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Abstract—A hybrid code can simultaneously encode classical
and quantum information into quantum digits such that the
information is protected against errors when transmitted through

a quantum channel. It is shown that a hybrid code has the
remarkable feature that it can detect more errors than a
comparable quantum code that is able to encode the classical
and quantum information. Weight enumerators are introduced
for hybrid codes that allow to characterize the minimum distance
of hybrid codes. Surprisingly, the weight enumerators for hybrid
codes do not obey the usual MacWilliams identity.

I. INTRODUCTION

A hybrid code can simultaneously encode classical and

quantum information into quantum digits such that the infor-

mation is protected against errors when transmitted through

a quantum channel. We will show that hybrid codes have

the remarkable feature that they can always detect more

errors than quantum error detecting codes. So hybrid codes

are in general preferable to quantum error detecting codes

for the simultaneous transmission of classical and quantum

information over a quantum channel.

In their seminal paper [2], Devetak and Shor characterized

the set of admissible rate pairs for simultaneous transmission

of classical and quantum information over a given quantum

channel. They showed that time-sharing a quantum channel

for the separate encoding of quantum and classical infor-

mation is inferior to simultaneous transmission. This line of

research was extended in various directions. For instance,

Hsieh and Wilde [4] considered the problem of simultane-

ous transmission of classical and quantum information over

an entanglement-assisted quantum channel. Yard, Hayden

and Devetak [10] considered multi-access channels with two

senders and one receiver to communicate both classical and

quantum information to the receiver. There are more papers

in quantum information theory about the simultaneous trans-

mission of classical and quantum information, but the small

selection that we have mentioned should convey the flavor of

this line of research.

We need codes to transmit classical and quantum infor-

mation over a quantum channel. Of course, we can always

use a quantum error-correcting code for this purpose, and

simply encode the classical information in some quantum bits.

However, this fails to take advantage of gains promised by

quantum information theorists. Surprisingly, the foundations

of hybrid code have not yet been well developed. We are

aware of a few notable exceptions. Kremsky, Hsieh, and

Brun investigated early on entanglement-assisted hybrid sta-

bilizer codes [8]. Beny, Kempf, and Kribs briefly sketched

an operator-theoretic construction of hybrid codes [1], an

approach that has much potential. More recently, Grassl, Lu,

and Zeng [3] gave a number of hybrid code constructions,

derived linear programming bounds for hybrid stabilizer codes,

and found very remarkable examples of hybrid codes with

good parameters.

In the next section, we define the notion of detectable errors

of a hybrid code. We show that hybrid codes can detect more

errors than comparable quantum codes. In Section III, we

introduce weight enumerators for hybrid codes. As in the case

of quantum codes, we have two weight enumerators. For one

of the weight enumerators, we use the average of the Shor-

Laflamme weight enumerators for the quantum codes that

encode in the quantum information. We show that the two

weight enumerators allow us to characterize the errors that can

be detected and corrected by the hybrid code. In Section IV,

we show the unexpected result that weight enumerators of a

hybrid code do not satisfy the MacWilliams identity, but rather

a relaxed version of the MacWilliams identity.

II. HYBRID CODES

Suppose that we want to simultaneously transmit classical

and quantum messages. Our goal will be to encode them into

the state of n quantum digits that have q-levels each, so that the

encoded message can be transmitted over a quantum channel.

In other words, an encoded message is a unit vector in the

Hilbert space

H =

n
⊗

k=1

C
q ∼= C

qn .

A hybrid code has the parameters ((n,K :M))q if and only

if it can simultaneously encode one of M different classical

messages and a superposition of K orthogonal quantum states

into n quantum digits with q levels. We can understand the

hybrid code as a collection of M orthogonal K-dimensional

quantum codes Cm that are indexed by the classical messages

m ∈ [M ] := {1, 2, . . . ,M}. If we want to transmit a classical

message m ∈ [M ] and a quantum state ϕ, then we need to

encode ϕ into the quantum code Cm.

The encoded states will be subject to errors when trans-

mitted through a quantum channel. Our first task will be to
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characterize the errors that can be detected by the hybrid code.

We will set up a projective measurement that either upon

receipt of a state |ψ〉 in H either (a) returns ǫ to indicate

that an error happened or (b) or claims that there is no error

and returns a classical message m and a projection of |ψ〉 onto

Cm.

Let Pm denote the orthogonal projector onto the quantum

code Cm for all integers m in the range 1 ≤ m ≤ M . For

distinct integers a and b in the range 1 ≤ a, b ≤ M , the

quantum codes Ca and Cb are orthogonal, so PbPa = 0. It

follows that the orthogonal projector onto C =
⊕M

m=1 Cm is

given by

P = P1 + P2 + · · ·+ PM .

We define the orthogonal projection onto C⊥ by Pǫ = 1−P .

For the hybrid code {Cm | m ∈ [M ]}, we can define a

projective measurement P that corresponds to the set

{P1, P2, . . . , PM , Pǫ}

of projection operators that partition unity.

We can now define the concept of a detectable error. An

error E is called detectable by the hybrid code {Cm | m ∈
[M ]} if and only if for each index a, b in the range 1 ≤ a, b ≤
M , we have

PbEPa =

{

λE,aPa if a = b,

0 if a 6= b

for some scalar λE,a.

The motivation for calling an error E detectable is the

following simple protocol. Suppose that we encode a classical

message m and a quantum state into a state vm of Cm, and

transmit it through a quantum channel that imparts the error

E. If the error is detectable, then measurement of the state

Evm = EPmvm with the projective measurement P either

(E1) returns ǫ, which signals that an error happened, or

(E2) returns m and corrects the error by projecting the state

back onto a scalar multiple λE,mvm = PmEPmvm of

the state vm.

The definition of a detectable error ensures that the measure-

ment P will never return an incorrect classical message d,

since PdEPmvm = 0 for all d 6= m, so the probability of

detecting an incorrect message is zero. An error that is not

detectable by the hybrid code can change the encoded classical

information, the encoded quantum information, or both.

The next proposition shows that hybrid codes can always de-

tect more errors than a comparable quantum code that encodes

both classical and quantum information. This is remarkable

given that the advantages are much less apparent when one

considers minimum distance, see [3].

Let B(H) denote the set of linear operators on H .

Proposition 1. The subset D of detectable errors in B(H) of

an ((n,K :M))q hybrid code form a vector space of dimension

dimD = q2n − (MK)2 +M.

In particular, an ((n,K:M))q hybrid code with M > 1 can

detect more errors than an ((n,KM))q quantum code.

Proof. It is clear that any linear combination of detectable

errors is detectable. If we choose a basis adapted to the

orthogonal decomposition H = C ⊕ C⊥ with

C = C1 ⊕ C2 ⊕ · · · ⊕ CM ,

then an error E is represented by a matrix of the form

(

A R

S T

)

Since E is detectable, the MK ×MK matrix A must satisfy

A = λE,11K ⊕ λE,21K ⊕ · · · ⊕ λE,M1K ,

where 1K denote a K×K identity matrix, but R, S, and T can

be arbitrary. Therefore, the dimension of the vector space of

detectable errors is given by q2n − (MK)2 +M . The vector

space of detectable errors of an ((n,KM))q quantum code

has dimension q2n − (KM)2 + 1, which is strictly less than

q2n − (MK)2 +M .

We conclude this section with a few remarks on sets of

detectable and correctable errors. Detectable errors have many

nice features. The set D of all detectable errors of a hybrid

code is a vector space that contains the identity operator, is

closed under taking adjoints ∗, and is a closed subspace of

B(H). Therefore, the set D of detectable errors is an operator

system of the the C∗-algebra B(H). This means that we can

express every detectable error in D as a linear combination

of detectable errors that are positive operators. Indeed, an

operator E in D can be expressed as linear combination

E = A + iB, where A = 1
2 (E + E∗) and B = i

2 (E
∗ − E)

are self-adjoint operators in D. A self-adjoint operator X in

D can be expressed as the difference of the positive operators

‖X‖1 and ‖X‖1−X . In short, the set of detectable errors of

a hybrid code has a quite well-behaved structure.

On the other hand, whenever we consider the correctability

of errors, we must consider an entire set of errors rather than

a single error. Depending on the set of errors that we would

like to correct, a given error operator E might or might not

be correctable. It is not difficult to show that a unital set E of

errors is correctable if and only if the set

E∗E = {F ∗E | E,F ∈ E}

of errors is detectable. In other words, all errors E,F ∈ E
must satisfy

PbF
∗EPa = λF∗E,a [a = b]Pa

for all a, b ∈ [M ], where [a = b] denotes the Iverson-Knuth

bracket that is equal to 1 when the condition a = b is satisfied

and 0 otherwise.

In the next section, we will introduce the notion of a weight

of errors and introduce weight enumerators of hybrid codes.



III. WEIGHT ENUMERATORS

In this section, we define weight enumerators for an

((n,K :M)q hybrid code

H = {Cm | m ∈ [M ]}.

Before we can define the weight enumerators, we will briefly

recall the concept of a nice error basis (see [7], [6], [5] for

further details), so that we can define a suitable notion of

weight for the errors.

Let G be a group of order q2 with identity element 1. A

nice error basis on C
q is a set E = {ρ(g) ∈ U(q) | g ∈ G} of

unitary matrices such that

(i) ρ(1) is the identity matrix,

(ii) Tr ρ(g) = 0 for all g ∈ G \ {1},

(iii) ρ(g)ρ(h) = ω(g, h) ρ(gh) for all g, h ∈ G,

where ω(g, h) is a nonzero complex number depending on

(g, h) ∈ G × G; the function ω : G ×G → C
× is called the

factor system of ρ. We call G the index group of the error

basis E . The nice error basis that we have introduced so far

generalizes the Pauli basis to systems with q ≥ 2 levels.

We can obtain a nice error basis En on H ∼= C
qn by

tensoring n elements of E , so

En = E⊗n = {E1 ⊗ E2 ⊗ · · · ⊗ En | Ek ∈ E , 1 ≤ k ≤ n}.

The weight of an element in En are the number of non-identity

tensor components. We write wt(E) = d to denote that the

element E in En has weight d.

We can associate with a hybrid code H two weight enu-

merators

A(z) =
n
∑

d=0

Adz
d and B(z) =

n
∑

d=0

Bdz
d,

where the coefficients are given by

Ad =
1

K2M

M
∑

a,b=1

∑

E∈En

wt(E)=d

|tr(PbEPa)|
2

and

Bd =
1

K2M

M
∑

a,b=1

∑

E∈En

wt(E)=d

tr((PbEPa)(PbEPa)
∗) tr(Pa).

We note that both sums can be considerably simplified, but we

leave them in the current form for now, since that simplifies

the proof of the next proposition. We call (A0, A1, . . . , An)
and (B0, B1, . . . , Bn) the weight distributions of the hybrid

code H.

There is only one element in En of weight 0, namely the

identity matrix. The normalization constants are chosen such

that A0 = B0 = 1.

Proposition 2. Let H be a ((n,K :M))q hybrid code with

weight distributions Ad and Bd. Then the weight distributions

satisfy the following properties.

(a) The inequality Bd ≥ Ad ≥ 0 holds for all integers d in

the range 0 ≤ d ≤ n.

(b) We have Ad = Bd if and only if H can detect all errors

in En of weight d.

Proof. (a) Recall that the Cauchy-Schwarz inequality for op-

erators A,B ∈ B(H) is given by

|tr(A∗B)|
2
≤ tr(A∗A) tr(B∗B) (1)

and equality holds precisely when A and B are linearly

dependent.

If we apply this inequality to the term | tr(PbEPa)|
2 in

Ad, then we find that

|tr(PbEPa)|
2 = |tr((PbEPa)Pa)|

2

≤ tr((PbEPa)(PbEPa)
∗) tr(P ∗

aPa)

= tr((PbEPa)(PbEPa)
∗) tr(Pa)

Summing over all a, b ∈ [M ] and all error operators E of

weight d and normalizing, we obtain Bd ≥ Ad ≥ 0.

(b) If H can detect all errors of weight d in En, then

Ad =
1

M

M
∑

a=1

∑

E∈En

wt(E)=d

|λE,a|
2 = Bd.

Conversely, if equality Ad = Bd holds, then it follows

that for all a, b ∈ [M ] and every error E in En of weight

d the Cauchy-Schwarz inequality

|tr((PbEPa)Pa)|
2

≤ tr((PbEPa)(PbEPa)
∗) tr(P ∗

aPa) (2)

holds with equality. Therefore, PbEPa and Pa are linearly

dependent for all a, b ∈ [M ] and all E with wt(E) = d.

We will distinguish between (i) the diagonal case a = b

and (ii) the off-diagonal case a 6= b.

(i) If a = b, then we can deduce that for each a ∈ [M ]
and each error operator E of weight d there exists a

scalar λE,a such that

PbEPa = λE,aPa.

(ii) If a 6= b, then both sides of the inequality are equal

to 0, since the left-hand side satisfies

|tr((PbEPa))|
2
= |tr(PbEPaPb)|

2
= 0.

On the right-hand side, we have tr(Pa) = K 6= 0,

so we can deduce that

tr((PbEPa)(PbEPa)
∗) = 0.

Since tr(XX∗) = ‖X‖2 = 0 implies that X = 0,

we can conclude that PbEPa = 0.

In other words, if Ad = Bd, then it follows from (i)

and (ii) that every error operator E in En of weight d

is detectable by the hybrid code H.

We can simplify the expressions for the coefficients Ad

and Bd of the weight distributions of a hybrid code. The



coefficients Ad take a particularly simple form, namely they

are equal to the average of the Shor-Laflamme weights [9] of

the quantum codes Cm with m ∈ [M ].

Lemma 3. The weight Ad of an ((n,K :M))q hybrid code

H = {Cm | m ∈ [M ]} is obtained by averaging the Shor-

Laflamme weights Ad(Cm) of the quantum codes Cm. In other

words,

Ad =
1

K2M

M
∑

a=1

∑

E∈En

wt(E)=d

|tr(PaE)|
2

for all integers d in the range 0 ≤ d ≤ n.

Proof. The proof of the previous proposition revealed that the

off-diagonal terms in

Ad =
1

K2M

M
∑

a,b=1

∑

E∈En

wt(E)=d

|tr(PbEPa)|
2

vanish, since |tr(PbEPa)|
2
= 0 when a 6= b. The diagonal

terms |tr(PaEPa)|
2

are equal to |tr(PaE)|
2
, which proves

the claim.

We can also simplify the expression

Bd =
1

K2M

M
∑

a,b=1

∑

E∈En

wt(E)=d

tr((PbEPa)(PbEPa)
∗) tr(Pa),

a little bit by simplifying the argument of the first trace and

noting that trPa = K . Then we obtain

Bd =
1

KM

M
∑

a,b=1

∑

E∈En

wt(E)=d

tr(PbEPaE
∗) .

Unlike in the case of the weights Ad, the off-diagonal terms

tr(PbEPaE
∗) of the weight Bd do not necessarily vanish.

IV. MACWILLIAMS IDENTITIES?

Given that the Shor-Laflamme weights of quantum codes

obey the quantum MacWilliams identities [9], it is natural

to ask whether the weight enumerators A(z) and B(z) of a

hybrid code also satisfy the MacWilliams identity

B(z) =
K

qn
(1 + (q2 − 1)z)nA

(

1− z

1 + (q2 − 1)z

)

?

Since the weight Ad of an ((n,K :M))q hybrid code is given

by the average of the A-weights of the quantum codes Cm, it

is natural to consider the average of the dual weights

A⊥
d =

1

KM

M
∑

a=1

∑

E∈En

wt(E)=d

tr(PaEPaE
∗) .

We can define the weight enumerator

A⊥(z) =

n
∑

d=0

A⊥
d z

d.

This weight enumerator captures the diagonal part A⊥
d of each

weight Bd. By mimicking the proof of Shor and Laflamme [9]

for the MacWilliams identity for quantum codes, it is possible

to show that the average weight enumerators satisfy

A⊥(z) =
K

qn
(1 + (q2 − 1)z)nA

(

1− z

1 + (q2 − 1)z

)

.

If we define the off-diagonal weights

Cd =
1

KM

M
∑

a,b=1
a 6=b

∑

E∈En

wt(E)=d

tr(PbEPaE
∗)

and the corresponding weight enumerator

C(z) =

n
∑

d=0

C⊥
d z

d,

then we can express the weight enumerator B(z) in the form

B(z) = A⊥(z) + C(z).

The coefficients of C(z) satisfy Cd ≥ 0. By Proposition 2,

we have Cd = 0 when all errors of weight d are detectable by

the hybrid code.

In terms of A(z), the weight enumerator B(z) is given by

B(z) =
K

qn
(1 + (q2 − 1)z)nA

(

1− z

1 + (q2 − 1)z

)

+ C(z).

Thus, the usual MacWilliams identity does not hold for hybrid

codes, but a relaxed version does.

V. CONCLUSIONS

Many protocols in quantum communication require the

transmission of both classical and quantum information. Deve-

tak and Shor showed in [2] that a time-sharing approach for the

transmission of classical and quantum information is in general

inferior to a simultaneous transmission. The question is how

to accomplish this task. We showed that hybrid codes always

offer an advantage over a comparable quantum code, since

they allow one to detect more errors. We introduced weight

enumerators for hybrid codes that allow one to characterize

the highest weight of errors that can be detected by the code.
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