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Abstract—We consider the problem of how to determine a
fair source coding rate allocation method for the lossless data
compression problem in multiterminal networks, e.g, the wireless
sensor network where there are a large number of sources
to be encoded. We model this problem by a game-theoretic
approach and present a decomposition method for obtaining the
Shapley value, a fair source coding rate vector in the Slepian-
Wolf achievable region. We formulate a coalitional game model
where the entropy function quantifies the cost incurred due
to the source coding rates in each coalition. In the typical
case for which the game is decomposable, we show that the
Shapley value can be obtained separately for each subgame.
The complexity of this decomposition method is determined by
the maximum size of subgames, which is strictly smaller than
the total number of sources and contributes to a considerable
reduction in computational complexity. Experiments demonstrate
large complexity reduction when the number of sources becomes
large.

Index Terms—Coalitional game, data compression, decompos-
able game, polymatroid, Shapley value, submodularity.

I. INTRODUCTION

In wireless communications, we usually discuss how to

transmit the messages in the most efficient way and many

studies deal with the problem of collecting and forwarding

information from a random source to the sink or destination

with the minimum cost, e.g., [1], [2]. For multiple random

sources, which are correlated in general, using the minimal

code length to describe the sources with the least information

loss is referred to as the data compression, or source coding,

problem [3]. While the authors in [4], [5] derived the Slepian-

Wolf (SW) constraints (lower bounds) that describe the achiev-

able source coding rate region, they also stated that the lossless

data compression can be attained without interactive commu-

nications between the sources, i.e., the individual sources can

be encoded in a lossless manner without the knowledge of

others. This allows the information theoretic results on source

coding problems to be applied to multiterminal networks, e.g.,

peer-to-peer (P2P) networks.

The typical examples of the multiterminal source coding

problem are the coded cooperative data exchange (CCDE)

problem [2], [6], where the sources are mobile clients, and

the distributed source coding problem over a wireless sensor

network (WSN) [1], [7]. Take a WSN for example. We usually

have a cluster, or group, of sensor nodes scattered in one area

and one of them is served as the cluster header to collect the

cluster header

sensor node

sink node

Fig. 1. Wireless sensor network: A group of sensor nodes measure some
features in a region. Sensors form clusters with one in each cluster serving as
the cluster header to forward the measurements to a sink node. The cluster
headers may or may not be connected.

measurements and forward to a sink node or base station. See

Fig. 1. Such a WSN poses a two-layer multiterminal source

coding problem: sensors-to-cluster header and cluster headers-

to-base station, which is usually solved in a distributed manner,

e.g., [8].

Multiterminal data compression usually refers to the case of

more than two data sources. In some cases, such as for a WSN,

there are a large number of sources to be encoded. Importantly,

it was pointed out in [9], [10] that all source coding rates for

the lossless multiterminal data compression constitute the core

of a coalitional game and the core can be very large. For the

problem of how to select a solution in the core, the fairness

is usually considered in multiterminal networks such that the

users are equally privileged, e.g., CCDE and WSN.1 While the

fair source coding schemes for the two terminals case were

proposed in [12], [13] for a WSN, the question remains as to

how to allocate the source coding rates fairly when the number

of terminals becomes large. The authors in [10] proposed a

fairness solution by the Shapley value. But, the exponentially

growing complexity of obtaining such a value imposes huge

computation burden in large scale systems.

This paper addresses the problem of fairness in the multi-

terminal data compression problem from a coalitional game-

theoretic point of view. We propose a decomposition method

for obtaining the Shapley value [14], a fair source coding rate

vector in the core. We first convert the SW lower bounds

1A fair source coding scheme also evens out the battery power consumption
of sensors, which prolongs the lifetime of a WSN: The lifetime is usually
defined as the time to which the first sensor node runs out of battery power
[11].
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to upper bounds, based on which a coalitional game model

is formulated with the entropy function quantifying the cost

incurred due to the source coding rates in each coalition. The

submodularity of the entropy function ensures the convexity

of the game and also ensures that the core, or the achievable

rate vector set for the lossless data compression, is nonempty.

We then explain the incentive for the users to cooperate: The

users pay the least cost only if they cooperatively encode

the multiple sources. We show that, in the common case that

the game can be decomposed into a group of subgames, the

Shapley value can be obtained separately for each subgame.

While the finest decomposer of a decomposable game can

be determined by an existing algorithm in [15] in quadratic

time, the complexity of obtaining the Shapley value by the

decomposition method is determined by the maximal subgame

size, which is strictly less than the total number of sources in

the entire system and contributes to a considerable reduction

in computational complexity. Experiments demonstrate large

reduction when the number of sources becomes large.

A. Organization

The rest of the paper is organized as follows. In Section II,

we describe the system model for the multiterminal source

coding problem. A coalition game model characterized by

the entropy function of the random sources is proposed in

Section II, where we show the convexity of the game and

explain the users’ incentive to cooperate in the game. In

Section IV, we propose the decomposition method to obtain

the Shapley value and discuss the method’s complexity. In

Section V, we provide some concluding remarks.

II. SYSTEM MODEL

Let V with |V | > 1 be a finite set that contains the indices

of all users in the system. We call V the ground set. Let

ZV = (Zi : i ∈ V ) be a vector of discrete random variables

indexed by V . User i privately observes an n-sequence Z
n
i

of the random source Zi that is i.i.d. generated according to

the joint distribution PZV
. The users are required to send their

observations to a sink node T in a way so that the source

sequence Zn
V can be reconstructed by T . This problem is called

multiterminal data compression or source coding with side

information [3].

Let rV = (ri : i ∈ V ) be a rate vector that is indexed

by V . Each dimension ri in rV denotes the source coding

rate of Zi, i.e., the expected coding length at which user i
encodes his/her observation Z

n
i of source Zi. We call rV an

achievable rate vector if the sink T is able to recover the

source sequence Z
n
V by letting the users transmit at the rates

that are designated by rV . The achievable rate region for the

lossless data compression is characterized by the Slepian-Wolf

(SW) constraints as follows.

A. Achievable Rate Region: Slepian-Wolf Constraints

For X,Y ⊆ V , let H(ZX) be the amount of randomness

in ZX measured by Shannon entropy [3]2 and H(ZX |ZY ) =

2In this paper, we take all logarithms to base 2 so that all entropies are
measured in bits. However, the results in this paper apply to all bases.

1
Z1 = (Wa,Wb,Wc,Wd,We)

2
Z2 = (Wa,Wb,Wf )

3
Z3 = (Wc,Wd,Wf )

T

Fig. 2. The multiterminal data compression problem with V = {1, 2, 3} in
Example 1: User i observes Zi in private. The users are required to encode
their sources Zis so that the sink node T is able to recover ZV .

H(ZX∪Y ) −H(ZY ) be the conditional entropy of ZX given

ZY . In the rest of this paper, without loss of generality, we

simplify the notation ZX by X . For a rate vector rV , let r be

the sum-rate function associated with rV such that

r(X) =
∑

i∈X

ri, ∀X ⊆ V

with the convention r(∅) = 0. r(X) is the sum of source

coding rates over all the users in X and r(V ) is the overall

source coding rate in the system.

It is shown in [4], [5] that the sources can be encoded

separately at rates rV so that the sink node T is able to decode

them with arbitrarily small error probability if and only if3

r(X) ≥ H(X |V \X), ∀X ( V,

r(V ) = H(V ).
(1)

The interpretation of (1) is: For the data compression to be

lossless, (a) the users in X must reveal H(X |V \ X), the

information that is uniquely obtained by X , to the sink; (b)

the users must reveal the total information H(V ) to the sink.

The inequalities in (1) are called the SW constraints, which

describe the achievable rate region

R(V ) = {rV ∈ R|V | :

r(X) ≥ H(X |V \X), ∀X ( V, r(V ) = H(V )}.

In Section III-A, we show that R(V ) 6= ∅ due to the sub-

modularity of the entropy function [16]. In Section III-C, this

nonemptiness of R(V ) will be interpreted from a coalitional

game-theoretic point of view.

Example 1. Assume there are three users V = {1, 2, 3} in

the system. They observe respectively

Z1 = (Wa,Wb,Wc,Wd,We),

Z2 = (Wa,Wb,Wf ),

Z3 = (Wc,Wd,Wf ),

3In this paper, we consider the perfect case of data compression r(V ) =
H(V ) when there is no information redundancy, which allows us to derive
the decomposition property in Section IV-B. However, one can allow r(V ) ≥
H(V ), or r(C) ≥ H(C) for each subgame if the game is decomposable (see
Section IV-B), in the implementation.



where Wb is an independent random bit with H(Wb) =
3
10 ,

Wf is an independent random bit with H(Wf ) =
1
2 and all

other Wj are independent uniformly distributed random bit,

i.e., H(Wj) = 1 for all j ∈ {a, c, d, e}. The users are required

to encode Zis so that ZV can be reconstructed at T . See Fig. 2.

In this system, the achievable rate region is characterized

by the SW constraints:

R(V ) =
{

rV ∈ R|V | : r(∅) = 0,

r({1}) ≥ H({1}|{2, 3}) = 1,

r({2}) ≥ H({2}|{1, 3}) = 0,

r({3}) ≥ H({3}|{1, 2}) = 0,

r({1, 2}) ≥ H({1, 2}|{3}) =
23

10
,

r({1, 3}) ≥ H({1, 3}|{2}) = 3,

r({2, 3}) ≥ H({2, 3}|{1}) =
1

2

}

r({1, 2, 3}) =
24

5
.

We have R(V ) 6= ∅. For example, rV = (1, 9
5 , 2) is an

achievable rate vector in R(V ).

III. COALITIONAL GAME

The relationship between the data compression problem and

the coalitional game formulation was previously revealed in

[9], [10] based on the SW constraints (1). It is shown that

the achievable rate region R(V ) coincides with the core of a

convex game which is necessarily nonempty. In this section,

we express the achievable rate region R(V ) by converting

the lower bounds in (1) to the upper bounds in terms of the

entropy function, based on which, we propose a coalitional

game model. We show the equivalence of the core and the

submodular base polyhedron of the entropy function, which

allows us to derive the decomposition property of the core in

Section IV and address a vital aspect missing from [9], [10]:

The reason for the users to be cooperative in the multiterminal

data compression problem in V .

A. Base Polyhedron

For X ⊆ V , consider the lower bound r(X) ≥ H(X |V \
X) in the SW constraints (1). Since we also restrict the total

rate r(V ) = H(V ), we necessarily impose an upper bound

constraint on the sum-rate in V \X

r(V \X) = r(V )−r(X) ≤ H(V )−H(X |V \X) = H(V \X).

By converting the lower bounds in (1) for all X ⊆ V , we have

the SW constrained region fully characterized by the entropy

function H : 2V 7→ R:

r(X) ≤ H(X), ∀X ( V,

r(V ) = H(V ).
(2)

It is shown in [16] that the entropy function H is a

polymatroid rank function: (a) normalized: H(∅) = 0; (b)

monotonic: H(X) ≥ H(Y ) for all X,Y ⊆ V such that

Y ⊆ X ; (c) submodular:

H(X) +H(Y ) ≥ H(X ∩ Y ) +H(X ∪ Y ), X, Y ⊆ V.

The polyhedron and base polyhedron of H are respectively

[17, Section 2.3] [18, Definition 9.7.1]

P (H,≤) = {rV ∈ R|V | : r(X) ≤ H(X), ∀X ⊆ V },

B(H,≤) = {rV ∈ P (f,≤) : r(V ) = H(V )}.

We have the achievable rate region coincides with the base

polyhedron of the entropy function H :

R(V ) = B(H,≤).

B. Coalitional Game Model

Let the users in V be the players in a game. Instead of

being totally selfish, the players may cooperate with each other

to form coalitions, e.g., instead of encoding the source Zi by

him/herself, user i may form the group X with the other users

in X \ {i} so as to encode ZX cooperatively. In this game,

a subset X ⊆ V is called a coalition and V is the grand

coalition. Let H be the characteristic cost function such that,

for each coalition X ⊆ V , H(X) quantifies the outcome of

coalition X : If all the players i ∈ X cooperate in X , i.e., if

coalition X forms, the total cost incurred due to the source

coding rates among the users in X is H(X). The coalitional

game model for the multiterminal data compression problem is

characterized by the ground set V that indexes all the players

and the entropy function H . We denote the coalition game

model by Ω(V,H).
In Ω(V,H), rV is a cost allocation method that describes

how the total cost r(V ) is distributed to the individual users.

Here, the source coding rate ri is interpreted as the cost that

user i pays in participating the data compression problem in

V . The solution of the game Ω(V,H) is the core [19], [20]

C (V ) = {rV ∈ R|V | : r(X) ≤ H(X), ∀X ⊆ V,

r(V ) = H(V )}, (3)

which contains all cost allocation methods rV that distribute

exactly cost H(V ) among the users in V . The inequality

r(X) ≤ H(X) states that the total the cost in any coalition

X ( V is no greater than H(X), which ensures that no users

have incentive to break from the grand coalition and form a

smaller one [19]. In this sense, the core contains all cost/rate

allocation methods such that all users would like to take part in

the data compression problem in V .4 Based on the definition of

the core (3), it is easy to see the equivalence of the achievable

rate region, the base polyhedron of H and the core:

R(V ) = B(H,≤) = C (V ). (4)

This equivalence also gives rise to the main result in this

paper: The decomposition of B(H,≤) is equivalent to the

4It is also show in [21, Theorem 8] that the core is a stable set of cost
allocation methods such that no coalitions X ( V have incentive to break
from the grand coalition.
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Fig. 3. The polyhedron P (H,≤) and base polyhedron B(H,≤) of the
entropy function H in the system in Example 1. Here, B(H,≤) coincides
with the achievable rate region R(V ) for the lossless multiterminal data
compression problem and the core C (V ) of the coalitional game Ω(V,H).

decomposition of the game Ω(V,H), which results in the

decomposition of the Shapley value (See Section IV-B).

Example 2. Consider the system in Example 1. Fig. 3 shows

P (H,≤) and B(H,≤), the polyhedron and base polyhedron

of the entropy function H , respectively. The base polyhedron

B(H,≤) coincides with the achievable rate region R(V ) and

the core C (V ) of the game Ω(V,H), which is a region on the

plane {rV ∈ R|V | : r(V ) = 24
5 } that is bounded by a set of

linear constraints.

In general, the core C (V ) of a coalition game could be

empty, i.e., there exists at least one user that is unwilling

to cooperate in the grand coalition; If C (V ) 6= ∅, it is

not necessarily a singleton set. Then, the two fundamental

questions in the coalitional game are:

(a) Is the core nonempty, or do all the users in V have

incentive to cooperate in the grand coalition V ?

(b) If the core is nonempty, can we find a fair cost/rate

allocation method in the core C (V )?

In the next subsection, we show that question (a) has a

straightforward answer due to the convexity of the game

Ω(V,H). The Shapley value in Section IV answers question

(b).

C. Convexity and Nonemptiness of Core

According to the definition in [21, Section 2], a coalitional

game is convex if and only if the characteristic cost function is

submodular.5 Due to the fact that the entropy function H is a

polymatroid rank function, a subgroup of submodular function,

it is straightforward that the game Ω(V,H) is convex. The

convexity of the game Ω(V,H) is consistent with the results

in [9], [10].6 According to [21, Theorem 4], the core of a

5The definition in [21, Section 2] is based on the supermodularity of the
characteristic payoff function, which corresponds to the submodularity of the
characteristic cost function.

6The authors in [9], [10] formulated a coalitional game model Ω(V,H#)
with the the dual set function H# being the characteristic payoff function,
where the nonemptiness of the core C (V ) is due to the supermodularity of
H#. See Appendix A for the details.

convex game is nonempty. Therefore, for the multiterminal

data compression problem, we have Ω(V,H) being convex

with a nonempty core C (V ), i.e., all the users would like to

cooperate with each other and, therefore, the grand coalition

V forms necessarily.7

Example 3. For the system in Example 1, assume that the

users are working individually at the beginning so that user

i encodes the source Zi at the rate that is exactly equal to

H({i}), i.e., ri = H({i}) for all i ∈ V . However, it will

not take long for user i to realize that he/she can reduce the

source coding rate by cooperating with another user. Take user

3 for example: If user 3 works alone, the source coding rate is

r3 = H({3}) = 5
2 ; If user 3 cooperates with user 2, we have

r2 + r3 = r({2, 3}) = H({2, 3}) = 19
5 , which means user 3

can encode Z3 with a rate strictly lower than 5
2 and so as user

2, e.g., the rate (r2, r3) = (32 ,
23
10 ) is sufficient to encode Z{2,3}.

Note, the cooperative behavior of users 2 and 3 in coalition

{2, 3} is essentially due to the positive mutual information

I({2} ∧ {3}) = H({2}) +H({3})−H({2, 3}) = 5
2 > 0.

After coalition {2, 3} forms, users 2 and 3 will soon

realize that, if they cooperate with user 1, all the users can

further reduce the source coding rates and therefore the grand

coalition V forms. In fact, by assuming that the users form

any coalition X ( V , it can be shown that they would finally

merge with others to form the grand coalition V .

Example 3 reveals the reason for the nonemptiness of the

core in the data compression problem: the nonnegativity of the

mutual information. The mutual information can be considered

as the information redundancy in the source coding, or data

compression, problem, which can be minimized if the users

cooperatively encode the multiple sources in ZV . The worst

case is when the mutual information is zero, i.e., when all

the sources in ZV are mutually independent, where working

separately or cooperating in V are indifferent for the users.

See the example below.

Example 4. Assume the three users in V = {1, 2, 3} observe

respectively

Z1 = (Wa),

Z2 = (Wb),

Z3 = (Wc),

where Wj for all j ∈ {a, b, c} is an independent uniformly

distributed random bit, i.e., the components in ZV are mu-

tually independent. Fig. 4 shows the core C (V ) reduces

to a point rV = (1, 1, 1). It can be shown that forming

any coalition X ⊆ V , including the singleton and grand

coalition, necessarily results in ri = 1 for all i ∈ V , i.e.,

it makes no difference whether the users work separately or

cooperate. Alternatively, encoding Zis separately is equivalent

to encoding ZV cooperatively.

7On the other hand, the base polyhedron of a submodular function is
nonempty [17, Theorem 2.3]. So, due to the equivalence (4), C (V ) 6= ∅.
Or, the nonemptiness of C (V ) is essentially due to the submodularity of H .
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Fig. 4. The polyhedron P (H,≤) and base polyhedron B(H,≤) of the
entropy function H of a mutually independent multiple sources in Example 4.
In this case, C (V ) = {(1, 1, 1)} and it makes no difference for the users to
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IV. SHAPLEY VALUE

Since the core is not a singleton in general, the question

follows is how to select a cost allocation method, or source

coding rate vector, rV in the core C (V ) of the game Ω(V,H).
In a coalitional game where the users are considered as peers,

e.g., the sensor nodes in a WSN, a natural selection criterion is

the fairness, i.e., we want to find a rV ∈ C (V ) that distributes

the total cost H(V ) as fairly as possible among the users in V .

There is a well-known answer to this problem: The Shapley

value r̂V [14], a unique value that lies in the core of the convex

game Ω(V,H), with each dimension being

r̂i =
∑

C⊆V \{i}

|C|!(|V | − |C| − 1)!

|V |!
(H(C ⊔ {i})−H(C)),

(5)

where ⊔ is the disjoint union. The Shapley value has been

adopted in [7] as a fair source coding scheme. r̂ is fair in that

it assigns each player his/her expected marginal cost, which

can be explained by its relationship with the extreme points

in the core as follows.

A. Extreme Points

Let ΦV = (φ1, . . . , φ|V |) be a permutation of the user in-

dices, e.g., Φ = (2, 3, 1, 4) is a permutation of V = {1, . . . , 4}.

Consider the Edmond greedy algorithm [22]: For i = 1 to |V |,
do

rφi
= H({φi}|{φ1, . . . , φi−1})

with rφ1 = H({φ1}). The resulting rV is an extreme point

in the core C (V ) [22]. In fact, the Edmond greedy algorithm

states that an achievable rate vector in the core C (V ) can

be reached if the users in V encode the source with the side

information at the sink in order. This approach has also been

adopted in [8] for the distributed source coding problem. See

also Example 5 below. Let EX(V ) denote the set of all the

extreme points in the core C (V ). EX(V ) can be constructed

by applying the Edmond greedy algorithm for all permutations

of V .

0

2

4

0

1

2

0

1

2

r1
r2

r
3

R(V ) = B(H,≤) = C (V )
P (H,≤)
EX(V )
path to (1, 95, 2)

Fig. 5. The updated path of the source coding rate vector: (0, 0, 0) →
(0, 9

5
, 0) → (0, 9

5
, 2) → (1, 9

5
, 2) resulting from the Edmond greedy

algorithm [22] for the permutation Φ = (2, 3, 1) in the system in Example 1.
The corresponding explanation is in Example 5.

Example 5. We apply the Edmond greedy algorithm to the

system in Example 1 for the permutation Φ = (2, 3, 1).
For φ1 = 2, we assign the source coding rate r2 =
H({2}) = 9

5 so that the sink node T obtain the source

sequence Z
n
2 ; For φ2 = 3, we assign the source coding

rate to user 3 conditioned on the information obtained by

T , i.e., r3 = H({3}|{T }) = H({3}|{2}) = 2 so that

H({T }) = H({2, 3}) and Z
n
{2,3} is recovered at T ; For

φ3 = 1, user 3 just need to send the remaining information,

i.e., r1 = H({1}|{T }) = H({1}|{2, 3}) = 1 so that Zn
{1,2,3}

is recovered at T . The resulting rate vector rV = (1, 9
5 , 2) is

an extreme point in the core C (V ). See Fig. 5. We have the

extreme point set

EX(V ) =
{

(
43

10
,
1

2
, 0), (

43

10
, 0,

1

2
), (3,

9

5
, 0),

(1,
9

5
, 2), (

23

10
, 0,

5

2
), (1,

13

10
,
5

2
)
}

,
(6)

where all rV ∈ EX(V ) can be determined by applying the

Edmond greedy algorithm for all |V |! = 6 permutations of V .

The Shapley value assigns each user i the expected source

coding rate r̂i resulting from the Edmond greedy algorithm

by assuming that each order, or permutation, Φ to form the

grand coalition is equiprobable. For a subset C ( V such that

i /∈ C, assume that the user i joins the coalition C ⊔ {i} after

the coalition C is formed and, then, the rest of the users in

V \ (C ⊔ {i}) join and form the grand coalition V . In the

Edmond greedy algorithm, user i will be assigned the rate

H(C ⊔ {i})−H(C) for the |C|!(|V | − |C| − 1)! out of |V |!
time, which explains the weight in (5). In other words, the

Shapley value r̂V is the average value over all the extreme

points in the core C (V ):

r̂V =

∑

rV EX(V ) rV

|EX(V )|

This is the reason that r̂V is called the gravity center of the

extreme points of the core in a convex game in [14].
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Fig. 6. The Shapley value r̂V = ( 53
20

, 9
10

, 5
4
) for the system in Example 1.

r̂V is a fair rate allocation method in the core C (V ). In fact, r̂V is the gravity
center of all the extreme points in EX(V ).

Example 6. For the system in Example 1, we have the Shapley

value in core C (V ) being r̂V = (5320 ,
9
10 ,

5
4 ) in Fig. 6, which

is exactly the value of

∑
rV EX(V ) rV

|EX(V )| , where the extreme point

set EX(V ) is enumerated in (6).

B. Decomposition

Although the Shapley value is the desired fair cost allocation

method in the core C (V ), calculating it might be cumbersome

in large scale systems. Assume that the value of H(X) for

any X ⊆ V can be obtained by an oracle call and δ refers

to the upper bound on the computation time of this oracle

call. Obtaining the Shapley value in (5) requires the value of

H(X) for all X ⊆ V so that the complexity is O(2|V | · δ).8

Then, there is a problem of how to alleviate this exponentially

growing complexity in large |V |. On the other hand, when the

system size |V | is large, it is very possible that the coalitional

game is decomposable: The users’ cooperating in smaller

coalitions is equivalent to cooperating in the grand coalition.

In this section, we show that the calculation of the Shapley

value in a decomposable game is separable, which results in

a reduction in computational complexity.

Definition 1 (Decomposable Convex Game [17, Theorems

3.32 and 3.38, Lemma 3.37]9). The convex game Ω(V,H)
is decomposable if

H(V ) =
∑

C∈P

H(C),

for some proper partition P of user set V . Here, P is called a

decomposer and each C ∈ P forms a subgame Ω(C,H) that

is convex. A game Ω(V,H) is indecomposable if it has only

one decomposer {V }.

8We assume that the time complexity of the multiplication and summation
operations in (5) is much less than that of the oracle call of H .

9This definition is based on the concept of the separator of a disconnected
submodular system in [15], [17], where the minimal separators are also called
the elementary separators in [15, Section 3] and the principal partition of a
polymatroid in [23].

It is easy to see that, for any decomposer P of a decom-

posable game Ω(V,H), the components in (ZC : C ∈ P)
are mutually independent. For any X,Y ⊂ V such that

X ∩ Y = ∅, let rX ⊕ rY = rX⊔Y be the direct sum of

rX and rY . For example, for r{1,3} = (r1, r3) = (3, 7)
and r{2,5,6} = (r2, r5, r6) = (5, 2, 4), r{1,3} ⊕ r{2,5,6} =
r{1,2,3,5,6} = (3, 5, 7, 2, 4). We have a decomposable core

C (V ) for a decomposable game Ω(V,H).

Lemma 1 ( [17, Theorems 3.15, 3.32 and 3.38, Corollary

3.40], [21, Theorem 6]). For a decomposer P of a decompos-

able convex game Ω(V,H), the core C (V ) is decomposable:

C (V ) = ⊕C∈PC (C)

= {⊕C∈PrC : rC ∈ C (C), C ∈ P},

where C (C) is the core of the subgame Ω(C,H); C (V ) has

dimension |V | − |P∗| where P∗ is the finest decomposer.10

We also have the decomposable Shapley value r̂V due to

the decomposition of the core C (V ) as follows. The proof of

Theorem 1 is in Appendix B.

Theorem 1. If Ω(V,H) is decomposable, we have

r̂V = ⊕C∈P r̂C

for all decomposers P , where r̂C is the Shapley value in the

core C (C) of subgame Ω(C,H).

Remark 1. Theorem 1 is a recast of [14, Corollary 2],

which is derived in terms of the characteristic payoff function

based on the concept of carriers and is proved by the the

additivity of the Shapley value in [14, Axiom 3].11 But,

Theorem 1 is derived for the decomposable game in terms

of the characteristic cost function and the proof is based on

the decomposition of the core C (V ) in Lemma 1.

According to Theorem 1, the Shapley value r̂V in a decom-

posable game Ω(V,H) can be obtained separately for each

subgame Ω(C,H) for all coalitions C in a decomposer P . In

Section IV-D, we show the advantage of this separation: the

reduction in computational complexity.

Example 7. For the system in Example 1, the game Ω(V,H) is

indecomposable since {V } is the only decomposer. Therefore,

we have |V | − |{V }| = 2 and the core C (V ) in Fig. 3 is a

2-dimensional plane. For the system in Example 4, the game

Ω(V,H) is decomposable with all partitions P of V being

the decomposer and the finest one is P∗ = {{1}, {2}, {3}}.

Therefore, the dimension of the core C (V ) in Fig. 4 is

10The decomposition of C (V ) was originally derived in [17, Theorems
3.15 and 3.38, Corollary 3.40] as the separation of the base polyhedron in a
disconnected submodular system. We express it in terms of C (V ) in Lemma 1
due to the equivalence (4). Also, for a decomposable convex game, the finest
decomposer uniquely exists. See Appendix A. For an indecomposable game
Ω(V,H), the core C (V ) has the full dimension |V | − 1 [21, Theorem 6(a)]
since P∗ = {V } is the only one decomposer.

11Based on the definition in [14, Section 2], a carrier corresponds to a
coalition C in a decomposer P . The additivity in [14, Axiom 3] is not a
property specifically for the decomposable game. Therefore, the application
of [14, Corollary 2] to decomposable games is not explicit in [14].
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|V | − |P∗| = 0: C (V ) reduces to a point (1, 1, 1) which is

necessarily the Shapley value.

Example 8. Assume that the users in V = {1, 2, 3} observe

respectively

Z1 = (Wa,Wb),

Z2 = (Wd),

Z3 = (Wb,Wc),

where Wc is an independent random bit with H(Wc) =
3
5 and

all other Wj are independent uniformly distributed random

bit. In this system, the game is decomposable with the finest

decomposer P∗ = {{1, 3}, {2}}. It is easy to see why P∗ =
{{1, 3}, {2}}: Z{1,3} and Z2 are mutually independent. The

core C (V ) in Fig. 7 has the dimension |V | − |P∗| = 1 and

reduces to a line segment. We calculate the Shapley value

separately for each subgame Ω(C,H): r̂{1,3} = (r̂1, r̂3) =
(32 ,

11
10 ) for {1, 3} and r̂2 = 1 for {2}. Then, r̂{1,3} ⊕ r̂2 =

(r̂1, r̂2, r̂3) = (32 , 1,
11
10 ) is the Shapley value of game Ω(V,H).

C. Determining Finest Decomposer

To utilize the decomposition property of a decomposer,

the first question is how to determine a decomposer. In real

applications, the decomposer would not be as obvious as in

Example 8. In fact, we would not have any prior knowledge

of the multiple random sources. In this case, whether or not

the game Ω(V,H) is decomposable and the finest decomposer

P∗, if Ω(V,H) is decomposable, can be determined by Al-

gorithm 1 that completes in O(|V |2 · δ) time, which does not

require the knowledge of ZV . Note, Algorithm 1 also returns

an extreme point in the core rV ∈ C (V ) since steps 2, 4 and

5 are in fact implementing the Edmond greedy algorithm.

Example 9. For the system in Example 8, by applying

Algorithm 1 for the permutation Φ = (3, 2, 1), we have

rV = (1, 1, 85 ), which is an extreme point in the core C (V )

as shown in Fig. 7. We also have X̂1 = {1, 3}, X̂2 = {2}
and X̂3 = {3} at the end of each iteration. Since X̂1 and

Algorithm 1: Finest Decomposer [15, Algorithm 2.6]12

input : a convex coalitional game Ω(V,H)
output: P∗, the finest decomposer, if Ω(V,H) is

decomposable or P∗ = {V } if Ω(V,H) is
indecomposable and an extreme point rV ∈ C (V )

1 choose any permutation Φ;

2 rφ1 ← H({φ1}) and X̂φ1 ← {φ1};
3 for i = 2 to |V | do

4 X̂φi
← {φ1, . . . , φi};

5 rφi
← H(X̂φi

)−H(X̂φi
\ {φi});

6 for j = 1 to i− 1 do

7 if r(X̂φi
\ {φi−j}) = H(X̂φi

\ {φi−j}) then

8 X̂φi
← X̂φi

\ {φi−j} ;
9 endif

10 endfor
11 endfor

12 P∗ ← {X̂φi
: i ∈ V } and keep merging any two intersecting

elements in P∗ until there is no left;
13 return P∗ and rV ;

X̂3 are intersecting, they are merged and result in the finest

decomposer P∗ = {{1, 3}, {2}}.

Consider the indecomposable game in Example 1. For the

permutation Φ = (2, 3, 1), Algorithm 1 returns an extreme

point rV = (1, 95 , 2). We also have X̂1 = {1, 2, 3}, X̂2 = {2}

and X̂3 = {2, 3}, all of which are merged so that P∗ =
{{1, 2, 3}}, which means the game is indecomposable.

D. Complexity

For the finest decomposer P∗ of a decomposable convex

game Ω(V,H), let Ĉ = argmax{|C| : C ∈ P∗} be the

maximum size of the subgame. The separable calculation of

the Shapley value ⊕C∈P∗ r̂C according to Theorem 1 reduces

the complexity from O(2|V | ·δ) to O( |V |

|Ĉ|
·2|Ĉ| ·δ). We remark

that O( |V |

|Ĉ|
· 2|Ĉ| · δ) is an upper bound in that (a) obtaining

the Shapley value r̂
Ĉ

for subgame Ω(Ĉ,H) completes in

O(2|Ĉ| · δ) time and (b) there are at most
|V |

|Ĉ|
such subgames.

For example, for the system in Example 8, if obtaining the

Shapley value for each element in the finest decomposer

P∗ = {{1, 3}, {2}}, we can reduce the 23 = 8 oracle calls of

H to 22 + 2 = 6.

Experiment 1. Consider the WSN in Fig. 1. We set the number

of clusters to 20. For each cluster, we fix H(V ) = 50 and vary

the number of sensors |V | from 5 to 15. For each value of |V |,
we do the followings for each cluster:

(a) randomly generate random sources ZV so that the game

Ω(V,H) is decomposable;

12Algorithm 1 is adapted from [15, Algorithm 2.6]. It has also been
independently proposed in [23] [17, Secton 3.3]. The finest decomposer has
different names: It is called the minimal separators of a polymatroid in [15,
Section 3], the principal partition of a polymatroid in [23, Section 3(b)] and
the finest partition of a disconnected submodular system in [17, Secton 3.3].
The validity of Algorithm 1 is due to the lattice structure of the minimizer
set of the problem min{H(X) − r(X) : i ∈ X ⊆ V } for all i ∈ V and
rV ∈ B(H,≤). Please see [23] for further details.
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(b) obtain the Shapley value r̂V in (5) and record the number

of calls of H;

(c) run Algorithm 1 to determine the finest decomposer P∗

and obtain the Shapley value r̂C for each C ∈ P∗

according to Theorem 1. Record the number of calls of

H in both Algorithm 1 and obtaining ⊕C∈P∗ r̂C .

We plot the mean number of oracle calls of H of two methods

over clusters in Fig. 8. It can be seen that the separate

calculation of the Shapley value in a decomposable convex

game Ω(V,H) contributes to a considerable reduction in

computational complexity as |V | grows.

It should be noted that overall O( |V |

|Ĉ|
· 2|Ĉ| · δ) oracle calls

can be distributed among the subgames Ω(C,H). And, the

computations of r̂C can be done in a decentralized manner.

For example, for the system in Example 8, the users in {1, 3}
and user 2 can calculate r̂{1,3} and r̂2, respectively, in parallel.

Experiment 2. In Experiment 1, we allow the subgames

Ω(C,H) for all C ∈ P∗ in each cluster to obtain r̂C in

parallel so that the completion time of calculating ⊕C∈P∗ r̂C

is determined by |Ĉ|, the maximum size of subgames. After

obtaining the values of H by the oracle calls in Experiment 1,

the average run time for calculating the values of r̂V and

⊕C∈P∗ r̂C over clusters is shown in Fig. 9.13 It can be shown

that it is much faster to get ⊕C∈P∗ r̂C by allowing parallel

computation.

In addition to the decomposition property, some Shapley

value approximation methods, e.g., [24]–[26], can be applied

to each subgame Ω(C,H) to further reduce the complexity.

For example, based on the random permutation method in

[24], random samples of the permutations of C, with the size

quadratically growing in |C|, are generated so that an extreme

point subset EX′(C) ( EX(C) is obtained and

∑
rC∈EX′(C) rC

|EX′(C)|

13We run Experiment 2 in MATLAB 2017a by a desktop computer with
Intel Core i7-6600U processer, 8Gb RAM and 64-bit Windows 10 Enterprise
operating system.
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Here, r̂C is calculated by each subgame Ω(C,H) in parallel. We assume
that all values of H have been obtained in Experiment 2, i.e., the completion
time does not include the oracle calls of H .

is an approximation of r̂C . Then, ⊕C∈P∗

∑
rC∈EX′(C) rC

|EX′(C)| , the

approximation of r̂V , can be obtained in time quadratic in the

maximal subgame size |Ĉ|.

V. CONCLUSION

The coalition game model for the multiterminal data com-

pression problem was formulated in term of the characteristic

cost function, being the entropy function. The convexity of

the game and the nonemptiness of the core followed from the

submodularity of the entropy function. For a decomposable

game, the direct sum of the Shapley values in the subgames

constituted the Shapley value in the entire system. In this

case, the complexity is essentially determined by the subgame

of the maximum size and the finest decomposer determines

the least computational complexity. The study showed that

the finest minimizer can be determined in quadratic time and

the reduction in complexity by the decomposition method

for obtaining the Shapley value is large when the number of

users increases. The incentive for the users to cooperate was

also provided in this paper: The least source coding rates are

attained in the multiterminal data compression problem only

if the users cooperatively encode the multiple random sources.

One extension of the work in this paper is the design of the

source coding scheme for the Shapley value: determining the

codeword for source Zi at rate r̂i for all i ∈ V .

APPENDIX A

For the entropy function H : 2V 7→ R+, the dual set

function H# is defined as [17, Section 2.3]

H#(X) = H(V )−H(V \X) = H(X |V \X)

and is supermodular.14 The polyhedron P (H#,≥) contains

all SW constrained rate vectors with sum-rate r(V ) ≥ H(V ),
while the base polyhedron B(H#,≥) contains all SW con-

strained rate vectors with exact sum-rate r(V ) = H(V ), i.e.,

14f is supermodular if −f is submodular.
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the SW constraints in [4], [5] are given in terms of the dual

set function H#. So is the coalition game model proposed in

[9], [10].15 Based on the equivalence B(H,≤) = B(H#,≥)
[17, Lemma 2.4], the data compression problem is studied in

terms of the entropy function H in this paper.

Example 10. For a two terminal source with the entropy

function: H(∅) = 0, H({1}) = 4, H({2}) = 6 and

H({1, 2}) = 7. We plot polyhedra P (H,≤) and P (H#,≥) in

Fig. 10, where B(H,≤) = B(H#,≥) is the SW constrained

achievable rate region R(V ).

Let Π(V ) be the set of all partitions of V . We have H(V ) =
minP∈Π(V )

∑

C∈P H(C) [17, Theorem 2.6]. Each minimizer

is a decomposer of the game Ω(V,H) [17, Theorems 3.36,

3.38 and 3.39]16 and all minimizers form a partition lattice

[27, Definition 3.9],17 where the coarsest and finest partitions

uniquely exist. This explains the uniqueness of the finest

decomposer of a decomposable convex game in [21]. It is for

sure that {V } always belongs to this partition lattice. Based

on Definition 1, Ω(V,H) is decomposable if the partition

lattice contains partitions other than {V }; otherwise, Ω(V,H)
is indecomposable.

APPENDIX B

For a decomposer P ∈ Π′(V ), we have EX(V ) =
⊕C∈PEX(C) due to the decomposition of the core C (V ) =

15The authors in [9], [10] formulated a game model Ω(V,H#) directly
based on the SW constraints, where the dual set function H#(X) quantifies
the payoff incurred when the users cooperate in coalition X . The convexity
of the game was shown based on the supermodularity of H#.

16Decomposable convex game corresponds to the disconnected submodular
system that is defined in [17, Theorems 3.36, 3.38 and 3.39].

17It is called the Dilworth truncation lattice in [27, Definition 3.9] since
the minP∈Π(V )

∑
C∈P H(C) is called the Dilworth truncation of H .

⊕C∈PC (C) in Lemma 1. Then,

r̂V =

∑

rV ∈EX(V ) rV

|EX(V )|

=

∑

rV ∈⊕C∈PEX(C) rV

| ⊕C∈P EX(C)|

=
⊕C∈P

(

∏

C′∈P : C′ 6=C |EX(C′)|
∑

rC∈EX(C) rC

)

∏

C∈P |EX(C)|

= ⊕C∈P

∑

rC∈EX(C) rC

|EX(C)|

= ⊕C∈P r̂C .

Theorem 1 holds.
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