
ar
X

iv
:1

71
1.

09
49

4v
2

 [
cs

.I
T

]
 1

1
Ja

n
20

18
1

Skip-Sliding Window Codes

Ting-Yi Wu, Anshoo Tandon, Lav R. Varshney, Senior Member, IEEE, and Mehul

Motani, Fellow, IEEE

Abstract

Constrained coding is used widely in digital communication and storage systems. In this paper, we

study a generalized sliding window constraint called the skip-sliding window. A skip-sliding window

(SSW) code is defined in terms of the length L of a sliding window, skip length J , and cost constraint E

in each sliding window. Each valid codeword of length L+kJ is determined by k+1 windows of length

L where window i starts at (iJ+1)th symbol for all non-negative integers i such that i ≤ k; and the cost

constraint E in each window must be satisfied. In this work, two methods are given to enumerate the size

of SSW codes and further refinements are made to reduce the enumeration complexity. Using the proposed

enumeration methods, the noiseless capacity of binary SSW codes is determined and observations such as

greater capacity than other classes of codes are made. Moreover, some noisy capacity bounds are given.

SSW coding constraints arise in various applications including simultaneous energy and information

transfer.

I. INTRODUCTION

Constrained coding losslessly maps a set of unconstrained sequences into a set of sequences that satisfy

certain constraints, and has been extensively used in several applications. To alleviate timing errors due

to the rapid change of stored bits in magnetic and optical storage, binary runlength-limited codes [1], [2]

are employed to insert a run of zeros between consecutive ones. In simultaneous information and energy

transmission [3], a minimal number of ones in subsequences of transmitted codewords is required so as to

carry enough energy while transmitting information [4]–[8]. Asynchronous communication necessitates

codes with heavy/light Hamming weight [9], [10].

Two basic constrained coding strategies have been developed for simultaneous information and energy

communication: sliding window constraint (SWC) codes [4]–[6] and subblock-energy constraint (SEC)

T.-Y. Wu and L. R. Varshney are with the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA (e-mail: {tywu, varshney}@illinois.edu). A. Tandon and M. Motani are with the Department of

Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (e-mail: {anshoo.tandon@gmail.com;

motani@nus.edu.sg}).

http://arxiv.org/abs/1711.09494v2

2

codes [7], [8]. As Fig. 1 shows, SWC codes restrict the energy of every consecutive L symbols to be

no less than E to guarantee enough energy is conveyed after transmitting any symbol. The sliding-

window constraint enables SWC codes to convey energy to meet real-time delivery requirements, but

also reduces the number of valid SWC codewords and therefore the information capacity. When there

are energy buffers (batteries), energy transmission need not be so constrained at the level of individual

transmitted symbols, and so SEC codes only restrict the energy of non-overlapping subblocks to be no

less than E; this leads to more allowable codewords and capacity.

This work introduces a new intermediate type of constrained code that generalizes both SWC and SEC

codes. Instead of assuring the energy constraint on consecutive L symbols for all sliding windows, the

proposed constrained code that we call skip-sliding window (SSW) codes loosen the SWC constraint by

lifting the energy constraint for those sliding windows that do not start at (iJ + 1)th symbols, where J

is a fixed integer and i is any non-negative integer. It is immediate that an SSW code reduces to an SWC

code when J = 1, and to an SEC code when J = L. In this sense, SWC and SEC codes are two ends

of a spectrum of SSW codes as Fig. 1 shows.

Note that although SSW codes are inspired by constrained codes for simultaneous information and

energy transmission, they may also be useful in several other areas where sliding window constraints

arise. Genome sequences may be assembled using de Bruijn graphs [11], [12], in which constrained

overlapped genome subsequences form a graph that can be related to a sliding window constraint. Several

task scheduling problems state that machines process jobs in a sliding-window manner when loading is

limited [13]; sequencing of tasks to satisfy the loading constraint forms an SSW code. Other topics, such

as Rauzy graphs [14], [15, Sec. 3.4.2] in formal languages and regular constraints [16] in constraint

programming [17] may also be treated from an SSW code perspective.

The main contributions of this paper are as follows.

1) We define SSW codes and characterize basic properties to build the mathematical foundation for

SSW-related applications.

2) We introduce two methods to enumerate valid codewords of binary SSW codes where the cost

constraint E is defined as the least Hamming weight W : one is based on the adjacency matrix of a

modified de Bruijn graph [12] which enumerates the SSW code in complexity O
(

(
∑L

i=W

(

L
i

))2
)

,

whereas the other uses the Goulden-Jackson cluster method [18] which enumerates the SSW code

with L = ℓJ for some positive integer ℓ in complexity O
(

(
∑W−1

i=0

(L
i

))2
)

. A modified Goulden-

Jackson cluster method is further proposed which is proved to be equivalent to the first method

when L = ℓJ for some positive integer ℓ.

3) When L = ℓJ for some positive integer ℓ, refinements of both enumeration methods are given to

3

Fig. 1. Sliding window constraint codes, skip-sliding window codes, and subblock-energy constraint codes. As the intensity

of the coding constraint increase (J decrease), it is expected that the capacity (noiseless or noisy) of the code will decrease.

However, the skip-sliding window codes may violate this intuition.

lower the complexity. The refinement of the first enumeration method reduces its complexity to

be O
(

min{J + 1,W + 1}ℓ−1
)

, and the refinement of the second enumeration method reduces its

complexity to be O
(

min{J,W − 1}ℓ−1
)

.

4) Properties of the noiseless capacity of SSW are proven, and some interesting and useful observations

from numerical simulations are given. In particular, SSW codes can surprisingly achieve higher

noiseless capacity than SEC codes do.

5) Several noisy capacity bounds over the binary symmetric channel (BSC) and the binary erasure

channel (BEC) are given for comprehensiveness.

The rest of this paper is organized as follows. Section II introduces SSW codes and their noiseless

capacity. Enumeration methods are given in Section III and refined enumeration methods are further

derived in Section IV. Section V gives properties and numerical results on SSW codes in the noiseless

case. Some noisy capacity bounds and their numerical evaluations are given in Section VI. Section VII

summarizes and concludes.

4

II. SKIP-SLIDING WINDOW CODES

Let us consider q-ary sequences where each symbol in the sequence is drawn from Q , {0, 1, . . . , q−1}

and define a cost function E(·) which maps each symbol to a real value as E : Q → R. A q-ary SSW

sequence with a window length L, a skip length J , and a minimal cost E, denoted as an (L, J,E)q-SSW

sequence, guarantees the sum of the cost of the L consecutive symbols which start at the (iJ + 1)th

symbol to be no less than E for all non-negative integers i.

Definition 1. Given positive integers L and J such that L ≥ J , a cost function E : Q → R, and the

minimal cost E, a q-ary sequence of length n = L+ kJ is said to be an (L, J,E)q-SSW sequence if

L
∑

i=1

E (c(i+mJ)) ≥ E for all 0 ≤ m ≤ k, (1)

where c(i) denotes the ith symbol of the sequence c.

Definition 2. The collection of all (L, J,E)q-SSW sequences of length n form the (L, J,E)q-SSW code

of length n.

Since binary sequences are of particular interest, we largely focus on (L, J,E)2-SSW sequences in

the sequel. For simplicity, the cost function is taken as the Hamming weight of the binary symbol,

E(c(i)) = c(i), and the cost constraint E is replaced by W to specifically denote the Hamming weight.

Definition 3. Given positive integers L, J , and W , such that L ≥ W and L ≥ J , a binary sequence c

of length n = L+ kJ is said to be an (L, J,W)-SSW sequence if

L
∑

i=1

c(i+mJ) ≥ W for all 0 ≤ m ≤ k, (2)

where c(i) denotes the ith bit value of the binary sequence c.

Let M
(L,J,W)
ssw (L+kJ) denote the number of the (L, J,W)-SSW sequences of length L+kJ for some

non-negative integer k. Our interest is in finding M
(L,J,W)
ssw (L+kJ), but especially the noiseless capacity

of binary skip-sliding codes,

C(L,J,W)
ssw , lim

k→∞

logM
(L,J,W)
ssw (L+ kJ)

L+ kJ
. (3)

The next two sections will introduce several ways to enumerate M
(L,J,W)
ssw (L+ kJ).

Before closing this section, we present the following theorem which states that any (L, J,W)-SSW

sequence with L = ℓJ for some ℓ > 0 is equivalent to a q-ary (ℓ, 1, E)q-SSW sequence such that q = 2J .

5

Fig. 2. Extending an (L, J,W)-SSW sequence c.

Theorem 1. For any binary (L, J,W)-SSW code where L = ℓJ for some positive integer ℓ, there is an

equivalent 2J -ary (ℓ, 1, E)2J -SSW code.

Proof: Let w(c) be the Hamming weight of the binary string c and (i)J be the binary representation

of length J for the non-negative integer i.1 Then we can construct a 2J -ary (ℓ, 1, E)2J -SSW code

such that E = W , Q = {0, 1, . . . , 2J − 1} and E(i) = w ((i)J) for all i ∈ Q. Hence, any 2J -ary

(ℓ, 1, E)2J -SSW sequence of length n can be transformed to be a binary (L, J,W)-SSW sequence of

length nJ by representing each symbol in binary, i.e., c ∈ (ℓ, 1, E)2J -code of length n if and only if

(c(1))J (c(2))J · · · (c(n))J ∈ (L, J,W)-code of length nJ .

III. ENUMERATION METHODS

To enumerate M
(L,J,W)
ssw (n), we consider its generating function g(x), such that

g(x) =

∞
∑

n=0

M (L,J,W)
ssw (n)xn. (4)

Note that M
(L,J,W)
ssw (n) = 0 if n 6= L+ kJ for any non-negative integer k.

A. Finite State Machine

To extend an (L, J,W)-SSW sequence c, as Fig. 2 shows, the incoming J bits and the last L − J

bits of c must contain at least W ones. Hence, the incoming J bits and the last L − J bits of c can

determine if the extended sequence is a valid (L, J,W)-SSW sequence, which indicates that the finite

state machine (FSM) with L-bit states can represent all possible (L, J,W)-SSW sequences.

Let us consider a directed graph G(V, E) with vertex set V and directed edge set E , which contains

all L-bit vertices, i.e.,

V = {[b1 · · · bL] : bi ∈ {0, 1} for all 1 ≤ i ≤ L},

and the vertex [b1 · · · bL] can transit to the vertex [b′1 · · · b
′
L] if bi+1 = b′i for all 1 ≤ i ≤ L− 1, i.e.,

([a b1 · · · bL−1], [b1 · · · bL−1a
′]) ∈ E

1For example, (5)4 = 0101, hence the w ((5)4) = w(0101) = 2.

6

Fig. 3. An example of de Bruijn graph of order 3, which is also the FSM of the (3, 1, 0)-SSW code.

Fig. 4. The FSM of the (3, 2, 0)-SSW code, in which each path denotes a valid walk of length 2 in Fig. 3.

for all a, a′, and bi ∈ {0, 1}. Such a graph G(V, E) is called the de Bruijn graph of order L [12]. An

example of a de Bruijn graph of order 3 is depicted as Fig. 3. Since the states in the de Bruijn graph of

order L represent the latest L bits of the incoming path, the de Bruijn graph of order L can be treated

as an FSM of an (L, 1, 0)-SSW code. Hence Fig. 3 is also the FSM of an (3, 1, 0)-SSW code.

To obtain the FSM of the (L, J, 0)-SSW code with a skip length J > 1, walks of length J in the

de Bruijn graph need to be extracted. An example of the FSM of the (3, 2, 0)-SSW code is depicted in

Fig. 4. Furthermore, letting w([b1 · · · bL]) =
∑L

i=1 bi be the Hamming weight of the vertex [b1 · · · bL]

in G(V, E), the FSM of an (L, J, 0)-SSW code can be transformed into the FSM of an (L, J,W)-SSW

code by discarding vertices whose Hamming weights are less than W . An example of the FSM of the

(3, 2, 2)-SSW code is given in Fig. 5.

Based on the transformation of the FSM of the (L, J,W)-SSW code mentioned above, the adjacency

matrix of the FSM corresponding to an (L, J,W)-SSW code can be derived as the following theorem.

We use an operator that eliminates rows and columns of a matrix: [B]≥W is defined as the submatrix

of B which deletes the rows and the columns of B corresponding to those vertices whose Hamming

weights are less than W .

7

Fig. 5. The FSM of the (3, 2, 2)-SSW code, which is a modified FSM of (3, 2, 0)-SSW code in Fig. 4 by simply removing

those vertices whose Hamming weight is less than 2.

Lemma 1. Let G(V, E) be the de Bruijn graph of order L and the corresponding adjacency matrix be

A. The FSM of the (L, J,W)-SSW code can be constructed as the adjacency matrix [AJ]≥W .

Proof: By [19, Theorem 1.1], the element at the ith row and jth column of the adjacency matrix AJ

is the number of valid walks from vertex i to vertex j. Therefore, the adjacency matrix AJ corresponds

to the FSM of the (L, J, 0)-SSW code. As Fig. 5 depicts, the FSM of the (L, J,W)-SSW code is the

FSM of the (L, J, 0)-SSW code without those vertices whose Hamming weight is less than W . Hence,

the adjacency matrix of the (L, J,W)-SSW code can be obtained simply by removing the rows and

columns of AJ whose corresponding Hamming weight is less than W , i.e. [AJ]≥W .

It should be noted that elements in matrix [AJ]≥W are either 0 or 1 when L ≥ J , and the size of the

square matrix [AJ]≥W is b× b, where b =
∑L

i=W

(L
i

)

. By Lemma 1, the following theorem calculates

the generating function (4).

Theorem 2. The generating function of the (L, J,W)-SSW code is

g(x) = 1 + 1

T

[

I− [AJ]≥W · xJ
]−1

1xL,

where A is the adjacency matrix corresponding to the de Bruijn graph of order L.

Proof: Letting B = [AJ]≥W and 1 be the b-length column vector of ones, the number of (L, J,W)-

SSW sequences of length L+ kJ for some non-negative integer k is

M (L,J,W)
ssw (L+ kJ) = 1

T
B

k
1.

8

Therefore, the generating function g(x) can be derived as

g(x) = 1 +

∞
∑

k=0

1

T
B

k
1xL+kJ (5)

= 1 + 1

T
[

I−BxJ
]−1

1xL, (6)

where I is the identity matrix of size b× b.

As per [20, Lemma 3.5], the logarithm of the largest absolute eigenvalue of [AJ]≥W equals JC
(L,J,W)
ssw :

C(L,J,W)
ssw = lim

k→∞

log2 1
T
(

[AJ]≥W

)k
1

L+ kJ
(7)

=
log2 λ

(

[AJ]≥W

)

J
, (8)

where λ
(

[AJ]≥W

)

is the largest absolute value of all eigenvalues of [AJ]≥W . Finding C
(L,J,W)
ssw is

equivalent to finding the eigenvalue of the square matrix [AJ]≥W of size b× b.

B. Goulden-Jackson Cluster Method with Bad Words

When the window length of the (L, J,W)-SSW sequences is a multiple of J , i.e., L = ℓJ for some

positive integer ℓ, we can apply Goulden-Jackson cluster method [18] to find the generating function

g(x). The Goulden-Jackson cluster method is a technique to enumerate the valid sequences without any

“bad” words within it. The Goulden-Jackson cluster method states that, given a set of letters V and a set

of bad words B such that B ∈ V∗, the generating function f(x) for enumerating sequences containing

no bad words within them can be expressed as

f(x) =
1

1− |V|x− clusterB(x)
, (9)

where the clusterB(x) is the generating function of the sequences of overlapped bad words. Since the

sequences of overlapped bad words can be categorized by their last bad word, clusterB(x) can be

computed by summing the generating function of all overlapped bad words ending with a different

bad word, i.e.,

clusterB(x) =
∑

b∈B

clusterB(x|b) (10)

where clusterB(x|b) is the generating function of the overlapped bad words ending with bad word b.

Based on Goulden-Jackson cluster method, the clusterB(x|b) can be uniquely determined by solving the

following |B| linear equations:

clusterB(x|b) = −x‖b‖ −
∑

b′∈B

∑

y∈O(b′,b)

x‖b‖−‖y‖clusterB(x|b
′), for all b ∈ B, (11)

9

where ‖ · ‖ denotes number of bits and

O(b′, b) ,
{

y : there exist y,u,u′ ∈ {V∗ \ ∅} such that b′ = u′y and b = yu
}

. (12)

Thus (L, J,W)-SSW sequences such that L = ℓJ for some positive integer ℓ can be enumerated by the

Goulden-Jackson cluster method and its generating function can be calculated by the following theorem.

Theorem 3. The generating function of the (ℓJ, J,W)-SSW code for some positive integer ℓ is

g(x) =
1

1− |V|xJ − clusterB(xJ)
, (13)

where V = {0, 1}J , B = {b : b ∈ {0, 1}ℓJ and w([b]) < W}, clusterB(x) =
∑

b∈B clusterB(x|b),

clusterB(x|b) = −xℓ −
∑

b′∈B

∑

y∈O(b′,b)

xℓ−(‖y‖/J)clusterB(x|b
′), for all b ∈ B, (14)

and O(b′, b) is as in (12).

Proof: Since the (ℓJ, J,W)-SSW code is simply the language with alphabet V such that no bad

word in B is included, the Goulden-Jackson cluster method can be used directly. Also, since f(x) in (9)

enumerates the sequences from the alphabet V instead of the binary alphabet, the generating function of

(ℓJ, J,W)-SSW sequences can be computed as g(x) = f(xJ) which yields (13).

Hence, finding M
(ℓJ,J,W)
ssw (n) is equivalent to solving a linear system with |B| =

∑W−1
i=0

(

ℓJ
i

)

unknowns

in (14).

C. Goulden-Jackson Cluster Method with Good Words

Conceptually, the FSM approach in Section III-A enumerates the (L, J,W)-SSW sequences by listing

all legitimate sequences whereas the Goulden-Jackson cluster method enumerates the (ℓJ, J,W)-SSW

sequences by excluding all invalid ones. The efficiency of the Goulden-Jackson cluster method for

(ℓJ, J,W)-SSW sequences depends on the number of bad words. The linear system (14) is not easy

to solve when |B| =
∑W−1

i=0

(ℓJ
i

)

is large. Borrowing from the FSM approach, the Goulden-Jackson

cluster method with good words can be considered as an alternative, which computes the generating

function by enumerating all valid sequences. Ultimately, the Goulden-Jackson cluster method with good

words converges to the FSM approach as the following theorem shows, providing a further interpretation

of the Goulden-Jackson cluster method.

Theorem 4. To enumerate the (ℓJ, J,W)-SSW sequences for some positive integer ℓ, the FSM approach

is equivalent to the Goulden-Jackson cluster method for enumerating overlapped good words.

10

Proof: Let V = {0, 1}J and G be the set of good words, G = {0, 1}ℓJ \ B. Any (ℓJ, J,W)-SSW

sequence must be composed of consecutive good words and each good word must overlap with its

neighbors with (ℓ− 1)J bits. Hence, the generating function by Goulden-Jackson cluster method can be

derived as

f(x) = 1 + clusterG(x), (15)

where clusterG(x) =
∑

b∈G clusterG(x|b). Similar to (14), clusterG(x|b) for all b ∈ G can be obtained

by solving the following linear system

clusterG(x|b) = xℓ +
∑

b′∈G

∑

y∈OG(b′,b)

x · clusterG(x|b
′), for all b ∈ G, (16)

where

OG(b
′, b) ,

{

y : there exist y ∈ Vℓ−1,u and u′ ∈ V such that b′ = u′y and b = yu
}

.

Since the linear system in (16) can be rewritten in matrix form,

[

clusterG(x|b)
]

b∈G
= 1

Txℓ +B

′x
[

clusterG(x|b)
]

b∈G
,

which can be solved as
[

clusterG(x|b)
]

b∈G
=
[

I−B

′x
]−1

1xℓ. (17)

Combining (15) and (17),

g(x) = f(xJ) = 1 + 1

T
[

I−B

′xJ
]−1

1xℓJ ,

which coincides with (6) since B = B

′. Therefore, FSM enumeration can be interpreted as the Goulden-

Jackson cluster method for good words.

IV. REFINED ENUMERATION METHODS

The methods proposed in the previous section find the generating function with computational com-

plexity governed by the size of good word or bad word sets, which can be exceedingly large in most

practical cases. For example, to enumerate (40, 20, 20)-SSW sequences, the FSM approach must find

eigenvalues of the square matrix of size
∑40

i=20

(

40
i

)

≈ 6.2×1011 and the Goulden-Jackson method needs

to solve a linear system with
∑19

i=0

(40
i

)

≈ 4.8× 1011 unknowns. Here, we refine the methods of Section

III to reduce computational complexity. Just a heads-up, in the case of enumerating (40, 20, 20)-SSW

sequences, the refined FSM approach and the Goulden-Jackson method need to solve the linear systems

with at most 21 and 20 unknowns, respectively.

11

A. Refined Finite State Machine

Considering the FSM G(V, E) of the (ℓJ, J,W)-SSW code for some positive integer ℓ, each state

[b] = [b1 · · · bℓJ] ∈ V can be segmented into ℓ subblocks, i.e., [bk] = [b(k−1)J+1b(k−1)J+2 · · · bkJ] for

1 ≤ k ≤ ℓ. Let w([bk]) be the Hamming weight of the subblock [bk], which is

w([bk]) = w([b(k−1)J+1 · · · bkJ]), for all 1 ≤ k ≤ ℓ.

The following theorem shows that, for any two states [b] and [b′] in G(V, E) whose last ℓ− 1 subblocks

have the same Hamming weight, respectively, i.e. w([bk]) = w([b′k]) for all 2 ≤ k ≤ ℓ, their outgoing

edges are the same.

Lemma 2. Let G(V, E) be the FSM of the (ℓJ, J,W)-SSW code for some positive integer ℓ and let any

two states [b] and [b′] be in V . If w([bk]) = w([b′k]) for all 2 ≤ k ≤ ℓ, then both edges ([b], [b2 · · · bℓ y])

and
(

[b′], [b′2 · · · b
′
ℓ y]
)

are in E for all y ∈ {0, 1}J such that w(y) ≥ W − w([b]) + w([b1]).

Proof: Since both states [b2 · · · bℓ y] and [b′2 · · · b
′
ℓ y] have the same Hamming weight:

w([b2 · · · bℓy]) = w([b′2 · · · b
′
ℓy]) (18)

=

ℓ
∑

k=2

w([bk]) +w([y]) (19)

= w([b])− w([b1]) + w([y]) ≥ W, (20)

and both edges ([b], [b2 · · · bℓy]) and
(

[b′], [b′2 · · · b
′
ℓy]
)

are valid edges in E .

By Lemma 2, the size of G(V, E) can be reduced by grouping those states whose last ℓ− 1 subblocks

have the same Hamming weights, respectively. Let w = (w1, w2, . . . , wℓ−1) be a vector of ℓ−1 Hamming

weights and define R(w) as

R(w) ,
{

b = [b1 · · · bℓJ] : w([b]) ≥ W and w([bk]) = wk−1 for all 2 ≤ k ≤ ℓ
}

,

which is the set of all valid states in G(V, E) such that the Hamming weights of the last ℓ− 1 subblocks

equal w. The size of R(w), denoted as |R(w)|, is

|R(w)| =

[

ℓ−1
∏

k=1

(

J

wk

)

]

×

J
∑

i=W−
∑

ℓ−1
j=1 wj

(

J

i

)

 .

We further define the set

W ,

{

w : 0 ≤ wk ≤ min{J,W} for all 1 ≤ k ≤ ℓ− 1, and

ℓ−1
∑

i=1

wi ≥ W − J

}

,

which is the set of all valid Hamming weight vectors for (ℓJ, J,W)-SSW sequences. The following

theorem provides an efficient way to calculate the generating function (4).

12

���� ������

����

����

����

����

������

��

��

��

��

���

���

��

Fig. 6. Converting the FSM G of (4, 2, 3)-SSW code to its reduced FSM GR. The weights of edges in GR are given as

m([w,w′]) for all w,w′ ∈ W .

Theorem 5. The generating function of the (ℓJ, J,W)-SSW code for some positive integer ℓ is

g(x) = 1 +

∞
∑

k=ℓ

1

T
A

k−ℓ
R v × xkJ , (21)

where AR = [m(w,w′)](w,w′)∈W2 and m(w,w′) =
(

J
w′

ℓ

)

.

Proof: Any state in R(w) can transit to another state in R(w′) if wk = w′
k−1 for all 2 ≤ k ≤ ℓ− 1

and the edge can be represented as J bits with w′
ℓ ones. Therefore, we can construct the reduced FSM

GR(VR, ER) as

VR = {w : w ∈ W}

and

ER = {(w,w′) : w,w′ ∈ W and wk = w′
k−1 for all 2 ≤ k ≤ ℓ− 1}.

The weight of edge (w,w′) ∈ ER is m(w,w′) =
(J
w′

ℓ

)

, which denotes the total number of possible

transitions from vertex w to vertex w′. Let v be the column vector of |R(w)| for all w ∈ W , which is

v = [|R(w)|]w∈W ,

and let the adjacency matrix AR of GR(VR, ER) be

AR = [m(w,w′)](w,w′)∈W2 .

13

Then

M (ℓJ,J,W)
ssw (kJ) = 1

T
A

k−ℓ
R v, (22)

and the generating function can be derived as (21).

An example of converting the FSM of (4, 2, 3)-SSW code to its reduced FSM is given in Fig. 6, where

the reduced FSM is a weighted digraph. As shown, grouping all states in G(V, E) yields a reduced FSM

GR(VR, ER) with a size of |W|, which is at most min{J +1,W +1}ℓ−1. Hence, the GR(VR, ER) for the

(40, 20, 20)-SSW code has at most 21 states, a significant reduction compared to the 6.2 × 1011 states

for G(V, E). Further, using (22), the noiseless capacity for skip-sliding window codes can efficiently be

computed as

C(lJ,J,W)
ssw =

log2 λ
(

AR

)

J
, (23)

where λ
(

AR

)

is the largest positive eigenvalue of AR.

B. Refined Goulden-Jackson Cluster Method with Bad Words

Similar to the reduced FSM, we can apply the Goulden-Jackson cluster method to enumerate the

(ℓJ, J,W)-SSW sequences by considering only the Hamming weight of the subblocks of each window.

The following theorem refines Theorem 3.

Theorem 6. The generating function of the (ℓJ, J,W)-SSW code for some positive integer ℓ is

g(x) =
1

1− xJ
∑min{J,W−1}

i=0

(

J
i

)

− clusterB(xJ)
, (24)

where V =
{

0, 1, . . . ,min{J,W − 1}
}

, B =
{

w : w = w1 · · ·wℓ ∈ Vℓ−1 and
∑ℓ−1

i=1 wi < W
}

,

clusterB(x) =
∑

w∈B clusterB(x|w),

clusterB(x|w) = −xℓ

[

ℓ−1
∏

k=1

(

J

wk

)

]

×

W−
∑

ℓ−1
j=1 wj−1
∑

i=0

(

J

i

)

−
ℓ−1
∑

o=1

{

xℓ−o

[

ℓ−1
∏

k=o

(

J

wk

)

]

×

[W−
∑

ℓ−1
j=1 wj−1
∑

i=0

∑

w′∈O(i,o,w)

clusterB(x|w
′)

]}

, (25)

and

O(i, o,w) , {w′ : w′ ∈ B, w′
ℓ−o = i and w′

ℓ−o+k = wk for all 1 ≤ k ≤ o− 1}. (26)

Proof: Similar to Theorem 5, a bit sequence of length ℓJ can be divided into ℓ subblocks and the

Hamming weight of each subblock is at most min{J,W − 1} to be a valid (ℓJ, J,W)-SSW sequence.

Hence, the (ℓJ, J,W)-SSW code can be translated to be a language with alphabet V such that no sum

14

of ℓ consecutive weights is less than W . Since the number of binary sequences of length J whose total

Hamming weight is less than W is
∑min{J,W−1}

i=0

(J
i

)

, equation (9) can be replaced by (24).

As stated in the Goulden-Jackson cluster method, the clusterB(x) is the generating function of the

overlapped bad words and clusterB(x|w) denotes the generating function of those overlapped bad words

that end with a bad word corresponding to w ∈ B. It should be noted that, for each ℓ consecutive weights,

only the last ℓ−1 weights w1 · · ·wℓ−1 is used to denote the element in B since the first weight can be any

integer in
{

0, 1, . . . ,W −
∑ℓ−1

i=1 wi − 1
}

. The number of binary sequences that are bad words of length

ℓJ corresponding to w = w1 · · ·wℓ−1 ∈ B can be computed as
[

∏ℓ−1
k=1

(

J
wk

)

]

×
[

∑W−
∑

ℓ−1
j=1 wj−1

i=0

(

J
i

)

]

,

which is the coefficient of −xℓ in (25). We can further enumerate those binary sequences which are

overlapped by the bad words in the same way to derive the clusterB(x|w) as in (25).

Hence, the refined Goulden-Jackson cluster method can enumerate the (ℓJ, J,W)-SSW sequences by

solving (25) with |B| unknowns, where |B| ≤ min{J + 1,W}ℓ−1. For the example of (40, 20, 20)-SSW

sequences, the refined Goulden-Jackson cluster method can find the generating function by solving the

linear system with at most 20 unknowns, which is much smaller than the original 4.8× 1011 unknowns.

Since Theorem 4 shows the Goulden-Jackson cluster method for good words is an alternative inter-

pretation of the FSM approach, and since the derivation of the refinement is similar to that of the bad

words setting, it is omitted here.

V. PROPERTIES OF (L, J,W)-SSW CODES

In this section, we explore some properties of SSW codes. Let

C(L,J,W)
ssw (L+ kJ) ,

log2 M
(L,J,W)
ssw (L+ kJ)

L+ kJ
, (27)

and let S
(L,J,W)
ssw (L + kJ) be the set of all (L, J,W)-SSW sequences of length L + kJ . Two trivial

inequalities of the noiseless capacity are given as the following lemmas, which show that the noiseless

capacity increases as W decreases and the noiseless capacity decreases if the skip length J is multiplied

by a constant.

Lemma 3. Given positive integers L, J , W and W ′ such that L > J and L > W ≥ W ′ > 0,

C(L,J,W)
ssw ≤ C(L,J,W ′)

ssw . (28)

Proof: Since any sequence in (L, J,W)-SSW is also in (L, J,W ′)-SSW, C
(L,J,W)
ssw ≤ C

(L,J,W ′)
ssw .

Lemma 4. Given positive integers L, J , W and k such that L > kJ > 0,

C(L,kJ,W)
ssw ≥ C(L,J,W)

ssw . (29)

15

Proof: Since any sequence in (L, J,W)-SSW is also in (L, kJ,W)-SSW, C
(L,kJ,W)
ssw ≥ C

(L,J,W)
ssw .

We further examine finite blocklength properties in the noiseless case. The following lemma shows

the size of skip-sliding window codes can be upper-bounded by dividing into subblocks.

Lemma 5. Assume L = ℓJ for some integer ℓ > 0. Let k, h ∈ Z
+ such that h ≥ ℓ and k ≥ ℓ, then

M (L,J,W)
ssw ((h+ k)J) ≤ M (L,J,W)

ssw (hJ) ×M (L,J,W)
ssw (kJ), (30)

where equality holds if and only if L = J .

Proof: Let

S′ =
{

bb′ : b ∈ S(L,J,W)
ssw (hJ), b′ ∈ S(L,J,W)

ssw (kJ)
}

,

which is the set of all sequences which are the concatenations of any sequence in S
(L,J,W)
ssw (hJ) and any

sequence in S
(L,J,W)
ssw (kJ). Since S

(L,J,W)
ssw ((h+ k)J) ⊆ S′,

M (L,J,W)
ssw ((h+ k)J) ≤ |S′| (31)

= M (L,J,W)
ssw (hJ) ×M (L,J,W)

ssw (kJ). (32)

Since an (L, J,W)-SSW code reduces to an SEC code when L = J , the equality of (30) always holds

when L = J [7], [8]. Moreover, letting b = 1hJ−L+W0L−W and b′ = 0L−W 1(kJ−L+W , it is clear that

b ∈ S
(L,J,W)
ssw (hJ), b′ ∈ S

(L,J,W)
ssw (kJ), but bb′ /∈ S

(L,J,W)
ssw ((h+ k)J) when L > J . Hence the equality of

(30) holds if and only if L = J .

Lemma 5 provides a lower bound for M
(L,J,W)
ssw (hJ)×M

(L,J,W)
ssw (kJ). We further find an upper bound.

Lemma 6. Assume L = ℓJ for some integer ℓ > 0. Let h, k ∈ Z
+ such that h ≥ ℓ and k ≥ ℓ, then

M (L,J,W)
ssw ((h+ k)J + (L− J)) ≥ M (L,J,W)

ssw (hJ)×M (L,J,W)
ssw (kJ), (33)

where equality holds if and only if L = W .

Proof: Let

S′ =
{

b1L−Jb′ : b ∈ S(L,J,W)
ssw (hJ) and b′ ∈ S(L,J,W)

ssw (kJ)
}

,

Since S′ ⊆ S
(L,J,W)
ssw ((h+ k)J + (L− J)), we have

M (L,J,W)
ssw ((h+ k)J + (L− J)) ≥ |S′|

= M (L,J,W)
ssw (hJ)×M (L,J,W)

ssw (kJ). (34)

16

When L = W , it is trivial that the equality of (33) holds since both sides equal 1. However, when L > W ,

a binary sequence b = 1hJ01L−J−11kJ is in S
(L,J,W)
ssw ((h+ k)J + (L− J)) but not in S′. Hence the

equality of (33) holds if and only if L = W .

Let us consider the concatenation of subblocks with equal length. Lemmas 5 and 6 can be extended

to the following lemma.

Lemma 7. Assume L = ℓJ for some integer ℓ > 0. Let h ∈ Z
+ such that h ≥ ℓ, then

M (L,J,W)
ssw (khJ) ≤

[

M (L,J,W)
ssw (hJ)

]k
≤ M (L,J,W)

ssw

(

khJ + (k − 1)(L− J)
)

, (35)

for all integers k > 0. The left equality holds if and only if L = J and the right equality holds if and

only if L = W .

Proof: The proof is a direct extension of Lemmas 5 and 6.

To understand the properties of the noiseless capacity (3), we further investigate properties of the rate

as defined in (27) when L is a multiple of J . Based on Lemma 7, the following lemma provides a lower

bound and an upper bound on the rate.

Lemma 8. Assume L = ℓJ for some integer ℓ > 0. Let h ∈ Z
+ such that h ≥ ℓ, then

C(L,J,W)
ssw (khJ) ≤ C(L,J,W)

ssw (hJ) ≤
kh+ (k − 1)(ℓ− 1)

kh
C(L,J,W)
ssw

(

[

kh+ (k − 1)(ℓ− 1)
]

J
)

, (36)

for all integers k > 0. The left equality holds if and only if L = J and the right equality holds if and

only if L = W .

Proof: We first verify the left side of (36).

C(L,J,W)
ssw (khJ) =

log2 M
(L,J,W)
ssw (khJ)

khJ
(37)

≤
k log2 M

(L,J,W)
ssw (hJ)

khJ
(38)

=
log2 M

(L,J,W)
ssw (hJ)

hJ
(39)

= C(L,J,W)
ssw (hJ), (40)

where equality of (38) holds if and only if L = J . Hence the left side of of (36) is proven. The right

17

side of (36) is further verified as the following.

C(L,J,W)
ssw (khJ) =

1

khJ
log2 M

(L,J,W)
ssw (khJ) (41)

≤
1

khJ
log2 M

(L,J,W)
ssw

(

khJ + (k − 1)(L− J)
)

(42)

=
1

khJ
log2 M

(L,J,W)
ssw

(

[

kh+ (k − 1)(ℓ− 1)
]

J
)

(43)

=
kh+ (k − 1)(ℓ− 1)

kh
C(L,J,W)
ssw

(

[

kh+ (k − 1)(ℓ− 1)
]

J
)

, (44)

where equality of (42) holds if and only if L = W . Hence the right side of (36) is proven.

From Lemma 8, the left side of (36) indicates that the rate of SSW codes decreases when its length

is multiplied by a constant. Moreover, the right side of (36) implies that, when h ≫ k, the rate loss in

multiplying the length by k can be very small. The following lemma further shows that the rate of the

(L, J,W)-SSW code is lower-bounded by its capacity.

Lemma 9. Assume L = ℓJ for some integer ℓ > 0, then

C(L,J,W)
ssw (L+ kJ) ≥ C(L,J,W)

ssw , (45)

for all integers k ≥ 0. The equality of (45) holds if and only if L = J .

Proof: By Lemma 8,

C(L,J,W)
ssw (L+ kJ) ≥ C(L,J,W)

ssw (2(L+ kJ)) (46)

≥ lim
n→∞

C(L,J,W)
ssw (2n(L+ kJ)) (47)

= C(L,J,W)
ssw , (48)

where the equalities of (46) and (47) hold if and only if L = J .

The rate of convergence of C
(L,J,W)
ssw (L+ kJ) to C

(L,J,W)
ssw can be given as the following lemma.

Lemma 10. Let B be the matrix of size b × b associated to the (L, J,W)-SSW code. The rate of the

(L, J,W)-SSW code is upper-bounded as

C(L,J,W)
ssw (L+ kJ) < C(L,J,W)

ssw +
σb(k)

kJ
log2(2

b − 1) +
νb(k)

kJ
log2

(

(1B1)b

1B

b
1

)

(49)

for all k > 0, where

σb(k) =

1
2 (log2 k + 1) (log2 k + 2) for b = 2,

(b−1)3

(b−2)2 k
log2(b−1)

log2 b for b > 2,

(50)

νb(k) =

log2 k + 1 for b = 2,

(b−1)2

(b−2) k
log2(b−1)

log2 b for b > 2.

(51)

18

Proof: Let B be the transition matrix corresponding to the (L, J,W)-SSW code.

C(L,J,W)
ssw = lim

k→∞

log2 1
T
(

B

)k
1

L+ kJ
(52)

≥
log2 1

T
(

B

)k
1

kJ
−

σb(k)

kJ
log2(2

b − 1) +
νb(k)

kJ
log2

(

(1B1)b

1B

b
1

)

(53)

>
log2 1

T
(

B

)k
1

L+ kJ
−

σb(k)

kJ
log2(2

b − 1) +
νb(k)

kJ
log2

(

(1B1)b

1B

b
1

)

(54)

= C(L,J,W)
ssw (L+ kJ)−

σb(k)

kJ
log2(2

b − 1) +
νb(k)

kJ
log2

(

(1B1)b

1B

b
1

)

(55)

where inequality (53) is from [21, Thm. 1].

Based on Lemmas 8, 9, and 10, the rate of SSW codes seems to be non-increasing along the length

when L = ℓJ for some ℓ ∈ Z
+ and it converges to its capacity asymptotically; however, we have been

unable to prove this. We leave the non-increasing properties as the following conjecture.

Conjecture 1. Assume L = ℓJ for some integer ℓ > 0. Let h ∈ Z
+ such that h ≥ ℓ, then we conjecture

that the rate of the SSW code decreases if the length of the code is multiplied by a positive integer as

C(L,J,W)
ssw ((k + 1)hL) ≤ C(L,J,W)

ssw (khL), (56)

for all integers k > 0.

It should be noted that the conjecture is only stated for the case where L is a multiple of J . In fact,

the next section presents counterexamples where (56) does not hold when L 6= ℓJ .

Remark: The following stronger statement is not true, even when L = ℓJ . For all integers k ≥ 0

C(L,J,W)
ssw (L+ (k + 1)J) ≤ C(L,J,W)

ssw (L+ kJ). (57)

This can be seen from a counterexample, i.e., for k = 2, C
(10,5,9)
ssw (25) = 0.3293 > C

(10,5,9)
ssw (20) = 0.3292.

A. Numerical results

Here, some numerical computations are performed to give more insights into the performance of

(L, J,W)-SSW codes in the noiseless case. Moreover, some counterintuitive observations are made.

Fig. 7 compares the capacities and the rates of (6, J, 3)-SSW codes for different J , in which capacity is

plotted as dotted lines and rate is plotted as solid lines. Since an (L, J,W)-SSW code reduces to an SEC

code when L = J , the curve of J = 6 has a constant rate as a function of length because the rate of the

SEC code does not depend on length [7]. Some further remarks can be made from Fig. 7. First, higher

capacity can be achieved by lengthening the skip length J for (6, J, 3)-SSW codes, which coincides with

the intuition that shorter J will strengthen the sliding constraint and the stronger constraint should lower

19

10 20 30 40 50 60 70 80 90 100
k

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

C
ap

ac
it
ie
s
a
n
d
ra
te
s
o
f
(6
,J
,3
)-
S
S
W

co
d
e
o
f
le
n
g
th

6
+

k
J
. J = 6

J = 5

J = 4

J = 2

J = 1

J = 3

Fig. 7. The capacities and rates of (6, J, 3)-SSW codes for different J . Capacities are drawn with dotted lines and rates with

solid lines.

the size of the code. Second, the rates of (6, J, 3)-SSW codes seem to be non-increasing with length,

which provide support for the conjecture in the previous section.

The (8, J, 7)-SSW codes, however, have completely different performance properties from (6, J, 3)-

SSW codes. Similar to Fig. 7, Fig. 8 plots capacities and rates for (8, J, 7)-SSW codes. We list some

important points from Fig. 8 as follows. First, the rates of (8, J, 7)-SSW codes are no longer non-increasing

as a function of the length. The J = 5 and J = 3 curves show that their rates are non-increasing except

when K is close to 1. In particular, the curve for J = 7 even shows non-decreasing rate as a function

of the length. Due to this observation, the case of L 6= ℓJ has been ruled out from Conjecture 1.

Second, comparing the curves for J = 8 and J = 7, we surprisingly see that an (L, J,W)-SSW code

with a longer J does not guarantee a higher capacity, contrary to intuition. Fig. 1 had suggested that an

(L, J,W)-SSW code with a shorter J implies a stronger constraint is applied, which means the capacity

of the (L, J,W)-SSW code should be higher than the (L, J−1,W)-SSW code. However, this numerical

computation shows the contrary result and is useful in applications of SSW codes. For simultaneous

information and energy transmission, this observation implies that some SSW codes can have higher

capacity than SEC codes while also guaranteeing smoother energy transmission.

20

0 10 20 30 40 50 60 70 80 90
k

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

C
ap

ac
it
ie
s
a
n
d
ra
te
s
o
f
(8
,J
,7
)-
S
S
W

co
d
e
o
f
le
n
g
th

8
+
k
J

J = 3

J = 5

J = 8

J = 7

J = 1

Fig. 8. The capacities and rates of (8, J, 7)-SSW codes for different J . Capacities are drawn with dotted lines and rates with

solid lines.

VI. NOISY CAPACITY BOUNDS OF SKIP-SLIDING WINDOW CODES

In this section, we present bounds on the noisy capacity of binary SSW codes. In particular, we consider

binary symmetric channels (BSCs) and binary erasure channels (BECs).

We first discuss lower bounds on the noisy capacity. Let C
(L,J,W)
ssw,BSC(p) denote the capacity of SSW

codes over a BSC with crossover probability p. Then using Mrs. Gerber’s Lemma (MGL) [22], the noisy

channel capacity C
(L,J,W)
ssw,BSC(p) can be lower bounded as follows.

Lemma 11. We have

C
(L,J,W)
ssw,BSC(p) ≥ h(α ⋆ p)− h(p), (58)

where the binary operator ⋆ is defined as a⋆b , a(1− b)+(1−a)b, h(·) is the binary entropy function,

and α is chosen such that h(α) = C
(L,J,W)
ssw with 0 ≤ α ≤ 0.5. The bound (58) is tight for p → 0.

Proof: Let Xn
1 = (X1,X2, . . . ,Xn) denote a sequence satisfying the (L, J,W)-SSW constraint, and

let Y n
1 = (Y1, Y2, . . . , Yn) be the corresponding output from a BSC with crossover probability p. Then

C
(L,J,W)
ssw,BSC(p) = lim

n→∞
sup

Q(Xn
1)

H(Y n
1)−H(Y n

1 |Xn
1)

n
,

21

where the supremum is taken over all input probability distributions Q(Xn
1) of the sequences Xn

1

satisfying the (L, J,W)-SSW constraint (2). A lower bound on C
(L,J,W)
ssw,BSC(p) is obtained when Xn

1 is

uniformly distributed over the set of n-length sequences satisfying the (L, J,W)-SSW constraint. Thus,

for uniformly distributed Xn
1 , the constrained capacity over BSC can be lower bounded as follows.

C
(L,J,W)
ssw,BSC(p) ≥ lim

n→∞

H(Y n
1)

n
−

H(Y n
1 |Xn

1)

n

= lim
n→∞

H(Y n
1)

n
−H(Y1|X1)

= lim
n→∞

H(Y n
1)

n
− h(p). (59)

Now, the noiseless capacity C
(L,J,W)
ssw = h(α), denotes the entropy rate of a binary source which produces

sequences satisfying the (L, J,W)-SSW constraint, when the feasible input sequences are uniformly

distributed. When these constrained sequences are transmitted over a BSC with crossover probability p,

then using Mrs. Gerber’s Lemma (MGL), the output entropy rate is lower bounded as [23]

lim
n→∞

H(Y n
1)

n
≥ h(α ⋆ p), (60)

and we obtain (58) by combining (59) and (60). The tightness of the lower bound (58) follows as

lim
p→0

C
(L,J,W)
ssw,BSC(p) = h(α) = C(L,J,W)

ssw .

Let C
(L,J,W)
ssw,BEC(ǫ) denote the capacity of SSW codes over a BEC with erasure probability ǫ. Using

an extension of MGL for binary input symmetric channels [24], C
(L,J,W)
ssw,BEC(ǫ) can be lower bounded as

follows.

Lemma 12. We have

C
(L,J,W)
ssw,BEC(ǫ) ≥ (1− ǫ)C(L,J,W)

ssw , (61)

and this bound is tight for ǫ → 0.

Proof: Let Xn
1 = (X1,X2, . . . ,Xn) denote a sequence satisfying the (L, J,W)-SSW constraint, and

let Y n
1 = (Y1, Y2, . . . , Yn) be the corresponding output from a BEC with erasure probability ǫ. Then,

C
(L,J,W)
ssw,BEC(ǫ)

= lim
n→∞

sup
Q(Xn

1)

H(Y n
1)

n
−

H(Y n
1 |Xn

1)

n

= lim
n→∞

sup
Q(Xn

1)

H(Y n
1)

n
− h(ǫ),

22

where the supremum is taken over all input probability distributions Q(Xn
1) of the sequences Xn

1

satisfying the (L, J,W)-SSW constraint. When Xn
1 is uniformly distributed over the set of feasible

input sequences, we get

C
(L,J,W)
ssw,BEC(ǫ) ≥ lim

n→∞

H(Y n
1)

n
− h(ǫ), (62)

Now, the noiseless capacity C
(L,J,W)
ssw denotes the entropy rate of a binary source which produces se-

quences satisfying the (L, J,W)-SSW constraint, when feasible input sequences are uniformly distributed.

When these constrained sequences are transmitted over a BEC with erasure probability ǫ, then using an

extension of MGL for binary-input symmetric channels, the output entropy rate is lower bounded as [24]

lim
n→∞

H(Y n
1)

n
≥ (1− ǫ)C(L,J,W)

ssw + h(ǫ), (63)

and we obtain (61) by combining (62) and (63). The tightness of the bound follows as

lim
ǫ→0

C
(L,J,W)
ssw,BEC(ǫ) = C(L,J,W)

ssw .

Remark: The noiseless capacity provides a trivial upper bound on the capacity of noisy channels.

Therefore, Lemmma 11 (resp. Lemma 12) implies that if the noiseless capacity of two different SSW

codes satisfies C
(L1,J1,W1)
ssw > C

(L2,J2,W2)
ssw , then for sufficiently small crossover probability p (resp. erasure

probability ǫ), we have the inequality C
(L1,J1,W1)
ssw,BSC(p) > C

(L2,J2,W2)
ssw,BSC(p)

(

resp. C
(L1,J1,W1)
ssw,BEC(ǫ) > C

(L2,J2,W2)
ssw,BEC(ǫ)

)

.

Alternate lower bounds on the noisy capacity of skip-sliding window codes can be obtained using

a generic bound by Zehavi and Wolf [23, Lemma 4] on the noisy capacity of constrained sequences

generated by a Markov source. As shown in Sec. III-A, an (L, J,W)-SSW code can be represented via

a finite state machine (FSM). Thus, a source producing SSW constrained sequences can be modeled as

a stationary Markov source with non-zero probabilities associated with feasible state transitions in the

corresponding FSM.

As shown in Sec. III-A, a binary (L, J,W)-SSW code forms a FSM, in which J consecutive uses of the

channel can be viewed as a single use of a vector channel with super-letter input alphabet X = {0, 1}J

and super-letter output alphabet Y = {0, 1}J . Let S = {s1, s2, . . . , sk} be the set of k distinct states in a

FSM associated with the corresponding (L, J,W)-SSW code. For 1 ≤ i, j ≤ k, let qi,j be the probability

that FSM transitions to state sj , given that the current state is si. Let Q = [qi,j] denote the state-transition

probability matrix, and let xij be the super-letter symbol produced when FSM transitions from state si

to sj . Further, let Pr(S = si) denotes the steady-state probability that FSM will be in state si. Then the

capacity C
(L,J,W)
ssw,BSC(p) over BSC with crossover probability p is lower bounded as follows.

23

Lemma 13. We have

C
(L,J,W)
ssw,BSC(p) ≥ sup

Q

k
∑

i=1

Pr(S = si)
H(Y |S = si)

J
− h(p), (64)

where the conditional distribution for output super-letter Y , is given by

Pr(y|S = si) =

k
∑

j=1

qi,jPr(y|xij), 1 ≤ i ≤ k, xij ∈ X J ,y ∈ YJ

Pr(y|xij) = pd(y,xij)(1− p)J−d(y,xij), (65)

with X = Y = {0, 1} and d(y,xij) denotes the Hamming distance between super-letters y and xij .

Proof: For a given (L, J,W)-SSW constraint, consider the corresponding FSM with state space

S = {s1, s2, . . . , sk}. The transition probability from state si to state sj is qi,j . Let S denote the

previous state, and let S̃ denote the current state. When 2J -ary super-letters produced from this Markov

source are transmitted over a memoryless channel, then the super-letter capacity is lower bounded by

the conditional mutual information term [23, Lemma 4] supPr(S,S̃) I(Y , S̃|S). Because the super-letter

capacity corresponds to J uses of the channel, the scalar capacity per channel use can therefore be lower

bounded as follows.

C
(L,J,W)
ssw,BSC(p)

≥ sup
Pr(S,S̃)

I(Y , S̃|S)

J

= sup
Pr(S,S̃)

(

H(Y |S)

J
−

H(Y |S, S̃)

J

)

= sup
Q

k
∑

i=1

Pr(S = si)

H(Y |S = si)

J
−

k
∑

j=1

qi,j
H(Y |X = xij)

J

(i)
= sup

Q

k
∑

i=1

Pr(S = si)

H(Y |S = si)

J
−

k
∑

j=1

qi,j h(p)

= sup
Q

k
∑

i=1

Pr(S = si)
H(Y |S = si)

J
− h(p),

where (i) follows from the memoryless property of BSC.

Now, consider a BEC with input alphabet X = {0, 1}, output alphabet Y = {0, 1, e}, where e denotes

the erasure symbol and let the erasure probability be denoted ǫ. Then J consecutive uses of this BEC will

induce a vector-channel with input super-letter alphabet X J and output super-letter alphabet YJ . Further,

for 1 ≤ m ≤ J , let x
(m)
ij denote the m-th letter of super-letter xij ∈ X J with xij = (x

(1)
ij x

(2)
ij . . . x

(J)
ij).

24

Similarly, for y ∈ YJ , let y = (y(1)y(2) . . . y(J)). Then, for this induced vector channel, the probability

of receiving super-letter y ∈ YJ , given that super-letter xij ∈ X J is transmitted, is given by

Pr(y|xij) =

0, if y(m) 6= x
(m)
ij and y(m) 6= e, for 1 ≤ m ≤ J,

ǫty (1− ǫ)J−ty , otherwise,

(66)

where ty denotes the number of erasure symbols in output super-letter y. The following lemma provides

a lower bound to the capacity of (L, J,W)-SSW codes over BEC with erasure probability ǫ.

Lemma 14. We have

C
(L,J,W)
ssw,BEC(ǫ) ≥ sup

Q

k
∑

i=1

Pr(S = si)
H(Y |S = si)

J
− h(ǫ), (67)

where the distribution for output super-letter Y , given that the transmitted input super-letter is X = xij ,

is given by (66), and Pr(y|S = si) =
∑k

j=1 qi,j Pr(y|xij).

The proof of the above lemma follows using steps similar to those used in the proof of Lemma 13,

and is hence omitted.

We now provide upper bounds to the noisy capacity of (ℓJ, J,W)-SSW codes.

Lemma 15. We have

C
(ℓJ,J,W)
ssw,BSC(p) ≤ min

{

C(ℓJ,J,W)
ssw , C

(ℓJ,ℓJ,W)
ssw,BSC(p)

}

. (68)

Proof: The noisy capacity C
(ℓJ,J,W)
ssw,BSC(p) is obviously upper bounded by the noiseless capacity C

(ℓJ,J,W)
ssw .

Further, as every (ℓJ, J,W)-SSW sequence is also an (ℓJ, ℓJ,W)-SSW sequence, we have the inequality

C
(ℓJ,J,W)
ssw,BSC(p) ≤ C

(ℓJ,ℓJ,W)
ssw,BSC(p).

Note that C
(ℓJ,ℓJ,W)
ssw,BSC(p)

corresponds to the capacity of subblock energy-constrained (SEC) codes with

subblock length ℓJ and subblock weight at least W , over a BSC with crossover probability p. This

capacity term can numerically be computed for reasonable subblock lengths using the Blahut-Arimoto

algorithm [25], [26], by applying the super-letter approach for characterizing the capacity of SEC codes

over arbitrary discrete memoryless channels in [7].

Similar to Lemma 15, the following lemma provides an upper bound to the capacity of (ℓJ, J,W)-SSW

codes over BEC.

Lemma 16. We have

C
(ℓJ,J,W)
ssw,BEC(ǫ) ≤ min

{

C(ℓJ,J,W)
ssw , C

(ℓJ,ℓJ,W)
ssw,BEC(ǫ)

}

. (69)

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

BSC crossover probability, p

C
(3
,1
,2
)

ss
w
,
B
S
C
(p
)

Lower Bound: (51)
Lower Bound: (57)
Upper Bound: (61)

Fig. 9. Bounds on the noisy channel capacity of (3, 1, 2)-SSW codes over BSC.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

×10 -3

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405

0.41

BSC crossover probability, p

C
ap

ci
ty

ov
er

B
S
C
(p
)

Lower Bound of C
(8,7,7)

SSW,BSC(p)
: (51)

C
(8,8,7)

SSW,BSC(p)
(equivalent to SEC code)

Fig. 10. Comparison between the lower bound of C
(8,7,7)

ssw,BSC(p) and the exact C
(8,8,7)

ssw,BSC(p). The latter one is also an SEC code.

26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

BEC erasure probability, ǫ

C
(3
,1
,2
)

ss
w
,
B
E
C
(ǫ
)

Lower Bound: (54)
Lower Bound: (60)
Upper Bound: (62)

Fig. 11. Bounds on the noisy channel capacity of (3, 1, 2)-SSW codes over BEC.

A. Numerical Results

In this subsection, we plot bounds on the noisy channel capacity of SSW codes. Fig. 9 plots bounds

on capacity of (L, J,W)-SSW codes over a BSC with crossover probability p, for L = 3, J = 1, and

W = 2. The blue dotted line plots the lower bound on the noisy capacity given by (58), while the red line

depicts the lower bound given by (64). In this case, it is seen that the lower bound (64) is uniformly better

than the lower bound obtained using Mrs. Gerber’s Lemma (MGL) in (58). The black curve, providing

an upper bound on the capacity, is obtained using (68). Further, it is seen that the bounds are tight for

cases when p → 0 and p → 0.5.

We further examine the surprising observation from Fig. 8 that SSW codes may outperform SEC codes.

Fig. 10 compares the (8, 7, 7)-SSW code and (8, 8, 7)-SSW code over a BSC with a small crossover

probability (0 ≤ p ≤ 0.005). Here, the SEC capacity C
(8,8,7)
ssw,BSC(p) is numerically computed [7] using the

Blahut-Arimoto algorithm. For the (8, 7, 7)-SSW code, the capacity lower bound is plotted using (58).

It can be seen that the noisy capacity of SSW codes may be larger than that of SEC codes when p is

small, just like the noiseless case.

Fig. 11 plots bounds on capacity of (3, 1, 2)-SSW codes over a BEC with erasure probability ǫ. The

27

lower bounds on the capacity are given by (61) and (67), while the upper bound is obtained using (69).

In this case, it is observed that the two lower bounds coincide, and the bounds become tight for ǫ → 0

and ǫ → 1.

VII. CONCLUSION

This paper proposed a new kind of constrained code, the skip-sliding window code, which is po-

tentially useful in diverse applications. Efficient enumeration methods were proposed to calculate its

noiseless capacity and properties were discussed. Numerical results showed counterintuitive performance

characterizations, such as the fact there can be skip-sliding window codes that outperform subblock-

energy constraint codes [7], [8] in both the capacity and the smoothness of energy transmission in

simultaneous information and energy transmission. Based on the numerical results, a conjecture on the

noiseless capacity was also raised. With the help of noiseless capacity results, some noisy capacity bounds

were further investigated; counterintuitive ordering of performance still holds.

REFERENCES

[1] K. A. S. Immink, “Runlength-limited sequences,” Proceedings of the IEEE, vol. 78, no. 11, pp. 1745–1759, Nov. 1990.

[2] ——, Codes for Mass Data Storage Systems. Shannon Foundation Publisher, 2004.

[3] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang, “Energy harvesting wireless communications:

a review of recent advances,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 360–381, Mar. 2015.

[4] E. Rosnes, Á. I. Barbero, and Ø. Ytrehus, “Coding for inductively coupled channels,” IEEE Transactions on Information

Theory, vol. 58, no. 8, pp. 5418–5436, Aug. 2012.

[5] A. M. Fouladgar, O. Simeone, and E. Erkip, “Constrained codes for joint energy and information transfer,” IEEE

Transactions on Communications, vol. 62, no. 6, pp. 2121–2131, Jun. 2014.

[6] A. Tandon, M. Motani, and L. R. Varshney, “On code design for simultaneous energy and information transfer,” in

Proceedings of the 2014 Information Theory and Applications Workshop, Feb. 2014.

[7] ——, “Subblock-constrained codes for real-time simultaneous energy and information transfer,” IEEE Transactions on

Information Theory, vol. 62, no. 7, pp. 4212–4227, Jul. 2016.

[8] A. Tandon, H. M. Kiah, and M. Motani, “Binary subblock energy-constrained codes: Bounds on code size and asymptotic

rate,” in Proceedings of the 2017 IEEE International Symposium on Information Theory, Jun. 2017, pp. 1480–1484.

[9] G. Cohen, P. Solé, and A. Tchamkerten, “Heavy weight codes,” in Proceedings of the 2010 IEEE International Symposium

on Information Theory, Jun. 2010, pp. 1120–1124.

[10] C. Bachoc, V. Chandar, G. Cohen, P. Solé, and A. Tchamkerten, “On bounded weight codes,” IEEE Transactions on

Information Theory, vol. 57, no. 10, pp. 6780–6787, Jul. 2011.

[11] P. E. C. Compeau, P. A. Pevzner, and G. Tesler, “How to apply de Bruijn graphs to genome assembly,” Nature Biotechnology,

vol. 29, no. 11, pp. 987–991, Nov. 2011.

[12] N. G. De Bruijn, “A combinatorial problem,” Proceedings of the Section of Sciences, vol. 49, no. 7, pp. 758–764, Jun.

1946.

[13] N. Beldiceanu and S. Demassey, “Sliding time window sum,” Jan. 2010.

28

[14] P. V. Salimov, “On Rauzy graph sequences of infinite words,” Journal of Applied and Industrial Mathematics, vol. 4, no. 1,

pp. 127–135, Jan. 2010.

[15] M. Rigo, Formal Languages, Automata and Numeration Systems. New York: John Wiley & Sons, 2014.

[16] W.-J. van Hoeve et al., “Revisiting the sequence constraint,” in Proceedings of the 2006 International Conference on

Principles and Practice of Constraint Programming, Sep. 2006, pp. 620–634.

[17] K. R. Apt, Principles of Constraint Programming. Cambridge: Cambridge University Press, 2003.

[18] I. P. Goulden and D. M. Jackson, “An inversion theorem for cluster decompositions of sequences with distinguished

subsequences,” Journal of the London Mathematical Society, vol. 2, no. 3, pp. 567–576, Dec. 1979.

[19] R. P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and More. New York: Springer-Verlag, 2013.

[20] B. Marcus, R. Roth, and P. Siegel, “Introduction to coding for constrained systems,” Oct. 2001. [Online]. Available:

http://www.math.ubc.ca/%7Emarcus/Handbook/

[21] V. Kozyakin, “On accuracy of approximation of the spectral radius by the Gelfand formula,” Linear Algebra and its

Applications, vol. 431, no. 11, pp. 2134–2141, Nov. 2009.

[22] A. D. Wyner and J. Ziv, “A theorem on the entropy of certain binary sequences and applications–I,” IEEE Transactions

on Information Theory, vol. IT-19, no. 6, pp. 769–772, Nov. 1973.

[23] E. Zehavi and J. K. Wolf, “On runlength codes,” IEEE Transactions on Information Theory, vol. 34, no. 1, pp. 45–54,

1988.

[24] N. Chayat and S. Shamai, “Extension of an entropy property for binary input memoryless symmetric channels,” IEEE

Transactions on Information Theory, vol. 35, no. 5, pp. 1077–1079, Sept. 1989.

[25] R. E. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE Transactions on Information Theory,

vol. IT-18, no. 4, pp. 460–473, Jul. 1972.

[26] S. Arimoto, “An algorithm for computing the capacity of arbitrary discrete memoryless channels,” IEEE Transactions on

Information Theory, vol. IT-18, no. 1, pp. 14–20, Jan. 1972.

http://www.math.ubc.ca/%7Emarcus/Handbook/

	I Introduction
	II Skip-Sliding Window Codes
	III Enumeration Methods
	III-A Finite State Machine
	III-B Goulden-Jackson Cluster Method with Bad Words
	III-C Goulden-Jackson Cluster Method with Good Words

	IV Refined Enumeration Methods
	IV-A Refined Finite State Machine
	IV-B Refined Goulden-Jackson Cluster Method with Bad Words

	V Properties of (L,J,W)-SSW codes
	V-A Numerical results

	VI Noisy Capacity bounds of Skip-Sliding Window Codes
	VI-A Numerical Results

	VII Conclusion
	References

