters on which these sequences depend will be indicated in

parantheses.

Random variables X , Y , etc., with alphabets X , Y , etc., will be assigned several different (joint) distributions.

These will be denoted by PX , PXY , etc. or V X , V XY , etc. The first notation will typically refer to a distinguished

(joint) distribution, the second one refers to distributions introduced for technical purposes such as representing

joint types. The family of all distributions on X × Y , say, is denoted by P(X × Y). If a multivariate distribution,

say V X̂XY ∈ P(X × X × Y) is given then V X , V X̂X , V XY , V Y |X etc. will denote the associated marginal or

conditional distributions.

The type of an n-length sequence x = x1x2 . . . xn ∈ Xn is the distribution Px ∈ P(X ) where Px(x) is the

relative frequency of the symbol x in x. The joint type of two or more n-length sequences is defined similarly

and, for (x,y) ∈ Xn × Yn, say, it is denoted by P(x,y). The family of all possible types of sequences x ∈ Xn is

denoted by Pn(X ), and for P ∈ Pn(X ) the set of all x ∈ Xn of type Px = P is denoted by TnP .
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Denote HV (X), HV (Y |X), IV (X̂X ∧Y ) etc. the entropy, conditional entropy and mutual information etc. when

the random variables X , X̂ , Y have joint distribution V = V X̂XY . Furthermore, the empirical mutual information

I(x ∧ y) of two sequences x and y (of equal length) is defined as IV (X ∧ Y ) with V XY = P(x,y).

Given a DMC W : X → Y and P ∈ P(X ) let I(P,W ) be equal to IV (X∧Y ) where V X = P and V Y |X =W .

The maximum of I(P,W ) over all P ∈ P(X ) is the capacity of the DMC W .

The following elementary facts will be used (see, e.g., [4]):

|Pn(X )| ≤ (n+ 1)|X |, (1)

2nH(P )

(n+ 1)|X |
≤ |TnP | ≤ 2nH(P ) if P ∈ Pn(X ), (2)

Wn(y|x) = 2−n(D(V Y |X‖W |Px)+HV (Y |X)) where V XY = P(x,y). (3)

The concatenation of an n1-type V1 ∈ Pn1(X ) and an n2-type V2 ∈ Pn2(X ) is the (n1 + n2)-type V1 ⊕ V2 ∈

Pn1+n2(X ) with

(V1 ⊕ V2) (x) =
n1

n1 + n2
V1(x) +

n2
n1 + n2

V2(x). (4)

The concatenation of joint types, say, V1 ∈ Pn1(X ×Y) and V2 ∈ Pn2(X ×Y) is defined similarly. If V1, V2, . . . ,

Vk are n1, n2, . . . , nk-types, respectively, let

J(V1, V2, . . . , Vk) = H(V1 ⊕ · · · ⊕ Vk)−
k∑
i=1

ni
n1 + · · ·+ nk

H(Vi). (5)

The nonegative quantity in (5) is a Jensen-Shannon divergence if k = 2, and a generalized Jensen-Shannon

divergence otherwise, in the sense of [3] and [11].

The second order type of a sequence x = x1 . . . xn ∈ Xn is P 2
x ∈ Pn−1(X × X ) defined by

P 2
x(a, b) =

1

n− 1
|i : xi = a, xi+1 = b|. (6)

In other words, P 2
x is the joint type of x′ = x1 . . . xn−1 and x′′ = x2 . . . xn. Let Tn,2V,a denote the second order

type class {x : x ∈ Xn, P 2
x = V, x1 = a}. We cite from [7] that

|Tn,2V,a | ≤ 2nHV (X̂|X). (7)

The next combinatorial construction will be substantially used in our proofs. Let a (g + 1)-length sequence of

positive integers L = (l̂, l1, l2, . . . , lg), a non-negative integer q and a collection of sequences (x̂,x1, . . . ,xg) with

x̂ ∈ X l̂, x1 ∈ X l
1

, x2 ∈ X l
2

, . . . , xg ∈ X l
g

be given. The sequences x̂,x1, . . . ,xg are arranged in a two-row

array as in Figure 1, i.e., x̂ is placed in the first row and x1, . . . ,xg are placed consecutively in the second row

so that the second row ends by q symbols after the first one; either row may start before the other one, depending

on L and q. This configuration is referred to as (L, q)-array in the sequel. It will be always assumed that x̂ has a

nonempty overlap with both x1 and xg , equivalently that

q < lg, and
g∑
i=2

li − q < l̂. (8)

Note that the second inequality in (8) trivially holds if g = 1.
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...

...

...

Figure 1: Illustration for understanding some notations

An (L, q)-array is divided into subblocks according to the starting and ending positions of the sequences

x̂,x1, . . . ,xg (see Fig. 1). For technical reasons, we assume artificially that in the degenerate case of q = 0

there is a 0-length last block and in case of l̂ =
∑g
i=1 l

i − q there is a 0-length first block. Then the number of

the subblocks is always equal to g + 2. Their lengths, determined by L and q, will be denoted by n1, . . . , ng+2.

Note that q = ng+2. For 2 ≤ i ≤ g + 1, the i’th subblock consists of parts both in the first and the second row,

let Vi ∈ Pni(X ×X ) denote their joint type. The first and last subblocks are contained in one row, their types are

V1 ∈ Pn1(X ) and Vg+2 ∈ Pn1(X ). The subblock types Vi will be often represented via dummy random variables,

with X̂ referring to the first and X to the second row. When Vi = V X̂Xi , V X̂i and V Xi are the types of the parts

of the i’th subblock in the first resp. second row. In the degenerate case when n1 = 0 or ng+2 = 0, let V1 resp.

Vg+2 be a dummy symbol regarded as the type of the empty sequence.

Given L = (l̂, l1, l2, . . . , lg) and q satisfying (8), each sequence V = (V1, . . . , Vg+2) of types V1 ∈ Pn1(X ),

Vi ∈ Pn1(X × X ), i = 2, . . . , g + 1, and Vg+2 ∈ Png+2(X ), where n1, . . . , ng+2 are the subblock lengths

determined by (L, q), will be called a subtype sequence compatible with (L, q). For V compatible with (L, q),

and sequences x̂ ∈ X l̂, xi ∈ X l
i

, i = 2, . . . , g let 1L,qV (x̂;x1, . . . ,xg) denote the indicator function equal to 1 if

x̂,x1, . . . ,xg arranged in (L, q) array has subtype sequence V, and otherwise 0. The set of collections of sequences

(x̂,x1, . . . ,xg) with 1L,qV (x̂;x1, . . . ,xg) = 1, i.e., for which the corresponding (L, q)-array has subtype sequence

V, will be denoted by T L,q
V . In the sequel the following generalization of T L,q

V is also needed. Let I be a set of

prescribed equalities of form xi = xj with i, j ∈ [g], or x̂ = x1 or x̂ = xg (the possibility of x̂ = xi for 1 < i < g

is excluded since x̂ has nonempty overlap with both x1 and xg). The set of those collections (x̂,x1, . . . ,xg) ∈ T L,q
V

for which the equalities in I hold will be denoted by T L,q
V,I . Of course, T L,q

V,I = T L,q
V if I is empty.

Note that Section III provides an introductory example of application of these notations, in the special case of

L = (l, l) and x̂ = x1 = x.

III. EXPURGATION

Definition 1. A sequence x ∈ X l will be called γ-independent if its initial and final parts of length r have empirical

mutual information less than γ, for each (log l)2 ≤ r ≤ l
2 . The subset of T lP consisting of γ-independent sequences

is denoted by T lP (γ).
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Lemma 1. For each P ∈ P l(X ) and γ > 0

|T lP \ T lP (γ)| ≤ p(l)2−(log l)
2γ |T lP |, (9)

where p(l) denotes a polynomial factor not depending on γ.

Figure 2: (L, q) array with L = (l, l), q = l − r and (x̂,x1) = (x,x).

Proof: We present a proof using the concept of (L, q)-array introduced in Section II as a simple example of

the counting technique crucial for this paper. For a sequence x = x1 . . . xl, the empirical mutual information of

its initial and final parts of length r is IV2
(X ∧ X̂), where (V1, V2, V3) is the subtype sequence of the (L, q)-array

with L = (l, l), q = l − r and x̂ = x1 = x, see Fig. 2. For a fixed (log l)2 ≤ r ≤ l
2 let V l,rγ be the set of subtype

sequences V = (V1, V2, V3) compatible with (L, l − r) for which there exists x ∈ T lP with 1L,l−rV (x;x) = 1 and

IV2(X ∧ X̂) ≥ γ. Then

|T lP \ T lP (γ)| ≤
l
2∑

r=(log l)2

∑
V∈Vl,rγ

|T L,l−r
V,{x̂=x1}|, (10)

where T L,l−r
V,{x̂=x1} is defined as in the end of Section II with I consisting of the equality {x̂ = x1}. We divide the

first and last subblocks into two pieces according to Fig. 3. Formally for each V = (V1, V2, V3) ∈ V l,rγ we define

V l,rγ,V ,



(V X̂11 , V
X̂
12 , V

X
31 , V

X
32 ) :

V X̂11 ∈ Pr(X ), V X̂12 ∈ P l−2r(X ), V X̂11 ⊕ V X̂12 = V X̂1

V X31 ∈ P l−2r(X ), V X32 ∈ Pr(X ), V X31 ⊕ V X32 = V X3

V X̂11 = V X2 , V X̂12 = V X31 , V
X
32 = V X̂2


(11)

Then using (1) and (2)

|T L,l−r
V,{x̂=x1}| ≤

∑
(V X̂11 ,V

X̂
12 ,V

X
31 ,V

X
32 )∈V

l,r
γ,V

2rHV2 (X̂X)2(l−2r) HV12 (X̂) (12)

= p′(l)2r(HV2 (X̂X)−HV2 (X)−HV2 (X̂))2(l−2r) HV12 (X̂)+rHV11 (X̂)+rHV2 (X̂)−lHP (X)2lHP (X) (13)

= p′(l)2−r IV2 (X∧X̂)2−l J(V
X̂
11 ,V

X̂
12 ,V

X̂
2 )2lHP (X), (14)
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where p′(l) denotes a polynomial factor not depending on γ. In (13) we used that V X̂11 = V X2 . Substituting (14)

into (10), the positivity of J(V X̂11 , V
X̂
12 , V

X̂
2 ), (1) and the fact that IV2

(X ∧ X̂) ≥ γ prove the lemma.

Figure 3: Further division of subblocks

We will need the following consequence of Lemma 1: for any positive numbers γl with γl log l→∞ as l→∞,

for l large enough
1

2
|T lP | ≤ |T lP (γl)| ≤ |T lP | (15)

IV. THE MODEL

The transmitter has a codebook library with multiple constant composition codebooks. The codewords’ length

and type are fixed within codebooks, but can vary from codebook to codebook, subject to a bound on permissible

codeword length ratios.

Definition 2. Let D ∈ (0, 1], positive integers n, M , l1, l2, . . . , lM with Dn ≤ li ≤ n for all i ∈ [M ], distributions

{P i ∈ P li(X ), i ∈ [M ]} and rates {Ri, i ∈ [M ]} be given parameters. A codebook library with the above param-

eters, denoted by A, consists of constant composition codebooks (A1, . . . , AM ) such that Ai = {xi1,xi2, . . .xiNi}

with xia ∈ T l
i

P i , i ∈ [M ], N i =
⌊
2l
iRi
⌋

, a ∈ [N i]. In the sequel, n will be referred to as length-bound.

The parameters in Definition 2 will depend on n, except for the constant D, but this dependence will be suppressed

for brevity. Actually the proof of Theorem 1 works if D = D(n) goes to 0 appropriately slowly. Note, however,

that the appropriate speed of its convergence to 0 would depend on the number of codebooks M(n). For this reason

and for the sake of simplicity we have chosen to fix D.
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...

Figure 4: Outline of the model

The transmitter continuously sends messages to the receiver through a DMC W : X → Y that may be unknown

to the sender and receiver. Before sending a message, the transmitter arbitrarily chooses one codebook of the library.

This choice is not known to the receiver, who is cognisant only of the codebook library. His choices are described

by an infinite codebook index sequence h = (h1, h2, h3, . . . , hj , . . . ) where hj ∈ [M ]. In the sequel, h will be

referred to as codebook schedule. To each fixed codebook schedule h there corresponds a sequence B1, B2, . . . of

mutually independent random messages, where Bj is uniformly distributed on [Nhj ]. To transmit Bj = b, the

encoder assigns to it the b’th codeword of the codebook of index hj . The transmission of this message starts at

instance sj =
∑j−1
i=1 l

hi + 1, depending on the codebook schedule but not on the actual messages.

Remark 1. All formal statements in this paper refer to a fixed codebook schedule. Still, Theorem 1 below covers

also scenarios where the schedule h is random (random process of any kind), providing the messages Bj are

conditionally independent with uniform conditional distributions given h, as the bounds (20) and (21) do not

involve h.

A decoder is defined as a mapping of infinite channel output sequences y = y1, y2, . . . into decoder output

sequences o = o1, o2, . . . , where each ot either equals a pair (h, b) with h ∈ [M ], b ∈ [N lĥ ], or the space symbol

"-", or the string "erasure". By correct decoding of message Bj = b we mean that ot is equal to (Bj , b) at the starting

instance t = sj and to space at the remaining lhj − 1 instances of the transmission of this message. Accordingly,

the average decoding error probability for the j’th transmission is

Errhj , Pr
(
Osj 6= (hj , Bj) or ∃ i ∈ {sj + 1, . . . , sj + lhj − 1} with Oi 6= ”− ”

)
. (16)



9

As correct decoding with small error probability is not possible for codebooks with type P and rate R ≥ I(P,W ),

when such codebook is used a good decoder should declare erasure. We define average erasure detection failure

probability for the j’th message as

Edfhj , Pr
(
∃ i ∈ {sj , . . . , sj + lhj − 1} with Oi 6= "erasure"

)
. (17)

It is required to be small when Rhj ≥ I(Phj ,W ).

Note that in (16) and (17) the probabilities are calculated over the random choice of the messages, and the

channel transitions. Capital letters are used to indicate randomness.

Remark 2. The universal decoder in the proof of Theorem 1 does not use the whole channel output sequence to

determine ot but only yt and the preceding 2 · lmax−2 and the subsequent 2 · lmax−2 output symbols, where lmax

is the maximal codeword length in the codebook library, i.e., lmax = maxi∈[M ] l
i ≤ n. This can be seen to imply

that the error events in (16) (or in (17)) corresponding to message transmission indices j1, j2 are independent if

|j1 − j2| exceeds a constant times 1
D .

Remark 3. The fact that there is only one sender raises the question whether it is possible to substitute average error

terms (16) and (17) for maximal ones in Theorem 1 below, as for example in [5]. Unfortunately, as the error events

depend simultaneously on several codebooks, this does not seem possible. The standard argument for upgrading

average error results to maximal error gives only that the statement of Theorem 1 also holds for the following error

terms:

Errmh
j , max

b∈[Nhj ]
Pr
(
Osj 6= (hj , Bj) or ∃ i ∈ {sj + 1, . . . , sj + lhj − 1} with Oi 6= ”− ”|Bj = b

)
, (18)

Edfmh
j , max

b∈[Nhj ]
Pr
(
∃i ∈ {sj , . . . , sj + lhj − 1} with Oi 6= "erasure" |Bj = b

)
. (19)

Here the maximum is taken relative to the j’th transmission, while still averaging relative to the other transmissions.

V. MAIN THEOREM

Theorem 1. For each n let codebook library parameters as in Definition 2 be given with D fixed and 1
n logM → 0

as n → ∞. Then there exist a sequence νn(|X |, |Y|, {M}∞n=1, D) with 1
n log νn → 0 and for each n a codebook

library A with the given parameters, and decoder mappings such that for all codebook schedule h and index j

(i)

Errhj ≤ νn · 2−l
hj Er(Rhj ,Phj ,W ), (20)

where

Er(R,P,W ) = min
V∈P(X×Y)
VX=P

D(VY |X ||W |P ) + | IV (X ∧ Y )−R|+ (21)

is the random coding error exponent function.

(ii) If Rhj ≥ I[W,Phj ] then

Edfhj ≤
1

n
log νn. (22)
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Remark 4. As the random coding exponent function Er(R,P,W ) is positive if and only if R < I(P,W ) , the bound

(20) can be useful only if Rhj < I(Phj ,W ). Recall that all parameters in Theorem 1 depend on length-bound

n. Even if Rhj < I(Phj ,W ), the first factor in (20) may override the second one, but this does not happen for

large n if I(Phj ,W )− Rhj is bounded away from 0. Then (20) guarantees exponentially small error probability,

with exponent Er(Rhj , Phj ,W ) relative to codeword length lhj . This result is the best possible for codebooks

whose rates Rhj are sufficiently close to I(Phj ,W ), since even for a single codebook with codeword type P the

random coding error exponent is tight for rates less than I(P,W ) but larger than a critical rate R̃(P,W ). Possible

improvements for codebooks of small rates are beyond the scope of this paper. For the standard mentioned properties

of the function Er(R,P,W ) see for example [4].

Remark 5. For erasure declaration failure probability, Theorem 1 asserts only convergence to 0, perhaps not

exponentially fast. An argument similar to [8], Appendix C suggests that this may not be a shortcoming due

to loose calculation, upper bound (56) in the proof of Theorem 1 is not exponentially small, under reasonable

assumptions. An exponentially small erasure declaration failure probability could be achieved by modifying the

decoder used in Theorem 1, replacing the threshold ηn → 0 in (30) by a positive contant, but at the expense of

decreasing the decoding error probability exponents and perhaps declaring erasure also when decoding would be

possible. As shown in Section VI, this problem, however, can be easily overcome if the sender knows the channel.

The next packing lemma provides the appropriate codebook library for Theorem 1. We emphasize that the

constructed codebook library works simultaneously for all codebook schedules h.

...

...

...

Figure 5: Notations used in Lemma 2

Given codebook library parameters as in Def. 2, for any sequence k = (k̂, k1, . . . , kg) consisting of codebook

indices (integers in [M ]) let L(k) denote the sequence (lk̂, lk1 , . . . , lkg ). Further, given also a nonnegative integer q

satisfying (23) and (24) below, denote by Vk,q,n the family of those subtype sequences V = (V1, ...Vg+1) compatible

with (L(k), q) for which the sequences x̂ and x1, . . . ,xg that form (L(k), q)-arrays with subtype sequence V have

types P k̂ and P ki , i ∈ [g] respectively.

Lemma 2. Let a sequence of codebook library parameters be given as in Theorem 1. Then there exist a sequence

ν
′

n(|X |, {M}∞n=1, D) with 1
n log ν′n → 0 and for each n a codebook-library A with the given parameters such that
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each codeword is γn-independent, i.e., xia ∈ T l
i

P i(γn), i ∈ [M ], a ∈ [N i] where γn = (log n)−
1
2 , and for each

sequence k = (k̂, k1, . . . , kg) consisting of codebook indices, non-negative integer q with

q < lkg ,

g∑
i=2

lki − q < lk̂, (23)

lk̂ ≤
g∑
i=1

lki − q, (24)

and subtype sequence V = (V1, V2, . . . , Vg+2) ∈ Vk,q,n

Kk,q[V] ,
∑′

ai∈[N
ki ],i∈[g]

â∈[Nk̂]

1
L(k),q
V (xk̂â;x

k1
a1 , . . . ,x

kg
ag ) (25)

≤ ν
′

n · 2
−

∑g+1
i=2 ni IVi (X∧X̂)+

∑
i∈[g] l

kiRki+lk̂Rk̂−lk̂ J(V X̂2 ,...,V X̂g+1),

where in (25) the summation sign with the comma denotes standard summation except in the case of g = 1,k̂ =

k1,q = 0 when it is restricted for â in [N k̂] = [Nk1 ] to â 6= a1.

Note that (23) corresponds to (8) ensuring that in an (L(k), q)-array x̂ has nonempty overlap with both x1 and xg

while (24) ensures that, in addition, the first row is completely covered by the second row (see Fig. 5). Moreover,

the condition (23) implies that g ≤ 2
D + 1.

Proof: Choose the codebook library A at random, i. e., for all i ∈ [M ] the codewords of Ai are chosen

independently and uniformly from T liP i(γn). Fix arbitrarily a sequence k = (k̂, k1, . . . , kg) consisting of codebook

indices, a non-negative integer q fulfilling (23) and (24), a subtype sequence V = (V1, V2, . . . , Vg+2) ∈ Vk,q,n and

codeword indices â ∈ [N k̂], a1 ∈ [Nk1 ], . . . , ag ∈ [Nkg ] such that if if g = 1, k̂ = k1, q = 0 then â 6= a1. Then,

as shown in Appendix A, the following inequality holds

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ ν

′′

n2
−

∑g+1
i=2 ni IVi (X∧X̂)−lk̂ J(V X̂2 ,...V X̂g+1), (26)

where ν
′′

n is a subexponential function of n that depends only on D and the alphabet size |X |. Let Ek,r[V] be the

exponent in upper-bound (25), i.e.,

Ek,q[V] = −
g+1∑
i=2

ni IVi(X ∧ X̂)− lk̂ J(V X̂2 , . . . , V X̂g+1) +
∑
i∈[g]

lkiRki + lk̂Rk̂. (27)

It follows from (26) that under this random selection the expected value of the expression

Kk,q[V]2−E
k,q [V] (28)

is upper-bounded by ν
′′

n .

Denote by S the sum of (28) for all possible k = (k̂, k1, . . . , kg), q and subtype sequences V. As M grows at most

subexponentially and the number of types is polynomial, it follows that E(S) ≤ ν′n for suitable ν
′

n(|X |, {M}∞n=1, D)

with 1
n log ν′n → 0. Then there exists a realization of the codebook library with S ≤ ν′n. Hence, the lemma is proved

if (26) is proved.
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Remark 6. We would like to emphasize some interesting features of the rather technical proof of (26) in Appendix

A: in subcases 1b and 1d it exploits the γn-independence property of the codewords and in subcases 2c and 2d

second order types are employed.

Proof of Theorem 1: Lemma 2 provides the appropriate codebook library A. We define the following sequential

decoder. Assume that decoding related to symbols y1, . . . , yt−1 is already performed (i.e., o1, o2, . . . , ot−1 are already

defined) and now instance t is analyzed. In the first stage of decoding the decoder tries to find indices h̃, b̃ which

uniquely maximize

lh
(
I(xhb ∧ ytyt+1 . . . yt+lh−1)−Rl

h
)
. (29)

If the decoder successfully finds a unique maximizer h̃, b̃, the second stage of decoding starts.

Let ηn = ηn(X ,Y, {M}∞n=1, D) be a sequence with ηn → 0 as n→∞. In the second stage if(
I(xh̃

b̃
∧ ytyt+1 . . . yt+lh̃−1)−R

lh̃
)
> ηn (30)

and for all h, b and d ∈ {t− lh+1, . . . , t− 1}∪ {t+1, . . . , t+ lh̃− 1} the maximum of (29) is strictly larger than

lh
(
I(xhb ∧ ydyd+1 . . . yd+lh−1)−Rl

h
)
, (31)

the decoder decodes xh̃
b̃

as the codeword sent in the window [t, t + lh̃ − 1], i.e., ot becomes equal to (h̃, b̃), and

ot+i becomes equal to "-", i ∈ [lh̃ − 1]. Then the decoder jumps to the instance t+ lh̃, where the same but shifted

procedure is performed. If in the first stage the maximum is not unique or in the second stage at least one of the

required inequalities is not fulfilled, the decoder reports erasure in instance t, i.e., ot becomes equal to "erasure",

and the decoder goes to instance t+ 1. See Fig. 6.

Figure 6: Universal two-stage decoder

We prove that the codebook library A provided by Lemma 2 with the decoder specified above with appropriately

chosen ηn(|X |, |Y|, {M}∞n=1, D) fulfills Theorem 1.

Let a codebook schedule h and an index j be given. Let Ysj , Ysj+1, . . . , Ysj+lhj−1 denote the random output

symbols affected by the j-th message Bj .

Proof of part (i) of Theorem 1:
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Let Ehj (TH) be the following event corresponding to threshold criterion (30){(
I(x

hj
Bj
∧ YsjYsj+1 . . . Ysj+lhj−1)−R

lhj
)
≤ ηn

}
, (32)

and for k̂ ∈ [M ] and d ∈ {sj − lk̂ + 1, sj − lk̂ + 2, . . . , sj + lhj − 1} let Ehj (k̂, d) be the event
lk̂
(
I(xk̂â ∧ YdYd+1 . . . Yd+lk̂−1)−R

lk̂
)

≥ lhj
(
I(x

hj
Bj
∧ YsjYsj+1 . . . Ysj+lhj−1)−R

lhj
)
,

for some â ∈ [N k̂] (â 6= Bj if k̂ = hj and d = sj)

 . (33)

The mutual informations in (32) and (33) are empirical ones as in (30), (31), though involving random sequences

as the capital letters indicate. Denote by Errhj (TH) and Errhj (k̂, d) the probabilities of these events, respectively.

Then

Errhj ≤ Errhj (TH) +
∑
(k̂,d)

Errhj (k̂, d). (34)

Note that the first term in (34) is the probability that the threshold criterion is not fulfilled by the sent codeword

while the sum of terms Errhj (k̂, d) provide upper-bound to the probability of the event that the sent codeword is

outperformed in terms of (29) either in Stage 1 or 2. The event that the decoder skips time index sj due to an

erroneous previous decoding, i.e., Osj = "-", is contained in the latter event.

By standard argument it follows from (1)-(3) that

Errhj (TH) ≤ subexp(n) · 2−l
hj EnTH(Rhj ,Phj ,W ), (35)

where

EnTH(Rhj , Phj ,W ) , min
V∈P(X×Y)

VX=P
hj ,IV (X∧Y )−Rhj≤ηn

D(VY |X ||W |Phj ). (36)

It follows from (21) that Er(Rhj , Phj ,W ) ≤ EnTH(Rhj , Phj ,W ) + ηn. Hence, as ηn → 0 we get

Errhj (TH) ≤ subexp(n) · 2−l
hj Er(Rhj ,Phj ,W ). (37)

For k̂ = hj and d = sj by standard argument

Errhj (k̂, d) ≤ subexp(n) · 2−l
hj Er(Rhj ,Phj ,W ) (38)

To prove part (i) of the theorem it is enough to show that this upper-bound also applies to Errhj (k̂, d) for all

k̂ ∈ [M ] and d ∈ {sj − lk̂ + 1, sj − lk̂ + 2, . . . , sj + lhj − 1} (the number of pairs (k̂, d) is subexponential). Fix a

pair (k̂, d) 6= (hj , sj). Assume that d ≤ sj (the analysis of the case d > sj is similar). The codebook schedule h

determines the number g of messages which affect outputs Yd, Yd+1, . . . , Ysj+lhj−1 (see Fig. 7). Let

N ,
g∏
i=1

Nhj−g+i =

g∏
i=1

2l
hj−g+iRhj−g+i . (39)

Then

Errhj (k̂, d) = N−1
∑

ai∈[Nhj−g+i ],i∈[g]

Pr{Ehj (k̂, d)|Bj−g+i = ai, i ∈ [g]}. (40)
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...

Figure 7: Messages and assigned codewords affecting output sequence Y = (YdYd+1 . . . Ysj+lhj−1) along with

explanation of notation q.

Let ki denote hj−g+i, i ∈ [g], let k = (k̂, k1, . . . , kg) and L(k) = (lk̂, lk1 , . . . , kkg ). Furthermore, let q =

sj + lhj − (d+ l̂) and l =
∑g
i=1 l

hj−g+i (see Fig. 7). This time we consider an array that includes the codewords

xk̂â,x
k1
a1 , . . . ,x

kg
ag and also the output sequence y ∈ Y l, namely, we arrange (xk̂â;x

k1
a1 , . . . ,x

kg
ag ) into (L(k), q)-array

as in Section II and we put the sequence y in a third row, the starting and ending position of y coincide with

the starting position of xk1a1 and the ending position of x
kg
ag respecticely. This 3-row array is also divided into

subblocks according to the starting and ending positions of codewords xk̂â,x
k1
a1 , . . . ,x

kg
ag . We apply the notations

and conventions of Section II, for example, the lengths of the subblocks are denoted by n1, n2, . . . , ng+2 as before.

See Fig. 8.

Let VMk,q,n be the following family of 3-row array subtype sequences

V = (V1, V2, . . . , Vg+2) : V1 = V XY1 ∈ Pn1(X × Y), Vg+2 = V XYg+2 ∈ Png+2(X × Y)

Vi = V X̂XYi ∈ Pni(X × X × Y), 2 ≤ i ≤ g + 1

(V X1 , V X̂X2 , . . . , V X̂Xg+1 , V
X
g+2) ∈ Vk,q,n

lkg (IVg+1⊕Vg+2
(X ∧ Y )−Rkg ) ≤ lk̂(IV2⊕V3⊕···⊕Vg+1

(X̂ ∧ Y )−Rk̂)


, (41)

where Vk,q,n is defined immediately prior to Lemma 2.

Then, using (3), the upper-bound (40) can be further upper-bounded by∑
V∈VMk,q,n

N−1
∑

ai∈[Nki ],i∈[g]

g+2∏
i=1

(
2−ni(D(V

Y |X
i ||W |V Xi )+HVi (Y |X))

·
∣∣{y ∈ Y l : 1L(k),q

V (xk̂â;x
k1
a1 , . . . ,x

kg
ag ;y) = 1 for some â ∈ [N k̂]

∣∣, (42)

where the indicator function 1L(k),q
V (xk̂â;x

k1
a1 , . . . ,x

kg
ag ;y) equals 1 (otherwise 0) if placing xk̂â,x

k1
a1 , . . . ,x

kg
ag and y

into a 3-row array as above, the type of the i’th subblock is Vi for each i ∈ [g + 2] with ni > 0.

We can upper-bound the set size in (42) two different ways. The first bound is 2
∑g+2
i=1 ni HVi (Y |X). The second

bound is: ∑
â∈[N k̂]

2n1 HV1 (Y |X)+
∑g+1
i=2 ni HVi (Y |X̂X)+ng+2 HVg+2

(Y |X)
1
L(k),q
V′ (xk̂â;x

k1
a1 , . . . ,x

kg
ag ), (43)
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...

...

...

Figure 8: The 3-row array of codewords x̂,x1, . . . ,xg and output y.

where V′ = (V X1 , V X̂X2 , . . . , V X̂Xg+1 , V
X
g+2). Substituting these bounds into (42) and using (25) we get that:

Errhj (k̂, d) ≤ sup
V∈VMk,q,n

subexp(n)2−
∑g+2
i=1 ni D(V

Y |X
i ||W |V Xi )2−|

∑g+1
i=2 ni IVi (X̂∧XY )+lk̂J(V X̂2 ,...,V X̂f+1)−l

k̂Rk̂|+

(44)

≤ sup
V∈VMk,q,n

subexp(n)2−
∑g+2
i=1 ni D(V

Y |X
i ||W |V Xi )2−|

∑g+1
i=2 ni IVi (X̂∧Y )+lk̂J(V X̂2 ,...,V X̂f+1)−l

k̂Rk̂|+ . (45)

The term inside ||+ is equal to

−
g+1∑
i=2

niHVi(X̂|Y ) + lk̂ H(P k̂)− lk̂Rk̂ (46)

By convexity, (46) can be lower-bounded by

− lk̂ HV2⊕···⊕Vg+1
(X̂|Y ) + lk̂ H(P k̂)− lk̂Rk̂ = lk̂ IV2⊕···⊕Vg+1

(X̂ ∧ Y )− lk̂Rk̂. (47)

Substituting (47) into (45) and using (41) we get

Errhj (k̂, d) ≤ sup
V∈VMk,q,n

subexp(n) · 2
−
g+2∑
i=1

ni D(V
Y |X
i ||W |V Xi )−|lkg IVg+1⊕Vg+2

(X∧Y )−lkgRkg |+
(48)

≤ sup
V∈VMk,q,n

subexp(n) · 2
−

g+2∑
i=g+1

ni D(V
Y |X
i ||W |V Xi )−|lkg IVg+1⊕Vg+2

(X∧Y )−lkgRkg |+

(49)

Hence, the convexity of the divergence proves

Errhj (k̂, d) ≤ subexp(n) · 2−l
hj Er(Rhj ,Phj ,W ). (50)

Note that in this part ηn can be arbitrary positive sequence which goes to 0 as n → ∞. However, it will turn

out from the proof of part (ii) that the sequence ηn has to converge to 0 sufficiently slowly.

Proof of part (ii) of Theorem 1:

For k̂ ∈ [M ] and d ∈ {sj − lk̂ + 1, sj − lk̂ + 2, . . . , sj + lhj − 1} let Edfhj (k̂, d) be the event
(
I(xk̂â ∧ YdYd+1 . . . Yd+lk̂−1)−R

lk̂
)
> ηn

for some â ∈ [N k̂] (â 6= Bj if k̂ = hj and d = sj)

 , (51)
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and let Edfhj (k̂, d) denote its probability. Introduce also the notation Edfhj (TH) = 1− Errhj (TH). Then

Edfhj ≤ Edfhj (TH) +
∑
(k̂,d)

Edfhj (k̂, d). (52)

By standard argument it follows from (2) and (3) that

Edfhj (TH) ≤ subexp(n) · 2−l
hj EdfnTH(Rhj ,Phj ,W ), (53)

where

EdfnTH(Rhj , Phj ,W ) , min
V∈P(X×Y)

VX=P
hj ,IV (X∧Y )−Rhj>ηn

D(VY |X ||W |Phj ) = min
V∈P(X×Y)

VX=P
hj ,IV (X∧Y )−Rhj>ηn

D(V ||PhjW ).

(54)

In part (ii) it is assumed that Rhj ≥ I[W,Phj ]. It follows that for each possible V in (54)

IV (X ∧ Y )− I[W,Phj ] > ηn. (55)

Hence using Lemma 2.7 of [4] it follows that there exists ζn(ηn, |X |, |Y|)>0 such that for each possible V in (54)

its variational distance from PhjW is at least ζn. Then (53),(54) and Pinsker inequality show that Edfhj (TH) goes

to 0 if ηn(|X |, |Y|, {M}∞n=1, D) converges to 0 sufficiently slowly.

To prove part (ii) of the theorem it remains to show that also
∑

(k̂,d)Edf
h
j (k̂, d) goes to 0 if ηn converges to 0

sufficiently slowly. Fix a pair (k̂, d). Assume that d ≤ sj (the analysis of the case d > sj is similar). Replicating

the notations and arguments of the proof of part (i) of the theorem the analogue of (45) with (46) and (47) gives

that

Edfhj (k̂, d) ≤ sup
V∈VMk,q,n

edf

subexp(n)

g+2∏
i=1

2−ni D(V
Y |X
i ||W |V Xi )2−|l

k̂ IV2⊕···⊕Vg+1
(X̂∧Y )−lk̂Rk̂|+ , (56)

where the family of subtype sequences VMk,r,n
edf is equal to

V = (V1, V2, . . . , Vg+2) : V1 = V XY1 ∈ Pn1(X × Y), Vg+2 = V XYg+2 ∈ Png+2(X × Y)

Vi = V X̂XYi ∈ Pni(X × X × Y), 2 ≤ i ≤ g + 1

(V X1 , V X̂X2 , . . . , V X̂Xg+1 , V
X
g+2) ∈ Vk,q,n, IV2⊕V3⊕···⊕Vg+1

(X̂ ∧ Y )−Rk̂ > ηn.

 . (57)

From (56) and (57) it follows that
∑

(k̂,d)Edf
h
j (k̂, d) can be upper-bounded by subexp(n)2−l

k̂ηn which goes to 0

if ηn(|X |, |Y|, {M}∞n=1, D) converges to 0 sufficiently slowly.

VI. IMPROVEMENT WHEN THE CHANNEL IS KNOWN BY THE SENDER

Theorem 1 provides a universal result: Neither the design of the codebook library nor the decoder depends on the

channel matrix W . In this section we outline a substantial improvement when the channel is known to the sender

(it remains unknown to the receiver).

Intuitively, supposing there are M kinds of messages, with given rate and codeword length for each of them, the

improvement will be based on an extended codebook library that contains several codebooks with different types

for each message kind. From the codebooks available for a given message kind, the sender will chose the one
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whose type maximizes the random coding exponent for the actual channel, or if that maximum is 0, the sender will

use a one-codeword codebook just indicating the message kind.

Formally, let a sequence of codebook library parameters be given as in Theorem 1, except for the prescribed

types, i.e., let D ∈ (0, 1] be fixed, and for each n let M with 1
n logM → 0, l1, l2, . . . , lM with Dn ≤ li ≤ n for

all i ∈ [M ] and rates {Ri, i ∈ [M ]} be given.

We construct a sequence of codebook library parameters as follows. D remains unchanged. Instead of i ∈ [M ],

the codebook indices will be triplets (i, P, s), where i ∈ [M ], P ∈ P li(X ) and s ∈ {0, 1}. Let the length, type

and rate of the codebook indexed by triplet (i, P, s) be equal to l(i,P,s) = li, P (i,P,s) = P and R(i,P,s) = Ri · s,

respectively. As the number of triplets (i, P, s) remains subexponential in n we can apply Theorem 1 with this

modified sequence of codebook library parameters. The codebook library provided by Theorem 1 contains two

codebooks corresponding to each pair (li, Ri) and type P , one with the rate Ri and one with rate 0, i.e., consisting

of only one codeword. This codebook library will be referred to as extended codebook library.

An infinite message kind schedule k = (k1, . . . , kj . . . ), kj ∈ [M ], specifies for each j the kind of message

kj to be transmitted at time j. Relying on the channel knowledge, the sender constructs a codebook schedule

h(k,W ) = (h1(k1,W ), . . . , hj(kj ,W ), . . . ) as follows.

For each i ∈ [M ] define

E ir(R,W ) , max
P∈P li (X )

Er(P,R,W ), (58)

where Er(P,R,W ) is defined in (21). Note that maximization for all P ∈ P(X ), rather than only for li-types,

gives the standard random coding exponent Er(R,W ) of the channel. Thus, when n and hence li > Dn is large,

Eir(R,W ) differs only negligibly from Er(R,W ).

Let P1 and P0 be types for which Ekjr (R,W ) = Er(P1, R
kj ,W ) and Ekjr (0,W ) = Er(P0, 0,W ) respectively.

Let hj(kj ,W ) be equal to (kj , P1, 1) if Ekjr (Rkj ,W ) > 0 and (kj , P0, 0) otherwise. This means that in each

transmission j, the sender uses the optimal input distribution with the given rate. Moreover, when reliable message

detection is not possible with the given rate, a 0-rate (and hence reliable) codebook is used. In accordance with

this codebook schedule construction, we modify the decoder used in the proof of Theorem 1. If the output of the

decoder is the only codeword in the codebook indexed by (i, P, 0) for some i ∈ [M ] and P ∈ P li(X ) then the

decoder reports "erasure" and supplements it with declaring that the receiver wanted to send i’th message kind but

the channel is not supported it. Altogether, the next corollary follows from Theorem 1 (i) (part (ii) of Theorem 1

is not used).

Corollary 1. Let νn be the sequence specified by Theorem 1. For each infinite message kind schedule k =

(k1, . . . , kj . . . ), kj ∈ [M ], and index j, using the extended codebook library with codebook schedule h(k,W ) =

(h1(k1,W ), . . . , hj(kj ,W ), . . . ) and the decoder specified above the followings hold.

(i) If Ekjr (Rk
j

,W ) > 0, the probability of incorrectly decoding the j’th message is less than νn ·2−l
kj E

kj
r (Rkj ,W ).

(ii) If Ekjr (Rk
j

,W ) = 0, the decoder reports "erasure" and declares that the kind of the erased message is kj ,

with probability at least 1− νn · 2−l
kj E

kj
r (0,W ).
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Remark 7. The construction of h(k,W ) = (h1(k1,W ), . . . , hj(kj ,W ), . . . ) above is very specific. Actually, for

each transmission j the sender can decide whether the exponent Ekjr (Rkj ,W ) is sufficient or not. If it is not sufficient

for his purposes, he can choose to use the corresponding 0-rate codebook instead of actual message transmission.

Remark 8. Even the special case of Corollary 1 for the classical situation of transmitting messages of a single kind

is of interest: If the sender but not the receiver knows the channel the random coding exponent of the actual channel

(i.e., the random coding exponent maximized over input distribution) is achievable. In the literature, this fact is

usually stated only when both sender and receiver know the channel. Note that this special case of the corollary

also follows from [5], though not explicitly stated there.

VII. DISCUSSION

A generalization of the DMC coding theorem of [5] has been studied allowing not just the rate and the type

but also the length of the codewords to vary across codebooks. This generalization could provide a theoretical

background for practical scenarios when different coding strategies are used for sending different kind of messages

(e.g. audio, data, video). It has been shown that in this scenario simultaneously for each codebook choice of each

transmission, the same error exponent can be achieved as the random coding error exponent for the chosen codebook

alone, supplemented with non-exponential erasure detection. This has been achieved with a completely universal

construction: Neither the design of the codebook library nor the decoder depends on the channel.

When the channel is known to the sender, an improvement is given while maintaining the universality of the

decoder. The improvement leads to exponent also for erasure declaration failure probability and shows that the

maximum of the random coding error exponent over the possible input distributions is achievable for each message

kind. The possible improvement via relaxing the universality of the decoder is not addressed in this paper. However,

we note that in the model with equal codeword lengths, [6] shows that maximum likelihood decoding admits to

achieve, individually for each codebook, also the expurgated error exponents that for small rates exceeds the random

coding exponent. A similar result likely holds also for the model in this paper.

The difficulty in the analysis of the model in this paper comes from the fact that the different codeword lengths

cause a certain asynchronism at the receiver, who should also estimate the boundaries of the codewords and avoid

error propagation. The asynchronous nature of this model gives a natural connection to "strong asynchronism" in

[15]. In that model the sender has only one codebook, sends a message only once in an exponentially large (in

the codeword length) time window, when the sender is idle a special dummy symbol denoted by ∗ is transmitted.

The time of the message transmission is not known to the receiver. Tradeoff between the rate of the codebook and

the exponent of the time window is investigated. The detailed investigation of the relation of this model to ours is

beyond the scope of this paper. However, in order to arouse the reader’s attention we note the following.

1) It is a natural idea to try to employ Theorem 1 in its current form to the model of strong asynchronism via

artificially introducing one-codeword codebooks consisting of dummy symbols ∗. One problem with this idea is

that the random coding error exponent of these artificial codebooks is 0. A better option is to employ artificial

one-codeword codebooks (similarly as in Section VI) with positive random coding error exponent to model the
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idle periods of the sender. Then the exponentially small error probability in each transmission ensures that the

decoder fails only with small probability even in an exponential large time window. Hence, this application of

Theorem 1 would lead to a meaningful model, nevertheless, it would differ from the original model of strong

asynchronism.

2) Theorem 3 of [14] shows that the achievable pairs (rate, time window exponent) can be also achieved with

a universal decoder. This is, however, shown only under an error criterion which does not require exact

synchronization. Hence, the event of detecting the right codeword in a wrong position, partially overlapping

with the correct one is omitted in the error analysis. [19] provides error exponent in the model of strong

asynchronism using maximum likelihood decoder. Here, exact synchronization is required but no simple single-

letter expression is obtained for the exponent. As our paper does handle the event of partial overlap, we think

that the tools used here can be used to strengthen Theorem 3 of [14] and the error exponent analysis in the

model of strong asynchronism.

APPENDIX A

PROOF OF INEQUALITY (26)

In this section we suppose that a sequence of codebook library parameters as in Lemma 2 is given. Let γn =

(log n)−
1
2 . Choose the codebook library A at random, i. e., for all i ∈ [M ] the codewords of Ai are chosen indepen-

dently and uniformly from T liP i(γn). We prove rigorously that for arbitrarily sequence k = (k̂, k1, . . . , kg) consisting

of codebook indices, non-negative integer q fulfilling (23) and (24), subtype sequence V = (V1, V2, . . . , Vg+2) ∈

Vk,q,n, and indices â ∈ [N k̂], a1 ∈ [Nk1 ], . . . , ag ∈ [Nkg ] supposing â 6= a1 if g = 1, k̂ = k1 and q = 0, the

following inequality holds

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ ν

′′

n2
−

∑g+1
i=2 ni IVi (X∧X̂)−lk̂ J(V X̂2 ,...V X̂g+1), (59)

where ν
′′

n is a subexponential function of n that depends only on D and the alphabet size X .

The proof relies strongly on the notations introduced in Section II. We define a set of equalities I as follows:

for all i ∈ [g], equality x̂ = xi is in I iff (k̂, â) = (ki, ai) and for all i, j ∈ [g] equality xi = xj is in I iff

(ki, ai) = (kj , aj). For notational convenience we also define a set I∗ consisting of the positive integers j ∈ [g]

such that (ki, ai) 6= (kj , aj) for all i < j. Note that I determines I∗ but the reverse is not true.

To prove (59) we separately investigate two cases: n2 and ng+1 are both less than or equal to n− (log n)2 (case

1) or at least one of them is larger than n − (log n)2 (case 2). Both can be larger then n − (log n)2 only in the

case g = 1 when n2 = ng+1; in this case always I = ∅, and the proof of subcase 1a below works. From now on,

we assume that g ≥ 2.

CASE 1: By symmetry it can be assumed that n2 ≤ ng+1 (this assumption ensures that the counting from left

to right works in all subcases). We have to separately investigate four subcases: {x̂ = x1} /∈ I , {x̂ = xg} /∈ I

(subcase 1a), {x̂ = x1} ∈ I , {x̂ = xg} /∈ I (subcase 1b) {x̂ = x1} /∈ I , {x̂ = xg} ∈ I (subcase 1c) and

{x̂ = x1} ∈ I , {x̂ = xg} ∈ I (subcase 1d).
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SUBCASE 1a: For the sake of clarity first we assume that not only equalities x̂ = x1, x̂ = xg are not in I but I

is empty. This assumption is relaxed in the second part of the discussion of this subcase. Then using (2) and (15)

it follows that

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−
∑g
i=1 l

ki H(Pki ) · |T L,q
V | (60)

To upper-bound |T L,q
V | we perform counting from left to right (see Fig. 5). This specific counting allows a uniform

handling of cases. In this simple subcase any counting would work.

|T L,q
V | ≤ 2n1 HV1 (X)+

∑g
i=2 ni HVi (X̂X)+ng+1 HVg+1

(X̂X)+ng+2 HVg+2
(X) (61)

Substituting (61) into (60), the fact that HVi(X) = H(P ki−1), 3 ≤ i ≤ g, and some algebraic rearrangement give:

E
(
1L,rV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n)2

∑g+1
i=2 ni(HVi (X̂X)−HVi (X)−HVi (X̂))2−l

k1 H(Pk1 )+n1 HV1 (X)+n2 HV2 (X)

· 2−l
kg H(Pkg )+ng+1 HVg+1

(X)+ng+2 HVg+2
(X)2−l

k̂ H(P k̂)+
∑g+1
i=2 ni HVi (X̂) (62)

= subexp(n)2
−
g+1∑
i=2

ni IVi (X∧X̂)
2−l

k1J(V X1 ,V X2 )2−l
kgJ(V Xg+1,V

X
g+2)2−l

k̂J(V X̂2 ,...,V X̂g+1) (63)

≤ subexp(n)2
−
g+1∑
i=2

ni IVi (X∧X̂)−lk̂J(V X̂2 ,...,V X̂g+1)
. (64)

Here in (64) the positivity of the Jensen-Shannon divergence is used. Inequality (64) implies (59) in this subcase,

under the supplementary assumption that I is empty. Next we prove (59) in the general scenario of subcase 1a.

Heuristically we can summarize the formal proof below that if j /∈ I∗ then in (60) the term lkj H(P kj ) is missing

and in (61) instead of HVj (X̂X) the term HVj (X̂|X) occurs, thus the same upper-bound is obtained since

HVi(X̂X)−HVi(X)−HVi(X̂) = HVi(X̂|X)−HVi(X̂) = − IVi(X ∧ X̂). (65)

Formally, assume first that g ∈ I∗. The analogues of (60) and (61) are respectively

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−
∑
i∈I∗ l

ki H(Pki ) · |T L,q
V,I | (66)

|T L,q
V,I | ≤ 2n1 HV1 (X)+

∑
i:i−1∈I∗\{g} ni HVi (X̂X)+

∑
i:i−1∈[g]\I∗ ni HVi (X̂|X)+ng+1 HVg+1

(X̂X)+ng+2 HVg+2
(X) (67)

Substituting (67) into (66), (65) and the same algebraic rearrangement as in (62) give identical upper-bound to the

one in (63).

In case of g /∈ I∗ the analogues of (60) and (61) are respectively

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−
∑
i∈I∗ l

ki H(Pki ) · |T L,q
V,I | (68)

|T L,q
V,I | ≤ 2n1 HV1 (X)+

∑
i:i−1∈I∗ ni HVi (X̂X)+

∑
i:i−1∈[g−1]\I∗ ni HVi (X̂|X)+ng+1 HVg+1

(X̂|X) (69)

Now substituting (69) into (68) and proceeding similarly as before give upper-bound (63) without 2−l
kgJ(V Xg+1,V

X
g+2)

which is omitted in the next step.
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This completes the proof of (59) in subcase 1a. Note that the argument which allowed the proof without the

supplementary assumption works also in other subcases. Hence, from now on we assume that no equality xi = xj ,

i, j ∈ [g], is in I except the equality x1 = xg in subcase 1d.

SUBCASE 1b: According to the last paragraph of subcase 1a, it can be assumed that I = {x̂ = x1}. We can

assume also that there exists a collection of sequences (x̂,x1, . . .xg) with x̂ ∈ T lk̂
P k̂

(γn) and xi ∈ T l
ki

Pki
(γn) for

all i ∈ [g] with 1L,qV,I(x̂;x1, . . . ,xg) = 1, otherwise E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)

is equal to 0. This assumption

implies that

2n2 IV2 (X∧X̂) < subexp(n) (70)

because if n2 < (log n)2 then (70) is immediate, while otherwise IV2
(X ∧ X̂) < γn which also implies (70). Then

using (2) and (15) we get that

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−
∑g
i=2 l

ki H(Pki ) · |T L,q
V,I | (71)

To upper-bound |T L,q
V,I | we perform counting again from left to right (see Fig. 5) but we skip the first block, and

write n2 HV2
(X̂) instead of n2 HV2

(X̂X) related to the second block.

|T L,q
V,I | ≤ 2n2 HV2 (X̂)+

∑g
i=3 ni HVi (X̂X)+ng+1 HVg+1

(X̂X)+ng+2 HVg+2
(X) (72)

Substituting (72) into (71), the fact that HVi(X) = H(P ki−1), 3 ≤ i ≤ g, and performing the same algebraic

rearrangement as before give:

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n)2

−
g+1∑
i=3

ni IVi (X∧X̂)
2−l

kgJ(V Xg+1,V
X
g+2)2−l

k̂J(V X̂2 ,...,V X̂g+1) (73)

≤ subexp(n)2
−
g+1∑
i=2

ni IVi (X∧X̂)−lk̂J(V X̂2 ,...,V X̂g+1)
. (74)

Here in (74) the positivity of the Jensen-Shannon divergence and (70) are used. Inequality (74) implies (59).

SUBCASE 1c: According to the last paragraph of subcase 1a it can be assumed that I = {x̂ = xg}. Now using

again (2) and (15) we get that

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−
∑g−1
i=1 l

ki H(Pki ) · |T L,q
V,I | (75)

...

...

...

Figure 9: Further division of the (g + 1)’th subblock in subcases (1c) and (1d)
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To upper-bound |T L,q
V,I | we divide the subblock of index g + 1 into consecutive subblocks of length ng+1,i =

(log n)2 except perhaps for the last subblock that has length ng+1,s ≤ (log n)2 (see Fig. 9). Again we perform the

counting from left to right.

|T L,q
V,I | ≤

∑
Vg+1,i∈P

ni (X×X),i∈[s]
Vg+1,1⊕···⊕Vg+1,s=Vg+1

2n1 HV1 (X)+
∑g
i=2 ni HVi (X̂X)+

∑s
i=1 ng+1,i HVg+1,i

(X̂|X) (76)

≤ subexp(n)2n1 HV1 (X)+
∑g
i=2 ni HVi (X̂X)+ng+1 HVg+1

(X̂|X) (77)

Here in (76) the sum is over subtype sequences corresponding to the division in Fig. 9, where Vg+1,1⊕· · ·⊕Vg+1,s =

Vg+1. In (77) we used the concavity of entropy and the fact that the number of subtype sequences in the sum is

subexponential. Substituting (77) into (75), the fact that HVi(X) = H(P ki−1), 3 ≤ i ≤ g, and the same algebraic

rearrangement as before give:

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n)2

∑g+1
i=2 ni(HVi (X̂X)−HVi (X)−HVi (X̂))2−l

k1 H(Pk1 )+n1 HV1 (X)+n2 HV2 (X)

· 2−l
k̂ H(P k̂)+

∑g+1
i=2 ni HVi (X̂) (78)

= subexp(n)2
−
g+1∑
i=2

ni IVi (X∧X̂)
2−l

k1J(V X1 ,V X2 )2−l
k̂J(V X̂2 ,...,V X̂g+1) (79)

≤ subexp(n)2
−
g+1∑
i=2

ni IVi (X∧X̂)−lk̂J(V X̂2 ,...,V X̂g+1)
. (80)

Here in (80) the positivity of the Jensen-Shannon divergence is used. Inequality (80) implies (59).

SUBCASE 1d: In this subcase we have to combine the methods of previous subcases. According to the last

paragraph of subcase 1a it can be assumed that I = {x̂ = x1, x̂ = xg,x1 = xg}. We can assume also that

there exists a collection of sequences (x̂,x1, . . .xg) with x̂ ∈ T lk̂
P k̂

(γn) and xi ∈ T l
ki

Pki
(γn) for all i ∈ [g] with

1
L,q
V,I(x̂;x1, . . . ,xg) = 1, otherwise E

(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)

is equal to 0. This assumption implies as in

subcase 1b that

2n2 IV2 (X∧X̂) < subexp(n). (81)

Now using again (2) we get that

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−
∑g−1
i=2 l

ki H(Pki ) · |T L,q
V,I | (82)

To upper-bound |T L,q
V,I | we divide the subblock corresponding to Vg+1 into consecutive subblocks of length (log n)2

as in subcase 1c (see Fig. 9) and as in subcase (1b) we perform the counting from left to right but we skip the first

block and write n2 HV2
(X̂) instead of n2 HV2

(X̂X) related to the second block. Using the same arguments as in
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subcases 1b and 1c we get

|T L,q
V,I | ≤

∑
Vg+1,i∈P

ni (X×X),i∈[s]
Vg+1,1⊕···⊕Vg+1,s=Vg+1

2n2 HV2 (X̂)+
∑g
i=3 ni HVi (X̂X)+

∑s
i=1 ng+1,i HVg+1,i

(X̂|X) (83)

≤ subexp(n)2n2 HV2 (X̂)+
∑g
i=3 ni HVi (X̂X)+ng+1 HVg+1

(X̂|X) (84)

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n)2

−
g+1∑
i=3

ni IVi (X∧X̂)
2−l

k̂J(V X̂2 ,...,V X̂g+1) (85)

≤ subexp(n)2
−
g+1∑
i=2

ni IVi (X∧X̂)−lk̂J(V X̂2 ,...,V X̂g+1)
. (86)

Inequality (86) implies (59).

Figure 10: Illustration for case (2)

CASE 2: In this case g = 2 holds if n is large enough. Moreover, by symmetry it can be assumed that n2 ≤ (log n)2

and n3 ≥ n− (log n)2 (See Fig. 10). Here also we separately investigate the same four subcases.

SUBCASES 2a and 2b: The proofs are identical to the proofs of subcases 1a and 1b respectively.

SUBCASE 2c: Here I = {x̂ = x1}. Using again (2) we get that

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂)−lk1 H(Pk1 ) · |T L,q
V,I | (87)

To upper-bound |T L,q
V,I | we divide the third block into n2 "virtual subblocks" consisting of non-consecutive elements:

the first virtual subblock corresponds to indices (1, 1+n2, . . . ), the second one corresponds to indices (2, 2+n2, . . . ),

. . . , the last corresponds to indices (n2, 2n2, . . . ) (see Fig. 11). Let n3,1, . . . , n3,s denote the lengths of these

"subblocks" (note that |n3,i − n3,j | ≤ 1 for all i, j ∈ [s]). Then:

|T L,q
V,I | ≤

∑
V3,i∈P

n3,i (X×X),i∈[s]
V3,1⊕···⊕V3,s=V3

2n1 HV1 (X)+n2 HV2 (X̂X)+
∑s
i=1 n3,i HV3,i (X̂|X) (88)

≤ subexp(n)2n1 HV1 (X)+n2 HV2 (X̂X)+n3 HV3 (X̂|X) (89)

Here in (88) inequality (7) is used and the sum is over type sequences corresponding to the division in Fig. 11.

These V3,1, . . . , V3,s have convex combination V3. In (89) again the concavity of the entropy and the fact that the
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Figure 11: Further division of the third subblock in subcases 2c and 2d

number of subtype sequences in the sum is subexponential in n are used. Substituting (89) into (87) and the same

algebraic rearrangement as before give:

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n)2

−
3∑
i=2

ni IVi (X∧X̂)
2−l

k1J(V X1 ,V X2 )2−l
k̂J(V X̂2 ,V X̂3 ) (90)

≤ subexp(n)2
−

3∑
i=2

ni IVi (X∧X̂)−lk̂J(V X̂2 ,V X̂3 )
. (91)

Here in (91) the positivity of the Jensen-Shannon divergence is used again. Inequality (91) implies (59).

SUBCASE 2d: Here I = {x̂ = x1, x̂ = x2,x1 = x2}. Note that (81) trivially holds in this case. Using again (2)

we get that

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n) · 2−l

k̂ H(P k̂) · |T L,q
V,I | (92)

To upper-bound |T L,q
V,I | we divide the third block into n2 "subblocks" consisting of non-consecutive elements as in

subcase (2c) (see Fig. 11) and we skip the first block and write n2 HV2
(X̂) instead of n2 HV2

(X̂X) related to the

second block. Using the same argument as in subcases 1d and 2c we get:

|T L,q
V,I | ≤

∑
V3,i∈P

n3,i (X×X),i∈[s]
V3,1⊕···⊕V3,s=V3

2n2 HV2 (X̂)+
∑s
i=1 n3,i HV3,i (X̂|X) (93)

≤ subexp(n)2n2 HV2 (X̂)+n3 HV3 (X̂|X) (94)

E
(
1L,qV (Xk̂

â;X
k1
a1 , . . . ,X

kg
ag )
)
≤ subexp(n)2−n3 IV3 (X∧X̂)2−l

k̂J(V X̂2 ,V X̂3 ) (95)

≤ subexp(n)2
−

3∑
i=2

ni IVi (X∧X̂)−lk̂J(V X̂2 ,V X̂3 )
. (96)

Inequality (96) implies (59).

Remark 9. In the proof above the different divisions shown on Fig. 9 and Fig. 11 ensure that the numbers of terms

in the corresponding sums are subexponential.
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