
ar
X

iv
:1

80
6.

10
25

0v
1 

 [
cs

.I
T

] 
 2

6 
Ju

n 
20

18

Hierarchical Coded Computation

Nuwan Ferdinand and Stark C. Draper

Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada

Email:{nuwan.ferdinand and stark.draper}@utoronto.ca

Abstract—Coded computation is a method to mitigate “strag-
glers” in distributed computing systems through the use of error
correction coding that has lately received significant attention.
First used in vector-matrix multiplication, the range of appli-
cation was later extended to include matrix-matrix multipli-
cation, heterogeneous networks, convolution, and approximate
computing. A drawback to previous results is they completely
ignore work completed by stragglers. While stragglers are slower
compute nodes, in many settings the amount of work completed
by stragglers can be non-negligible. Thus, in this work, we
propose a hierarchical coded computation method that exploits
the work completed by all compute nodes. We partition each
node’s computation into layers of sub-computations such that
each layer can be treated as (distinct) erasure channel. We then
design different erasure codes for each layer so that all layers
have the same failure exponent. We propose design guidelines to
optimize parameters of such codes. Numerical results show the
proposed scheme has an improvement of a factor of 1.5 in the
expected finishing time compared to previous work.

I. INTRODUCTION

In cloud-based distributed computing systems slow working

nodes, known as stragglers, are a bottleneck that can prevent

the realization of faster compute times [1]. Although stragglers

cannot be completely eliminated, recent results show that

their effect can be minimized through the effective use of

error correction codes [2]–[8]. The foundational concept is

to introduce redundant computations (additional workers are

needed) such that the completion of any fixed-cardinality

subset of jobs suffices to realize the desired solution. The

idea is easily illustrated through an example [2] of vector-

matrix multiplication; the computation of Ax. In this example

the distributed system consists of three workers and a master

node. The master vertically decomposes the matrix A into two

sub-matrices A1, A2 so A “ rA1;A2s. It next delegates the

following tasks to three workers: the first worker computes

A1x, the second A2x, and the third pA1 ` A2qx. One can

trivially note that outputs of any two completed workers are

enough for the master to recover the output. The reader may

also observe the use of a (3,2) MDS (maximum distance

separable) code. One might further note that the linearity of

the vector-matrix computation is important as it dovetails with

the linearity of MDS codes.

The example above is from [2], the first work on coded

computation which discusses vector-matrix multiplication. In

that paper the authors show that latency can be reduced

significantly through the use of MDS codes. The ideas were

extended to matrix-matrix multiplication based on product

codes in [3]. Techniques of vector-matrix multiplication are ex-
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Fig. 1. Histogram: number of completed gradient steps vs percentage of
workers. Using Amazon EC2 cloud, 20 machines were given 35 secs to
repeatedly compute stochastic gradient steps of a problem of dimension 103.
Number of computed gradient steps were counted to find the histogram.

tended in [4] to heterogeneous networks where compute nodes

have distinct processing powers. In [5], we proposed anytime

coded computation, which significantly reduces the latency

through approximate computing, an approach later extended to

sequential approximation in [9]. All the above works are based

on MDS codes (or product code). They use n workers and

the statistic of interest is whether any k ď n workers finish.

Hence, the analysis is based on order statistics. A drawback

of all these methods is that they ignore completely work

done by the slowest n ´ k workers. In the case of persistent

stragglers—workers that are permanently unavailable—these

nodes complete no work. However, in cloud base systems, we

rarely experience such persistent stragglers. Rather we observe

non-persistent stragglers. Such stragglers are slower, only able

to complete partial computation by the time at which the faster

workers have completed all their computations. However, in

many cloud computing system, the amount of work completed

by non-persistent stragglers is non-negligible, thus is wasteful

to ignore. We use empirical results form Amazon’s elastic

compute cloud (EC2) to illustrate this point. We gave 20 work-

ers 35 secs to compute stochastic gradient steps for a linear

regression problem of dimension 103. The histogram of the

number of gradient steps computed vs. percentage of workers

http://arxiv.org/abs/1806.10250v1


is shown in Fig. 1. While the majority of workers were able to

finish 23, 500´ 26, 000 stochastic gradient steps, a significant

portion of the workers finished between 18, 000 ´ 23, 000. If

we classify the latter as non-persistent stragglers, we ignore a

significant amount of work. It is the goal of this paper to find

a way to exploit that partial work.

In this paper, we propose a hierarchical coding scheme

to exploit the work completed by all compute nodes. We

do this by exploiting the “sequential” computing nature of

each worker. We partition the total computation required of

each worker into layers of sub-computations. Workers process

layers sequentially. Due to this sequential processing, each

layer has a different finishing time. I.e, a processor will start

to work on the second layer after it finishes the first layer.

Therefore, the finishing time of the first layer is lower than that

of the second layer. Drawing a parallel with channel coding,

the different finishing times of layers create distinct erasure

channels. Thus, we encode each layer (or sub-computations)

using MDS codes with different rates such that finishing

times of all layers are approximately the same. We derive

an analytical solution to guide the code design to use at

each layer. We show that our method outperforms the earlier

approaches.

II. HIERARCHICAL CODED COMPUTATION

Consider a distributed computing system consists of a

master and n workers. The goal of the master is to compute

a job gpxq where x is the input. We assume that gpxq can

be decomposed into k tasks, i.e., g “ φpg1pxq, . . . gkpxqq.

The function φp¨q maps the set of tasks tgipxqu to the job

gpxq. We assume that tasks are linear, i.e., agipxq ` bgjpxq “
pagi ` bgjqpxq. One example is vector-matrix multiplication

gpxq “ Ax. The i-th task here is gipxq “ Aix where Ai is

the i-th row decomposed sub-matrix of A. In this example

φp¨q simply concatenates the results. Note that in comparison

to [2], we decompose the job into a large number of smaller

tasks, i.e., k ą n.

In our approach the master clusters the k tasks into r sets

where the j-th set contains kj tasks. For now, assume that

0 ď kj ď n. We later detail a procedure to optimize the

choice of the kj . We denote the j-th set by gjpxq. Note that

r
ÿ

j“1

kj “ k.

We denote the i-th task of the j-th set as g
j
i pxq where j P rrs

and i P rkjs. Note that we use the notation rrs “ t1, . . . ru
throughout. The master encodes each set gjpxq with a length-

n MDS code. For the j-th set it uses an pn, kjq MDS code to

generate

hj “ Ejpgjpxqq (1)

where Ej encodes gjpxq “ rgj
1
pxq, . . . gjkj

pxqs into hj “

rhj
1
, . . . hj

ns. We refer hj as j-th layer. The output length

(number of encoded tasks) of each encoded layer is equal to

1 2 n

1 k1 n ´ k1

2 k2 n ´ k2

3 k3 n ´ k3

j kj n ´ kj

r ´ 1 kr´1 n ´ kr´1

r kr n ´ kr
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Fig. 2. Tasks allocation to workers. The blue area shows the length of uncoded
tasks for different blocks. The red area shows the redundant parity tasks from
encoding process. Note that this shows systematic MDS structure, however,
it is not necessary.

n. Note that total number of encoded tasks is nr as we have

r layers.

Next, the master allocates r encoded tasks to each worker.

The i-th worker gets h1

i , h
2

i , . . . h
r
i . It sequentially computes

these tasks and, when each tasks is complete, transmits the

result to the master. That is, the i-th worker first computes

h1

i , transmits the result to the master. It then computes h2

i ,

transmits the results to master, and so on. The tasks allocation

is shown in Fig. 2. Note that we intentionally let kj´1 ě kj in

Fig. 2. The rational for this is as follows. All compute nodes

initially work on the first layer h1

i , i P rns. They then transmit

their results to the master. They next work on h2

i , and so

forth. Due to the sequential processing nature of the compute

nodes, the i-th worker finishes h
j´1

i before it finishes h
j
i .

Therefore, for any given amount of compute time, each layer

has a different probability of finishing. We can conceive of

these layers as parallel and independent erasure channels. The

top layers are better channels (lower probability of erasure)

than the later ones. Thus, we need to allocate less protection

for the top layers (we use a higher-rate MDS code) and use

more protection (we use a lower-rate MDS code) for the lower

layers.

The master sequentially receives the results of the tasks from

each worker. To recover the j-th layer and compute gjpxq it

needs to receive at least kj finished tasks. From any such set

it can decode to recover gjpxq via

gjpxq “ Djphj
Sj

q (2)

where h
j
Sj

Ă thj
1
, . . . hj

nu denotes a subset of any kj tasks.

The decoding function Dj maps h
j
Sj

to the gjpxq. Once the

master has recovered all the layers, it can obtain the final result

gpxq.

Remark 1: In this work, each worker sends result of each

task to the master before starting to work on the next task.

Thus, the outputs of slower workers will also be used. E.g.,

We want at least k1 workers to finish the first layer but only

need k2 ď k1 workers to finish the second layer.



III. FINISHING TIME DISTRIBUTION

In this section, we determine the finishing time distribution

of our proposed scheme as a function of k1, . . . kr. We then

describe a method to optimize the parameters kjs to maximize

the probability of finishing the job for a given time.

A. Finishing time distribution

The job is complete when each of the r layers completes.

For layer j to complete at least kj of the layer-j tasks must

complete. In the following we determine the distribution of at

least the minimal number of tasks completing for every layer.

We call this the “finishing time”. Before deriving the distribu-

tion of the finishing time, we make certain assumptions, the

same as were made in [2].

Let Fsptq be the probability that a worker is able to finish

s tasks by time t, let

Fs ptq “

#

1 ´ e´µp t
s

´αq, if t ě sα

0 else
, (3)

where µ and α are constants. All workers are assumed to have

independent and identical finishing time distributions. Let τ be

the finishing time (i.e., at least kj subtasks finish in every layer

j P rrs) at which point the job gpxq can be recovered. The

following theorem specifies the distribution of the finishing

time.

Theorem 1: Assuming k1 ě k2, . . . ,ě kr, the distribution

of τ is

Prpτ ď tq “
n

ÿ

m1“k1

m1
ÿ

m2“k2

. . .

mr´1
ÿ

mr“kr

(4)

r
ź

s“0

ˆ

ms

ms`1

˙

pFsptq ´ Fs`1ptqq
ms´ms`1

where m0 “ n, mr`1 “ 0, F0ptq “ 1, and Fr`1ptq “ 0.

Proof: The detailed proof will be given in the extension of

this paper. The proof intuition is as follows. On trivially valid

observation is that a worker cannot already have completed s

tasks but not u ď s tasks. Furthermore, we make the following

assumptions. Let Ti be a random variable that denotes the

completion time of a single task by the i-th worker. As in

the previous work, we assume linear scaling of the processing

time, i.e., if Ti is the processing time of single tasks, 2Ti is

the processing time of two equivalent sized tasks. Thus sTi

is the time it takes the ith worker to finish s tasks, then the

probability that the ith worker finishes s tasks by time t is

equal to PrpTi ď t{sq “ Fsptq.

In order for the master to complete the job, m1 out of n

workers have to finish the first task by time t (where k1 ď
m1 ď n). Out of these m1 workers, m2 must also complete

the second task (where k2 ď m2 ď m1), and so on. Generally

mj workers must complete the first the jth task where kj ď
mj ď mj´1 for all j P rrs. Now we translate this scenario to

time distribution. By time t we need n´m1 workers’ finishing

times to be greater than t, m1´m2 workers’ finishing times to

be between t{2 and t, m2 ´m3 workers’ finishing times to be

between t{3 and t{2, and on until mr´1´mr workers finishing

times are between t{r and t{pr ´ 1q. The final mr workers’

finishing times must all be less than t{r. This completes the

proof sketch.

B. Optimal encoding parameters

Now we find the k1, . . . kr that maximize the probability

of finishing the job by time t. This can be formulated as and

integer optimization:

max
k1, . . . kr

Prpτ ď tq

s.t.
r

ÿ

j“1

kj “ k,

kj ě ki, @j ě i,

kj ď n, @j P rrs,

kj P Z
`, @j P rrs.

(5)

Integer optimization problems are combinatorial in nature and

therefore hard to solve for large-scale problems. To solve

moderately-sized problems through (slightly smarter) exhaus-

tive search one can impose the following constraint to limit

the search space: kj ě ki,@j ď i. This constraint is not active

due to the fact that initial layers will be finished faster than

the later layers (due to the sequential processing nature of

the compute nodes) and therefore require less protection. In

the next sub-section, we propose an alternative method to find

sub-optimal k1 . . . kr quickly.

Remark 2: Note that the optimal solution set varies with t.

IV. ASYMPTOTIC ANALYSIS

The alternative method to selecting the k1 . . . kr that we

outline in this section is first to find the probability that tasks

were not complete by time t, i.e., Prpτ ą tq. We call this the

probability of failure by time t. We then derive an asymptotic

failure probability for large t. We find k1, . . . , kr that minimize

leading coefficient of asymptotic Prpτ ą tq. This optimization

problem can be formulated as an integer linear program, which

can be readily solved. The following theorem describes the

asymptotic distribution:

Theorem 2: For large t,

Prpτ ą tq “ max
jPrrs

"ˆ

n

kj ´ 1

˙

e´
µpn´kj`1qt

j

*

. (6)

Proof: The proof will be given in the extension of this paper.

The failure probability is governed by the smallest coeffi-

cient of the failure exponent. We want to choose the k1, . . . kr
to minimizes (6), which is equivalent to maximizing the

smallest coefficient of the failure exponent1. Before solving

this problem, we provide following corollary, which gives the

smallest coefficient.

Corollary 3:

lim
tÑ8

´ logpPrpτ ą tqq

t
“ min

jPrrs

"

µpn ´ kj ` 1q

j

*

. (7)

1Note that the constant term is negligible when t Ñ 8



We are now ready to state the optimization problem:

max
k1, . . . kr

min
jPrrs

"

pn ´ kj ` 1q

j

*

s.t.

r
ÿ

j“1

kj “ k,

kj ě ki, @j ě i,

kj ď n, @j P rrs,

kj P Z
`, @j P rrs

(8)

We can transform above optimization problem to a linear

program as

max z

s.t.
r

ÿ

j“1

kj “ k,

z ď
pn ´ kj ` 1q

j
, @j P rrs,

kj ě ki, @j ě i,

kj ď n, @j P rrs,

kj P Z
`, @j P rrs

(9)

This is a linear program with integer constraints on the kj . By

relaxing the integer constraint we get a linear program.

Robustifying to persistent stragglers: The finishing time

distribution of practical cloud computing systems may have a

long tail due to persistent stragglers. The shifted exponential

model we considered in above does not reflect this behavior.

Thus, kj “ n is a possible solution to (9). To robustify the

solution to the possible presence of persistent stragglers we

change the optimization problem in (9) to

max z

s.t.
r

ÿ

j“1

kj “ k,

z ď
pn ´ kj ` 1q

j
, @j P rrs,

kj ě ki, @j ě i,

kj ď n ´ S, @j P rrs,

kj P Z
`, @j P rrs.

(10)

This yields a solution that is robust up to S stragglers.

V. EVALUATION

In this section, through application of (9), we evaluate

the probability of failure, expected finishing time, and the

leading coefficient of the failure exponent. We compare our

result to those of [2] and to uncoded computation. For a fair

comparison, we fix the number of workers in all schemes and

each worker is given same computation load. If we assume

that the computation load of the job gpxq is Opγq, then in our

scheme, each task has a computation load of Opγ{kq as the

job is divided into k tasks. As each worker gets r tasks, the

computation load of each worker is Opγr{kq. We can get the
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Fig. 3. Failure probability vs time. We used the following values: n “ 20,
k “ 100, µ “ 0.1, and α “ 0.01, r “ 10, k1 “ 19, k2 “ 17, k3 “ 15,
k4 “ 13, k5 “ 11, k6 “ 9, k7 “ 7, k8 “ 5, k9 “ 3, and k10 “ 1.

same computation load in [2] by dividing the job gpxq into k{r
tasks such that computation load of each worker is Opγr{kq.

Thus, we use pn, k{rq MDS code for [2] in simulations.

A. Probability of failure and expected finishing time

We fixed the number of workers to be n “ 20. We used (9)

to find the kjs for various r and picked the r that maximizes z

in (9). Fig. 3 plots the failure probability vs time. The solution

set to (9) is provided in the caption. At a failure probability of

10´4, we observe 0.8 secs speed up compared to [2]. This is

equivalent to a 42% improvement. We included Monte Carlo

simulations to corroborate the analytical results.

Fig. 4 illustrates the expected finishing time vs the number

of tasks. For all values of k, our scheme has a 1.5 factor

improvement in expected time. Note that the selection of the

solution set k1, . . . kr is based on the failure exponent. Thus,

it is not necessary the solution set that minimize the expected

time. We expect further improvement in finishing time if we

were to optimize to minimize the expected finishing time.

B. Failure exponent comparison

In this section we compare the leading coefficients of the

failure probability exponents. Let k˚
1
. . . k˚

r be the solution to

(9). Then, the leading coefficient L of our hierarchical coded

computation is

L “ min
jPrrs

"

µpn ´ k˚
j ` 1q

j

*

. (11)

As discussed at the beginning of this section, we used as

pn, k{rq MDS code for [2] to get a fair comparison. Let τp be

the finishing time of the pn, k{rq coded computation scheme

from [2]. Then, the leading coefficient Lp of failure exponent

[2] is given by

Lp “ lim
tÑ8

´ logpPrpτp ą tqq

t
“

µpn ´ k{r ` 1q

r
. (12)
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In Fig. 5 we compare L and Lp for different values of

k. When k ď n{2 “ 10 both schemes have same leading

coefficients. This is expected as when there are a small number

of subtasks, there is no flexibility to exploit by coding across

layers. However, our proposed hierarchical coded computation

outperforms [2] for k ě n{2. We also plot the leading

coefficient of the uncoded scheme, which is Lu “ µn{k for

k{n P Z. In order to quantify the gain, we plot the ratio L{Lp

in Fig. 6. We observe a 1.8 improvement factor in hierarchical

coded computation, when compared to coded computation [2].

C. Complexity

In [2], the decoding complexity is mainly contributed by

inverting a k{r ˆ k{r matrix. In our case, we have to decode

r independent MDS codes, which can be done in parallel.

As k1 ě kj , j P t2, . . . ru by design, the complexity of our

method is governed by inverting a k1 ˆ k1 matrix. As k1 ě
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Fig. 6. Ratio of leading coefficients of the failure exponents (L{Lp).

k{r, we have slightly higher complexity when compared to

[2]. However, note that the complexity remains lower than the

number of workers as k1 ď n.

VI. CONCLUSION AND FUTURE EXTENSIONS

Our proposed hierarchical coded computation scheme can

be used in any situation where coded computation [2] can

be used, and at a lower latency. Numerical results show a

1.5 factor improvement in the expected computation latency.

Furthermore, the hierarchical coded computation provides ad-

ditional benefits in a range of other applications including non

linear functions with linear components, sequentially ordered

tasks where the master needs to output tasks sequentially, and

approximate computing where some tasks have greater impact.
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