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Abstract—Instantaneous or statistical channel state information
(CSI) is needed for most detection schemes developed in the
molecular communication (MC) literature. Since the MC channel
changes, e.g., due to variations in the velocity of flow, the tem-
perature, or the distance between transmitter and receiver, CSI
acquisition has to be conducted repeatedly to keep track of CSI
variations. Frequent CSI acquisition may entail a large overhead
whereas infrequent CSI acquisition may result in a low CSI
estimation quality. To cope with these issues, we design codes which
facilitate maximum likelihood sequence detection at the receiver
without instantaneous or statistical CSI. In particular, assuming
concentration shift keying modulation, we show that a class of
codes, referred to as strongly constant-weight (SCW) codes, enables
optimal CSI-free sequence detection at the cost of decreasing the
data rate. For the proposed SCW codes, we analyze the code
rate and the error rate. Simulation results verify our analytical
derivations and reveal that the proposed CSI-free detector for
SCW codes outperforms the baseline coherent and non-coherent
detectors for uncoded transmission1.

I. INTRODUCTION

In contrast to conventional wireless communication systems

that encode data into electromagnetic waves, synthetic molecular

communication (MC) systems are envisioned to embed data into

the characteristics of signaling molecules such as their concen-

tration, type, and time of the release [1], [2]. Diffusive MC is a

common strategy for communication between nano-/microscale

entities in nature such as bacteria, cells, and organelles (i.e.,

components of cells) [3]. Therefore, diffusive MC has been con-

sidered as a bio-inspired approach for communication between

small-scale nodes where conventional wireless communication

may be inefficient or even infeasible [1], [4].

In diffusive MC, the expected number of signalling molecules

observed at the receiver at a given time after the emission of a

known number of molecules by the transmitter and the expected

number of interfering molecules observed at the receiver con-

stitute the channel state information (CSI) [5]. Knowledge of

the instantaneous CSI is needed in general for optimal coherent

detection [6] and can be obtained using training sequence-based

channel estimators [7]. The CSI of an MC channel depends

on various parameters such as the diffusion coefficient of the

signaling molecules, the velocity of the flow in the channel, the

concentration of enzyme degrading the signaling molecules, the

distance between the transmitter and the receiver, etc., see [3,

Chapter 4], [8]. A change in any of these parameters affects the

CSI of the considered MC channel. Therefore, CSI acquisition

has to be conducted repeatedly to keep track of CSI variations.

To reduce the CSI acquisition overhead, the authors in [5]

derived the optimal non-coherent detector which requires only

statistical CSI instead of instantaneous CSI. The statistical CSI

for a particular MC channel can be estimated using empirical

measurements. However, this may not always be possible,

particularly for practical MC systems with limited processing

capabilities. In fact, an experimentally verified statistical channel

model for MC systems has not been reported yet.

1This is an extended version of a paper available in Proc. IEEE ISIT 2017.

Motivated by the aforementioned challenges in CSI acqui-

sition, in this paper, we propose a class of codes, referred to

as strongly constant-weight (SCW) codes, for which we show

that maximum likelihood (ML) detection is possible without

instantaneous or statistical CSI knowledge. In other words,

SCW codes enable optimal CSI-free detection at the expense

of a decrease in data rate. We analyze the code rate and the

error rate of the proposed SCW codes. In addition, we study

the properties of the special cases of binary SCW codes and

balanced SCW codes.

We note that the problem considered in this paper, i.e., the

design of SCW codes, can be seen as a modulation design, code

design, or coded modulation design problem [9], [10]. However,

our main motivation in employing SCW codes here is to devise

an optimal ML detection algorithm that does not require CSI.

We note that SCW codes are special cases of the widely-known

constant-weight (CW) codes [11], [12]. However, to the best of

our knowledge, SCW codes and their application for CSI-free

detection have not been considered in the MC literature yet.

Notations: We use the following notations throughout this

paper: E{·} denotes expectation. Bold lower case letters denote

vectors and a
T represents the transpose of vector a. Hn(·)

represents the entropy function for the logarithm to base n, n!
is the factorial of n, and O(n) denotes the complexity order

of n. Moreover, P(λ) denotes a Poisson random variable (RV)

with mean λ, ⌊·⌋ denotes the floor function which maps a real

number to the largest integer number that is smaller or equal to

the real number, and 1{·} is an indicator function that is equal

to one if the argument is true, and is equal to zero otherwise.

II. SYSTEM MODEL

We consider an MC system consisting of a transmitter, a

channel, and a receiver. We employ concentration shift key-

ing (CSK) modulation where the transmitter releases s[k]N tx

molecules at the beginning of the k-th symbol interval to

convey symbol s[k] ∈ S [1]. Here, N tx is the maximum

number of molecules that the transmitter can release in one

symbol interval, i.e., a peak per-symbol “power” constraint, and

S = {η0, η1, . . . , ηL−1} denotes the symbol set where L is the

number of available symbols. Without loss of generality, we

assume η0 < η1 < · · · < ηL−1, η0 = 0, and ηL−1 = 1.

Moreover, let s = [s[1], s[2], . . . , s[K]]T denote a codeword

comprising K symbols.

The released molecules diffuse through the fluid medium

between the transmitter and the receiver. We assume that the

movements of individual molecules are independent from each

other. The number of observed (counted) molecules at the

receiver in each symbol interval is considered as the received

signal. We assume perfect symbol synchronization [13]. Let

r = [r[1], r[2], . . . , r[K]]T denote the vector of observations

corresponding to sequence s where r[k] denotes the number

of molecules observed at the receiver in symbol interval k. Due

http://arxiv.org/abs/1701.06338v2


to the counting process at the receiver, r[k] can be accurately

modelled as a Poisson RV, see [5], [6], [14], i.e.,

r[k] ∼ P(s[k]c̄s + c̄n), (1)

where c̄s is the number of molecules expected to be observed

at the receiver in symbol interval k due to the release of

N tx molecules by the transmitter at the beginning of symbol

interval k and c̄n is the expected number of interfering noise

molecules comprising multiuser interference (caused by other

MC links) and external noise (originating from natural sources)

observed by the receiver [5]. The inter-symbol interference

(ISI) free communication model in (1) implies that the symbol

intervals are chosen large enough such that the channel impulse

response (CIR) sufficiently decays to zero within one symbol

interval. We note that enzymes [15] and reactive information

molecules, such as acid/base molecules [16], may be used to

speed up the decaying of the CIR as a function of time, see [5,

Section 2] for further justification.

Note that the MC channel in (1) is characterized by c̄s and

c̄n. Hence, we refer to the vector c̄ = [c̄s, c̄n]
T as the CSI of the

considered MC system in the remainder of this paper. Moreover,

we assume that the CSI remains unchanged over one block of

transmitted symbols, i.e., one codeword, but may change from

one block to the next (e.g., due to a change of the flow velocity

or the distance between transmitter and receiver). To model this,

we assume that the CSI, c̄, is an RV that takes its values in each

block according to probability density function (PDF) fc̄(c̄s, c̄n).
For future reference, we define SNR = c̄s

c̄n
as the signal-to-noise

ratio (SNR).

III. OPTIMAL CSI-FREE DETECTION USING SCW CODES

In this section, we first introduce the class of SCW codes.

Subsequently, we formulate the ML problems for coherent

and non-coherent sequence detection which in general require

instantaneous and statistical CSI, respectively. Finally, as the

main result of this paper, we show that CSI-free ML detec-

tion is possible if SCW codes are adopted. For future ref-

erence, we define some auxiliary variables. In particular, let

ω(s) =
∑K

k=1 s[k] denote the weight of sequence s and let

ωℓ(s, r) =
∑K

k=1 r[k]1{s[k] = ηℓ} denote the weight of the

observation sequence r corresponding to the positions where

s[k] = ηℓ. The definition of SCW codes is formally presented

in the following.

Definition 1: SCW codes are denoted as S
sc(ω̄) with weight

vector ω̄ = [ω̄0, ω̄1, . . . , ω̄L−1]
T, where for all codewords s in

the codebook, the following property holds

K∑

k=1

1{s[k] = ηℓ} = ω̄ℓ, ∀ηℓ ∈ S and ∀s ∈ S
sc(ω̄). (2)

An SCW code is called a full code if all possible codewords

that satisfy (2) are included in the codebook. Moreover, an SCW

code is called balanced if all weights ω̄ℓ are identical, i.e., ω̄ℓ =
ω̄, ∀ℓ holds. �

Remark 1: CW codes, denoted by S
c(K,ω), have been

widely employed in conventional communication systems [11],

[12]. For these codes, weight ω(s) = ω is constant for all code-

words in the codebook. Obviously, an SWC code S
sc(ω̄) is also

a CW code Sc(K,ω) with K =
∑L−1

ℓ=0 ω̄ℓ and ω =
∑L−1

ℓ=0 ω̄ℓηℓ.
We note that for binary codes, i.e., S = {0, 1}, CW codes and

SCW codes become equivalent, i.e., Ssc([ω̄0, ω̄1]
T) = S

c(K,ω)
where ω = ω̄1 = K − ω̄0.

Algorithm 1 ML Sequence Detection for SCW Codes

1: initialize Sort observation vector r in ascending order into

a new vector r̃.

2: Set those elements of s which correspond to the ω̄0 first

elements of r̃ to η0 = 0.

3: for ℓ = 1 until ℓ = L− 1 do

4: Set those elements of s which correspond to element∑ℓ−1
ℓ′=0 ω̄ℓ′ + 1 to element

∑ℓ−1
ℓ′=0 ω̄ℓ′ + ω̄ℓ of r̃ to ηℓ.

5: end for

6: Return s as the ML sequence.

Remark 2: In Section II, we assumed that the maximum

number of molecules that the transmitter can release in one

symbol interval is limited to N tx, i.e., a peak power constraint.

Hence, for CW/SCW codes, the number of molecules released

by the transmitter of the considered MC system is identical

to N txω for all codewords. Therefore, for CW/SCW codes,

the average number of molecules released per symbol interval,

denoted by N̄ tx, is given by N̄ tx = ω
KN tx.

The ML problems for coherent and non-coherent sequence

detection are given by

ŝ
c = argmax

s∈S

fr(r|c̄, s), (3)

ŝ
nc = argmax

s∈S

∫

c̄s

∫

c̄n

fr(r|c̄, s)fc̄(c̄s, c̄n)dc̄sdc̄n, (4)

respectively, where S is the set of available sequences s and

fr(r|c̄, s) is the likelihood function conditioned on a given

CSI vector, c̄, and a given hypothesis sequence s. Exploiting

the fact that the observations in different symbol intervals are

independent, we obtain fr(r|c̄, s) as

fr(r|c̄, s) =
K∏

k=1

(c̄ss[k] + c̄n)
r[k]

exp (−c̄ss[k]− c̄n)

r[k]!
. (5)

In order to find the ML sequence for general S, the coher-

ent sequence detection in (3) requires the instantaneous CSI,

i.e., (c̄s, c̄n), whereas the non-coherent sequence detection in

(4) requires the statistical CSI, i.e., fc̄(c̄s, c̄n). The following

theorem reveals how the ML sequence can be obtained without

instantaneous or statistical CSI if a full SCW code is employed.

Theorem 1: Assuming a full SCW code is employed, i.e.,

s ∈ S
sc(ω̄), the solutions of (3) and (4) are identical and

independent of both instantaneous CSI (c̄s and c̄n) and statistical

CSI (fc̄(c̄s, c̄n)). This enables optimal CSI-free detection based

on Algorithm 1. Moreover, for a full binary CW code, Sc(K,ω),
the solution of (3) and (4) is simply the codeword whose “1”

elements correspond to the ω largest elements of r.

Proof: The proof is provided in Appendix A.

We note that the ML sequence is not necessarily unique,

i.e., more than one sequence may achieve the maximum value

of the likelihood function in (3) and (4). This can be also

seen from Algorithm 1 where the ordered vector r̃ may not

necessarily be unique since some elements of r can be identical.

To further explain the optimal sequence detector for SCW codes

in Algorithm 1, we present the following examples.

Example 1: Suppose an SCW code with symbol set S =
{0, 0.5, 1} and weight vector ω̄ = [2, 3, 1]T is employed and we

wish to decode the observation vector r = [12, 4, 8, 6, 15, 10]T.

• In line 1 of Algorithm 1, r is reordered in ascending order

into vector r̃ = [4, 6, 8, 10, 12, 15]T.



• In line 2 of Algorithm 1, the two elements (ω̄0 = 2) of

s corresponding to the first two elements of r̃ are set to

η0 = 0. This leads to s = [×, 0,×, 0,×,×]T.

• In line 4 of Algorithm 1, the three elements (ω̄1 = 3) of s

corresponding to the third to the fifth elements of r̃ are set

to η1 = 0.5. This leads to s = [0.5, 0, 0.5, 0,×, 0.5]T.

• In line 4 of Algorithm 1, the one remaining element (ω̄2 =
1) of s corresponding to the sixth element of r̃ is set to η2 =
1. This leads to the ML sequence s = [0.5, 0, 0.5, 0, 1, 0.5]T

which is returned in line 6 of Algorithm 1.

Example 2: Suppose a balanced binary CW code of length

K = 6, i.e., S = {0, 1} and ω = 3, is employed and we

wish to decode the observation vector r = [12, 4, 8, 6, 15, 8]T.

According to Theorem 1, the optimal sequence is the codeword

whose “1” elements correspond to the ω = 3 largest elements

of r, i.e., elements 15, 12, and 8. However, since we have two

elements with value 8, we obtain two ML sequences as s =
[1, 0, 0, 0, 1, 1]T, [1, 0, 1, 0, 1, 0]T.

Remark 3: We note that for increasing codeword length,

K , the length of observation vector r, which needs to be

sorted into r̃, and the number of assignment operations in

each iteration of the for-loop in Algorithm 1, proportionally

increase. Therefore, the complexity of Algorithm 1 is linear in

the codeword length, K . Based on the Van Emde Boas tree,

the sorting operation can be performed with a complexity on

the order of O(K log(log(L))) [17]. Note that the complexity

is exponential in K for the general coherent and non-coherent

ML problems in (3) and (4), since the number of codewords

and hence, the number of metrics which have to be computed,

grow exponentially in K . Therefore, adopting the proposed

SCW codes not only avoids the complexity and challenges of

CSI acquisition but also significantly reduces the complexity of

ML detection. This makes SCW codes particularly suitable for

simple nano-machines with limited computational capabilities.

While Theorem 1 claims CSI-free detection for full SCW

codes, in the following, we show that for binary CW codes,

CSI-free detection is possible even if the codebook is not full.

Corollary 1: For binary CW codes (not necessarily full

codes), i.e., s ∈ S
c(K,ω) and S = {0, 1}, the solutions of

(3) and (4) are identical and require neither instantaneous CSI

nor statistical CSI. In this case, the optimal CSI-free decision is

obtained from

ŝ = argmax
s∈Sc(K,ω)

ω1(s, r) = argmax
s∈Sc(K,ω)

K∑

k=1

s[k]r[k]. (6)

Proof: The proof follows directly from substituting binary

symbols, i.e., S = {0, 1}, into (16) in Appendix A.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the code rate and error rate of the

proposed SCW codes.

A. Rate Analysis

The rate of a general code comprised of M codewords of

length K with symbol set S is given by

Rcode(ω̄) =
log (M)

log (|S|K)
=

log|S| (M)

K
. (7)

The code rate of a full SCW code is an upper bound for the

code rate of SCW codes that do not use all possible codewords.

Hence, in the following, we consider the code rate of the full

SCW codes.

Proposition 1: The code rate of a full SCW code, Ssc(ω̄), is

given by

Rcode(ω̄)=
1

∑K
ℓ=1 ω̄ℓ

L−1∑

ℓ=0

logL

((∑
ℓ′≤ℓ ω̄ℓ′

ω̄ℓ

))

=
1

K
logL

(
K!

∏L−1
ℓ=0 ω̄ℓ!

)
K→∞
→ HL(ρ), (8)

where ρ = [ρ0, ρ1, . . . , ρL]
T and ρℓ = ω̄ℓ/K .

Proof: The proof is provided in Appendix B.

Given K and L, the code rate of SCW codes is maximized

when they are balanced, i.e., ω̄ℓ = ω̄ℓ′ , ∀ℓ, ℓ′ assuming K/L
is an integer. Moreover, for balanced codes, the rate approaches

Rcode(ω̄) → 1 as K → ∞. We note that the code rate specifies

the information content of a codeword compared to uncoded

transmission with the same symbol set. Therefore, the code rate

in (7) is unitless. Alternatively, one can define the data rate in

bits/symbol as the average number of information bits that a

symbol in a codeword contains.

B. Error Analysis

The average codeword error rate (CER) is denoted by

P̄ code
e (ω̄) = Ec̄{P

code
e (ω̄|c̄)} where P code

e (ω̄|c̄) is the CER

of the SCW code with weight ω̄ for a given realization of the

CSI c̄. In the following, we provide several analytical bounds for

the CER P code
e (ω̄|c̄). First, we present an upper bound on the

CER based on the pairwise error probability (PEP) and union

and Chernoff bounds.

Proposition 2: The CER of the optimal detector for SCW

codes, Ssc(ω̄), is upper bounded by

P code
e (ω̄|c̄) (9)

≤
1

M

∑

∀s

∑

∀ŝ 6=s

exp

(
K∑

k=1

λ[k] (exp (̟[k]t)− 1)

)
, ∀t > 0,

where λ[k] = s[k]c̄s + c̄n and ̟[k] = ln
(

1+ŝ[k]SNR

1+s[k]SNR

)
. In (9), t

is an arbitrary positive real number which is introduced by the

Chernoff bound that was used to arrive at (9).

Proof: The proof is provided in Appendix C.

We note that (9) constitutes an upper bound on the CER

for any value of t > 0. Therefore, one can optimize t to

tighten the upper bound. In the following corollary, we present

a tighter upper bound than the general upper bound presented

in Proposition 2 for binary CW codes. For notational simplicity,

we enumerate the codewords by si, i = 1, . . . ,M . Moreover,

let dij = h(si, sj) be the Hamming distance between codewords

si and sj .

Corollary 2: The CER of the optimal detector for binary CW

code, Sc(K,ω), is upper bounded by

P code
e (K,ω|c̄) ≤

1

M

∑

∀dij, i6=j

0.5fX(0) +
∞∑

x=1

fX(x), (10)

where fX(x) is given by

fX(x) = e−(λ1+λ2)

(
λ2

λ1

)x/2

Ix(2
√
λ1λ2), (11)

with λ1 =
dij(c̄s+c̄n)

2 , λ2 =
dij c̄n

2 , and Ix(·) is the modified

Bessel function of the first kind and order x [18].



TABLE I
DEFAULT VALUES OF THE SYSTEM PARAMETERS [5], [15].

Variable Definition Value

N tx Number of released molecules 104 molecules

V rx Receiver volume 4
3π50

3 nm3

(a sphere with radius 50 nm)

d Distance between the transmitter and the receiver 500 nm

D Diffusion coefficient for the signaling molecule 4.3× 10−10 m2 · s−1

c̄e Enzyme concentration 105 molecule · µm3

(approx. 1.66 micromolar)

κ Rate of molecule degradation reaction 2× 10−19 m3 · molecule−1 · s−1

(v‖, v⊥) Components of flow velocity (10−3, 10−3) m · s−1

Proof: The proof is provided in Appendix D.

The upper bounds in Proposition 2 and Corollary 2 are based

on the PEP and the union bound. Hence, they are expected to

be tight at high SNRs. In the following proposition, we provide

upper and lower bounds on the CER for the special case of full

binary CW codes which are tight for all SNRs.

Proposition 3: The CER of the optimal detector for a full

binary CW code, Sc(K,ω), is bounded as

∞∑

y=1

FX(y − 1)fY (y) ≤ P code
e (K,ω|c̄) ≤

∞∑

y=0

FX(y)fY (y), (12)

where FX(·) and fY (·) are given by

FX(x) = 1− (1 − FP(x, c̄s + c̄n))
ω (13a)

fY (y) = (K − ω)fP(y, c̄n)FP (y, c̄n)
K−ω−1. (13b)

In (13a) and (13b), fP(·, ·) and FP(·, ·) are given by

fP(x, λ)=
λxe−λ

x!
(14a)

FP (x, λ)= Q(⌊x+ 1⌋, λ), (14b)

where Q(·, ·) is the regularized Gamma function [18].

Proof: The proof is provided in Appendix E.

V. PERFORMANCE EVALUATION

Since the proposed detection scheme does not require

CSI, it can be adopted regardless of the channel being

deterministic/time-invariant or stochastic/time-variant. In Figs. 1

and 2, we adopt the deterministic channel with flow introduced

in [15], and in Fig. 3, we use the stochastic channel in [5].

Due to space constraints, we avoid restating the details of these

channel models and refer the readers to [5], [15] for detailed

descriptions. In particular, the models in [5], [15] are based on

the following equation for the expected number of molecules

observed at the receiver as a function of time

c̄s(t) =
N txV rx

(4πDt)3/2
exp

(
−κc̄et−

(d− v‖t)
2 + (v⊥t)

2

4Dt

)
, (15)

where the definition of the involved variables and their default

values are provided in Table I. We assume a sampling time of

T samp = 0.1 ms and a symbol duration of T symb = 1 ms. For

instance, for the default values of the system parameters given in

Table I, we obtain c̄s = c̄s(T
samp) = 4.9 molecules. Moreover,

the expected number of noise molecules can be determined

based on the adopted SNR value according to c̄n = c̄sSNR
−1.

Alternatively, for a fixed c̄n, one may change the number of

released molecules, N tx, to obtain different SNRs. Here, we

adopt the latter approach with c̄n = 4.9, i.e., the SNR using the

default values of the system parameters in Table I is zero dB.

Finally, for the simulation results provided in this section, we

choose symbol set S =
{
0, 1

L−1 ,
2

L−1 , · · · ,
L−2
L−1 , 1

}
.

Next, we evaluate the error performance of the proposed

CSI-free detector. To examine the performance of different

SCW codes, we adopt a simple ternary symbol set, i.e., S =
{0, 0.5, 1}, and a small codeword length, i.e., K = 6. Moreover,

we consider the following five weights: ω̄ = [2, 2, 2]T which

yields a balanced code, ω̄ = [3, 2, 1]T, [1, 2, 3]T which yield

unbalanced codes, ω̄ = [3, 0, 3]T which is equivalent to a binary

balanced code, and ω̄ = [5, 0, 1]T which is equivalent to pulse

position modulation (PPM) [19]. In Fig. 1, we show the CER

for these SCW codes, P code
e (ω̄), versus the SNR in dB. In

addition, we plot the upper bound given in Proposition 2 for

t = 0.5 2. Fig. 1 confirms the validity of the proposed upper

bound and that it becomes tighter at high SNRs. We note that

comparing the curves in Fig. 1 is not entirely fair. The common

properties of the codes considered in this figure include that CSI

is not needed for detection and they employ the same codeword

length, K , an identical per-symbol “power” constraint, N tx,

and in principle the same symbol set, S. However, their code

rates, Rcode(ω̄), and average power consumption, N̄ tx, are not

necessarily identical. For instance, the binary balanced codes

achieve a lower CER compared to the ternary balanced code at

the cost of a lower achievable data rate.

The SCW codes adopted in Fig. 1 are full codes, i.e., all

possible codewords are used. In Corollary 1, we showed that

CSI-free detection is possible also for binary CW codes with

partial codebooks. In Fig. 2, we show the CER for binary CW

codes, P code
e (K,ω), versus the SNR in dB for K = 10 and

ρ = 1
2 . The results for both the partial code with code rate

R = 0.5 and the full code with rate R(K,ω) = 0.8 are included.

In particular, to generate the partial codebook, 20.5K = 32
codewords are randomly chosen out of all M = 252 possible

codewords. We observe that the code with partial codebook

achieves a lower CER at the expense of a lower code rate.

In addition, in Fig. 2, we show the upper bounds proposed

in Proposition 2, Corollary 2, and Proposition 3 and the lower

bound proposed in Proposition 3. We note that the bounds in

Proposition 3 are valid only for full codes. Fig. 2 confirms the

validity of the bounds and that the upper bounds proposed in

Proposition 3 and Corollary 2 for the binary CW codes are

tighter than the upper bound proposed in Proposition 2 for

general SCW codes. Moreover, Fig. 2 reveals that the bounds

in Proposition 3 are fairly tight for all SNRs whereas the upper

bound in Corollary 2 is particularly tight at high SNRs.

Finally, in Fig. 3, we compare the proposed coded com-

munication scheme with an uncoded transmission employing

the coherent symbol-by-symbol detector in [6] and the optimal

non-coherent and the sub-optimal CSI-free detectors in [5]. In

Fig. 3, we show the bit error rate (BER) versus the codeword

length (or the “block” length in [5]), K , for ρ = 1
2 , SNR = 5

dB, R ∈ { 1
2 ,

1
3 ,

1
4} and Scenario 2 of the stochastic MC

channel in [5]. As previously confirmed in [5], the BERs of

the optimal non-coherent and the sub-optimal CSI-free detectors

approach that of the optimal coherent detector as K → ∞. The

proposed CSI-free detector based on SCW codes outperforms

all considered uncoded benchmark schemes at the expense of a

lower rate. Furthermore, the performance gain of the proposed

coded communication over the uncoded benchmark schemes

increases as the code rate decreases.

2For simplicity, we choose a fixed t for the results shown in Figs. 1 and 2,
i.e., t = 0.5. This specific value of t was chosen in a trial-and-error manner
without claim of optimality in terms of the tightness of the upper bound.
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VI. CONCLUSION

We have proposed SCW codes which facilitate optimal CSI-

free sequence detection at the cost of decreasing the data rate

compared to uncoded transmission. For the proposed SCW

codes, we analyzed the code rate and the error rate. Simula-

tion results verified our analytical derivations and showed that

the proposed CSI-free detector for SCW codes outperforms

the optimal coherent and non-coherent detectors for uncoded

transmission.

APPENDIX A

PROOF OF THEOREM 1

First, we rewrite (3) as follows

ŝ
(a)
= argmax

s∈S

ln (fr(r|c̄, s))

= argmax
s∈S

K∑

k=1

r[k]ln (c̄ss[k] + c̄n)− c̄ss[k]− c̄n − ln (r[k]!)

(b)
= argmax

s∈S

− ω(s)c̄s +

K∑

k=1

r[k]ln (1 + s[k]SNR) , (16)

where to arrive at equality (a), we use the property that ln(·)
is a monotonically increasing function, and for equality (b),
we remove those terms that do not depend on the hypothesis

sequence s and use the definitions of ω(s) and SNR.

For SCW codes, ω(s) is identical for all codewords and hence

does not change the ML sequence. The second term in (16) is in

fact a weighted sum of the observations r[k] where the weights

ln (1 + s[k]SNR) are monotonically increasing functions of s[k].
Therefore, for the ML sequence s

∗ = [s∗[1], . . . , s∗[k]]T, if

r[k] ≥ r[k′] holds, then s∗[k] ≥ s∗[k′] has to hold. This leads to

Algorithm 1 for general SCW codes. For the case of binary CW

codes, Sc(K,ω), this leads to a sequence whose “1” elements

correspond to the ω largest elements of r. The resulting sequence

is optimal if it belongs to the codebook S
sc(ω̄). This condition

is ensured if the code is full. Note that this is the solution

of the ML problem in (3) for coherent sequence detection. If

for a given CSI (c̄s, c̄n), the sequence s
∗ that maximizes the

conditional likelihood function fr(r|c̄, s) does not depend on

the CSI value, the average likelihood function in (4) is also

maximized by s
∗. In other words, the solutions of (3) and (4)

for coherent and non-coherent detection are identical and do

not depend on instantaneous nor statistical CSI. Therefore, an

SCW code enables optimal CSI-free detection. These results are

concisely summarized in Theorem 1 and Algorithm 1 which

concludes the proof.

APPENDIX B

PROOF OF PROPOSITION 1

In the following, using (7), we derive the code rate of a full

SCW code. First, note that we have |S| = L and K =
∑L−1

ℓ=0 ω̄ℓ

for SCW code S
sc(ω̄). In order to find M for a given SCW

code S
sc(ω̄), we use the definition of the binomial coefficient,

i.e.,
(
n
k

)
= n!

k!(n−k)! . In particular, there are
(

K
ω̄L−1

)
possibilities

for the positions of symbol ηL−1 = 1. Having the positions

of symbol ηL−1 fixed, there are
(
K−ω̄L−1

ω̄L−2

)
possibilities for the

positions of symbol ηL−2. Continuing this process, we obtain

M for a full SCW code S
sc(ω̄) as

M=

(
K

ω̄L−1

)(
K − ω̄L−1

ω̄L−2

)
· · ·

(
ω̄0 + ω̄1

ω̄1

)(
ω̄0

ω̄0

)

=
L−1∏

ℓ=0

(∑
ℓ′≤ℓ ω̄ℓ′

ω̄ℓ

)
=

K!
∏L−1

ℓ=0 ω̄ℓ!
. (17)

Substituting the above results into (7) leads to the first expression

in (8). We note that the first expression in (17) is the well-

known multinomial coefficient which can be written equivalently

as the second expression in (17) [18]. Finally, we note that the

entropy of an RV with multinomial distribution and probability

vector ρ = [ρ0, ρ1, . . . , ρL]
T where ρℓ = ω̄ℓ/K , asymptotically

approaches HL(ρ) when K → ∞ [18]. Therefore, we obtain

logL(M) → KHL(ρ) as K → ∞. This leads to the asymptotic

result in (8) and concludes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

The PEP, denoted by P (s → ŝ), is defined as the probability

that assuming s is transmitted, ŝ is detected. Using the PEP, the

CER is upper bounded based on the union bound as follows

P code
e (ω̄|c̄)≤

∑

∀s

∑

∀ŝ 6=s

P (s → ŝ)Pr(s)

(a)

≤
1

M

∑

∀s

∑

∀ŝ6=s

Pr{X ≥ 0}

(b)

≤
1

M

∑

∀s

∑

∀ŝ6=s

E {exp (Xt)}

=
1

M

∑

∀s

∑

∀ŝ6=s

GX(t), ∀t > 0, (18)



where in inequality (a), we use the property that the codewords

are equiprobable, i.e., Pr(s) = 1
M , define X = ΛML(ŝ) −

ΛML(s), and treat the case X = 0 always as an error which

upper bounds the PEP term P (s → ŝ). For inequality (b), we

employ the Chernoff bound where GX(t) denotes the moment

generating function (MGF) of RV X [20]. Using (16), X can

be rewritten as

X =

K∑

k=1

r[k] ln

(
1 + ŝ[k]SNR

1 + s[k]SNR

)
,

K∑

k=1

̟[k]r[k], (19)

which is basically a weighted sum of the observations. Note that

given s, r[k], ∀k, is a Poisson RV with mean λ[k] = s[k]c̄s+ c̄n
and MFG Gr[k](t) = exp(λ[k](et−1)). Exploiting the properties

of MGFs, namely GaX(t) = GX(at), where a is a constant, and

GX+Y (t) = GX(t)GY (t) where X and Y are independent RVs,

we obtain

GX(t) =

K∏

k=1

Gr[k] (̟[k]t) = exp

(
K∑

k=1

λ[k]
(
e̟[k]t − 1

))
.(20)

The above result leads to the upper bound in (9) and concludes

the proof.

APPENDIX D

PROOF OF COROLLARY 2

Using the PEP, the CER is upper bounded based on the union

bound as follows

P code
e (ω̄|c̄)≤

∑

∀s

∑

∀ŝ 6=s

P (s → ŝ)Pr(s)

=
1

M

∑

∀s

∑

∀ŝ6=s

Pr{X > 0}+ 0.5Pr{X = 0}, (21)

where X = ΛML(ŝ)− ΛML(s). RV X can be simplified as

X =

K∑

k=1

(ŝ[k]− s[k])r[k] =

X2︷ ︸︸ ︷∑

k∈K̂

ŝ[k]r[k]−

X1︷ ︸︸ ︷∑

k∈K

s[k]r[k], (22)

where K = {k|s[k] = 1 and s[k] 6= ŝ[k]} and K̂ = {k|ŝ[k] =
1 and s[k] 6= ŝ[k]}. Here, X1 and X2 are two independent

Poisson RVs with means λ1 =
dij(c̄s+c̄n)

2 and λ2 =
dij c̄n

2 ,

respectively. Therefore, X follows a Skellam distribution whose

PDF is given in (11) [21]. Moreover, since, for a given s and ŝ,

the Skellam distribution is a function of the Hamming distance

dij , we can replace the summations in (21) by the summation

over all dij as in (10). This completes the proof.

APPENDIX E

PROOF OF PROPOSITION 3

Let ŝ denote the detected codeword using the optimal de-

tector. We divide the received vector r into two vectors r̃ =
[r̃1, r̃2, . . . , r̃ω ]

T and r̂ = [r̂1, r̂2, . . . , r̂K−ω]
T which correspond

to positions of the ones and zeros in the transmitted code-

word s, respectively. Hereby, conditioned on s, elements r̃i
and r̂j are independent Poisson RVs with means c̄s + c̄n and

c̄n, respectively. Let us define X = min{r̃1, r̃2, . . . , r̃ω} and

Y = max{r̂1, r̂2, . . . , r̂K−ω}. For the optimal detector and a

full binary CW code, the CER is bounded as

Pr{X < Y } ≤ P code
e (K,ω|c̄) ≤ Pr{X ≤ Y }. (23)

In fact, for events when X = Y occurs, the detector selects with

equal probability one of the hypothesis with the same value of

ΛML(s). For the upper bound, we treat event X = Y as an error

and for the lower bound, we treat it as a correct decision. Using

order statistics theory [22], the cumulative density function

(CDF) of X and the PDF of Y are given by (13a) and (13b),

respectively, where fP(·, λ) and FP(·, λ) are in fact the PDF

and CDF of a Poisson RV with mean λ, respectively [22].

Using FX(x) and fY (y), the lower and upper bounds in (23)

are rewritten in (12). This completes the proof.
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