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Abstract

We consider the following generalization of an (n, k) MDS code for application to an erasure

channel with additive noise. Like an MDS code, our code is required to be decodable from any k

received symbols, in the absence of noise. In addition, we require that the noise margin for every

allowable erasure pattern be as large as possible and that the code satisfy a power constraint. In this

paper we derive performance bounds and present a few designs for low rank lattice codes for an additive

noise channel with erasures.

Index terms Lattices, Erasure Codes, MDS Codes, Compound Channel.

I. INTRODUCTION
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Fig. 1. Coding and Modulation for the Erasure Network.

We consider low rank lattice codes for transmission over a noisy erasure channel as illustrated

in Fig. 1. In this figure k information symbols are mapped by an encoder/modulator to a vector

x = (x1, x2, . . . , xn) ∈ Λ, where Λ is a rank-k lattice in Rn. The output of the additive noise

channel is y = x + z, where z = (z1, z2, . . . , zn) is a noise vector independent of x and with

independent components. Components of y are then erased by an erasure network, whose outputs
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are obtained by retaining only those symbols of y indexed by subsets S ⊂ {1, 2, . . . , n} in a

given sub-collection of subsets; thus yS coincides with y is the positions identified by S. As

an example, with n = 4, S = {2, 4} and y = (a, b, c, d), yS = (b, d). A decoder estimates

the source symbols based on yS with a probability of error denoted Pe(S). The objective is to

minimize Pe(S) for each S by designing a single codebook which satisfies a power constraint

E[X tX] ≤ nP , where E denotes expectation with respect to a uniform distribution on the

codebook. Here we consider as our sub-collection S , all k-subsets of {1, 2, . . . , n}. Our paper is

organized as follows. Prior work and lattice background is in Sec. II. Two performance bounds

are presented in Sec. III, constructions for codes in dimension n = 4 are presented and compared

to the derived bounds in Sec. IV. A summary is in Sec. V.

We use the acronym w.l.o.g to mean ‘without loss of generality’.

II. PRIOR WORK AND REVIEW OF LATTICE TERMINOLOGY

The problem considered here may be viewed as a code design problem for a special case of

the compound channel, see e.g. [1], [5]. This work was motivated by a study on cross layer

coding that appeared in [4]. For prior contributions on the Gaussian erasure channel, please refer

to [8] and the references therein.We now develop notation and some basic definitions for low

rank lattices in Rn. Let {φi, i = 1, 2, . . . , k} be a collection of k ≤ n orthonormal column

vectors in Rn and let Φ = (φi, i = 1, 2, . . . , k) denote the associated n× k orthonormal matrix.

Let V denote a k × k generator matrix of full rank for a lattice ΛV = V Zk := {V u, u ∈ Zk}.

We will refer to ΛV as the mother lattice. Let

Λ = ΦΛV := ΦV Zk. (1)

Λ is a rank-k lattice in Rn. Let G(ΛV ) = V tV denote the Gram matrix of ΛV (t is the transpose

operator).

The determinant of a lattice det Λ is defined in terms of the determinant of its Gram matrix by

det Λ := det(G(Λ)). Let ρ(Λ) denote the radius of the largest inscribed sphere in a Voronoi cell

of Λ. The packing density of Λ is defined in terms of Vk the volume of a unit-radius Euclidean

ball in Rk by

∆k(Λ) = Vkρ
k/
√

det Λ. (2)
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We denote by ∆k(opt), the largest packing density that can be acheived by any lattice in Rk. The

problem of finding lattices that maximize the packing density is a classical problem in number

theory and geometry, with several excellent references [3], [6].

The following definitions are from [6]. A body captures the notion of a solid subset of Rn,

specifically, B ⊂ Rn is a body if it has nonempty interior and is contained in the closure

of its interior [6]. A body B ⊂ Rn is said to be centrally symmetric if B = −B, where

−B = {−x : x ∈ B}. A closed body B with the property that for any x ∈ B, the point

λx ∈ B for every 0 ≤ λ < 1 is called a star body. While convex bodies are star bodies, the

converse is not true. A simple example, and one directly relevant to us is the star body formed by

the union of centrally symmetric ellipsoids in Rn. A lattice Λ is said to be admissible for B ⊂ Rn,

or B-admissible, if no non-zero point in Λ lies in B. The greatest lower bound of
√

( det Λ)

over all B−admissible lattices is called the lattice constant of B, denoted ∆(B) (which is set

to ∞ is there are no B− admissible lattices). A B-admissible lattice Λ with det Λ = ∆(B)2 is

said to be a critical lattice for B.

A lattice Λ is said to be a packing lattice for a body B if the sets B and B+λ are disjoint for

all non-zero λ ∈ Λ. It is known, Thm.1, Ch. 3, Sec 20 [6], that Λ is a packing lattice for centrally

symmetric, convex body B if and only if it is admissible for 2B. Thus, for a convex body, the

problem of finding a packing lattice for B is equivalent to that of finding an admissible lattice

for 2B. The connection between packings and admissibility for non-convex bodies is messier.

The distinction arises because for a centrally symmetric body B, Λ is a lattice packing of B

if and only if it is admissible for B + B, where + denotes the set sum or Minkowski sum. If

the centrally symmetric body is also convex, then B +B = 2B and thus packing problems and

admissibility problems are closely related. On the other hand, if B is centrally symmetric but

non-convex, in order to solve a packing problem for B one must solve an admissibility problem

for B +B, and this set may not be as easily described as B.

In our application, we need to index body B by subset S in a given sub-collection of subsets

and our problem is one of packing
⋃

S∈S B(S), which is non-convex. While admissibility for

non convex centrally symmetric body 2C says nothing in general about packings for C, it turns

out that our design problem is equivalent to finding a critical lattice for 2
⋃

S∈S B(S) because the

decoder knows S. Thus it is possible to draw on the theory of admissible lattices for star bodies.

This theory provides several key ingredients to help find a solution to this problem. Most notably,

in the chapter on Mahler’s compactness theorem [2], Theorem VII states that every critical lattice
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for a bounded star body S has n linearly independent points on the boundary of S.

III. BOUNDS

Let In = {1, 2, . . . , n}. For S ⊂ In, |S| = k let ΛS be the lattice obtained be retaining

only those coordinates that are in S or equivalently ΛS is the projection of Λ into the subspace

CS := Span{ei, i ∈ S} where ei = (0, ..., 0, 1, 0, ..., 0)t is the ith unit vector in Rn. For any

k-subset S ⊂ {1, 2, . . . , n}, we denote by ΦS the k×k submatrix obtained by extracting from Φ

the k rows identified by S. The generator matrix for ΛS is ΦSV and its Gram matrix G(ΛS) =

V tΦt
SΦSV .

Define the (packing volume) contraction ratio

βS = (ρ(ΛS)/ρ(ΛV ))k (3)

let ρmin = minS ρ(ΛS) and let βmin = minS βS .

A. Determinant Upper Bound

We will use symbols x̄, x# to denote the arithmetic mean and geometric mean, respectively,

of the real numbers xi over some index set I. When a k-dim mother lattice ΛV is set in IRn

using a basis Φ, the projections on the
(
n
k

)
subsets S, cannot all be simultaneously good. There

are two important factors that measure the ‘goodness’ of the projections—the packing density

and the scale of the lattices ΛS . The following theorem develops one of two bounds presented

in this paper.

Theorem 1. (Determinant Bound) Given a mother lattice ΛV and orthonormal basis Φ, let

β# and ∆# be respectively, the geometric mean of the volume contraction ratios and packing

densities of the child lattices ΛS , taken over all k-subsets of {1, 2, . . . , n}. Then

(β#∆(ΛV ))2 ≤ (∆#)2(
n
k

) . (4)

Equality holds if and only if all child lattices have equal determinants.

Proof. The packing densities of the mother lattice ΛV and child lattice ΛS are related by the

following identity

∆2(ΛV )β2
S = ∆2(ΛS)

det ΛS

det ΛV

. (5)
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Compute the geometric mean of both sides over the collection of k-subsets S to get

∆2(ΛV )(β#)2 = (∆#)2

(∏
S

det ΛS

det ΛV

) 1

(n
k)
. (6)

From the arithmetic-geometric mean inequality it follows that

∆2(ΛV )(β#)2 ≤ (∆#)2
1(
n
k

) (∑
S

det ΛS

det ΛV

)
(7)

and equality holds if and only if det ΛS is a constant with respect to S. However∑
S

det ΛS =
∑
S

det(G(ΛS))

=
∑
S

det((ΦSV )t) det(ΦSV )

(a)
= det((ΦV )t(ΦV ))

= det ΛV , (8)

where in (a) we have used the Cauchy-Binet formula, see e.g. [7]. The remainder of the proof

follows directly.

The following corollary is immediate.

Corollary 1. Given mother lattice ΛV and orthonormal basis Φ, let βmin be the minimum volume

contraction ratio of the child lattices ΛS , taken over all k-subsets of {1, 2, . . . , n}, and ∆# the

geometric mean of the packing densities. Then

(βmin∆(ΛV ))2 ≤ (∆#)2(
n
k

) ≤ ∆k(opt)2(
n
k

) . (9)

Equality holds in the left inequality iff all the contraction ratios are equal and all the child lattices

have equal determinants. Equality holds in the right inequality iff all child lattices achieve the

optimal packing density in dimension k.

B. Trace Upper Bound

Theorem 2. (Trace Bound) For an (n, k) code, the compaction ratio is bounded as

β
2/k
min ≤ β

2/k
S ≤ k

n
. (10)

Equality holds if the shortest vector of each lattice ΛS is the image of the shortest vector in ΛV .
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Proof. Upon summing over all k-subsets S we obtain∑
S

G(ΛS) =
∑
S

V tΦt
SΦSV

= V t

(∑
S

Φt
SΦS

)
V

= V t

(
n− 1

k − 1

)
ΦtΦV

=

(
n− 1

k − 1

)
V tV. (11)

By definition the smallest packing radius of any child lattice ρmin satisfies

ρmin
2 ≤ ρ(ΛS)2 ≤ (1/2)utG(ΛS)u (12)

for any non-zero u ∈ Zk and any k-subset S. Upon averaging over subsets S we obtain the

upper bound

ρ(ΛS)2 ≤ 1

2
(
n
k

)∑
S

utG(ΛS)u

=
1

2
(
n
k

)ut∑
S

G(ΛS)u

=

(
n−1
k−1

)
2
(
n
k

) utG(ΛV )u. (13)

Equality holds if ΦSV u is the shortest vector in ΛS for all S. Thus

ρ(ΛS)2 ≤ k

n
ρ2(ΛV ) (14)

and (10) follows immediately.

IV. ANALYSIS OF SOME (4, k) CODES

We construct Φ for n = 4 for various values of k and various mother lattices ΛV . Numerical

results for the (4, k), k = 2, 3 are presented in Fig. 2, in which β2/k
min is plotted as a function of

the packing density of the mother lattice. We have plotted the determinant bound using both the

optimal and the cubic lattice for the child lattices. We have also plotted the trace bound.

Observe that in the (n, k) = (4, 2) case there is a significant gap between the best possible

construction and the upper bounds. In the (4, 3) case performance close to the determinant bound

is achieved by setting the mother lattice to be the cubic lattice. Also with the cubic lattice as

the mother lattice, since the trace bound is lower than the determinant bound, this is proof that
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it is impossible to simultaneously achieve the packing density of D3 when the mother lattice is

the cubic lattice.
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Fig. 2. Bounds on β2/k and values obtained from the construction.
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Fig. 3. Packings (a) and the star body (b) derived from noise spheres in each of the six subspaces for the (4, 2) code with

ΛV = Z2 as described in the text.

Geometrically, the ability to decode correctly, post-erasure, with iid Gaussian noise is deter-

mined by the largest noise sphere which can be packed by the projected (or child) lattice ΛS

in each of the
(
n
k

)
subspaces CS . When each noise sphere is projected back onto the subspace

spanned by the columns of Φ, a noise sphere is transformed into an ellipsoid. To see this

consider the noise sphere ‖x‖2 ≤ r2 in subspace CS . Setting x = ΦSy, this leads to the noise
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ellipsoid BS(r) = {y : ‖ΦSy‖2 ≤ r2}. The packing of the noise ellipsoids BS(ρmin), (recall

that ρmin is the half the length of the shortest non-zero vector in ΛS), by the mother lattice

ΛV is shown in the six panels in Fig. 3(a), one for each subspace. Fig. 3(b) shows the star

body B(2ρmin) =
⋃

s∈S BS(2ρmin). This illustrates the star body, which is the union of the six

ellipses, two of which are circles. Also shown are points of the lattice ΛV , which in this case

is an admissible lattice for this star body and illustrates also the interpretation as a code design

problem for the compound channel. Observe that Z2 is simultaneously good as a packing for

all six erasure configurations, i.e. for each of the bodies BS(ρmin). Also, ΛV is simultaneously

critical for five of the six bodies BS(2ρmin) (notice that one circle does not touch any of the

lattice points).

A. (4, 1)

Let Φt =
(
a a a a

)
, a = 1/2. We obtain β2

min = 1/4. The trace and determinant upper

bounds yield β2 ≤ 1/4. Hence this construction is optimal.

B. (4, 2)

With ΛV = Z2, a = 1/
√

3 and

Φt =

 a a a 0

a −a 0 a


we obtain six child lattices with Gram matrices2a2 0

0 2a2

 ,

a2 a2

a2 2a2

 ,

2a2 a2

a2 a2

 ,

 a2 −a2

−a2 2a2

 ,

2a2 −a2

−a2 a2

 ,

a2 0

0 a2

 . (15)

All six child lattices are similar to Z2. The first one has shortest vector of square length 2a2 and all

the others have square length a2. This code achieves β2/k
min = βmin = 1/3, β# = 21/6/3 = 0.374.

The trace upper bound is βmin ≤ βS ≤ 1/2, regardless of the mother lattice, while the

determinant upper bound depends on the mother lattice, and is
√

2/3 and 1/
√

6 = 0.408 for

ΛV = A2 (hexagonal lattice) and Z2, resp. Thus the determinant bound is tighter than the trace

bound but greater than 1/3. This construction does not meet the trace bound or the determinant
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bound with equality. However with ΛV = Z2, the following theorem shows this to be the best

βmin possible. A computer-based search has also failed to reveal any improvements in β#.

Theorem 3. Let Φ be a 4×2 matrix with orthonormal columns, so that ΦtΦ = I . Let ΛV = Z2.

Let ΛS = ΦSΛV where S is a 2-subset of {1, 2, 3, 4}. Let rS be the length of the shortest non-zero

vector in ΛS . Then r2S ≤ 1/3 for at least one of the six 2-subsets of {1, 2, 3, 4}.

Proof. For this proof we will write

Φt =

x1 x2 x3 x4

y1 y2 y3 y4

 . (16)

Our proof is by contradiction. Suppose that the shortest non-zero vector in all ΛS has square

length r2 > 1/3. Now x2i < r2/2, in at most one position i, else the shortest would be smaller

than r2. The same is true for y2i , (xi − yi)2 and (xi + yi)
2. Hence there exists one position i,

w.l.o.g. i = 1, such that x2i ≥ r2/2 , y2i ≥ r2/2 and (xi − yi)2 ≥ r2/2. It follows that (i) x1 and

y1 must be of opposite sign and (ii) (x1 + y1)
2 < r2/2. (i) is true because if x1, y1 are of the

same sign and (x1−y1)2 ≥ r2/2 then |y1| ≥
√

2r or |x1| ≥
√

2r. Assuming x1 ≥
√

2r, we have

r2 ≤ x23 + x24 = 1 − x21 − x22 ≤ 1 − 2r2 which contradicts the hypothesis that r2 > 1/3. (ii) is

true for if not |x1| ≥
√

2r or |y1| ≥
√

2r, and by the same argument as in (i) r2 cannot exceed

1/3.

Since (x1 + y1)
2 < r2/2, it follows that (xi + yi)

2 ≥ r2/2 for positions i = 2, 3, 4. In at least

one of these positions, say i = 2, x2i ≥ r2/2 and y2i ≥ r2/2. Now x2 and y2 must be of the

same sign and (x2 − y2)
2 < r2/2, by a proof similar to that used before. Thus for i = 3, 4,

(xi + yi)
2 ≥ r2/2 and (xi − yi)2 ≥ r2/2. Again for i = 3, 4, both x2i ≥ r2/2 and y2i ≥ r2/2

cannot hold for the same i, hence, either x23 < r2/2, y23 ≥ r2/2 and x24 ≥ r2/2, y24 < r2/2 or

x24 < r2/2, y24 ≥ r2/2 and x23 ≥ r2/2, y23 < r2/2. We assume the first case. The proof for the

other case is similar.

We have already proved that x2 and y2 are of the same sign. Assume they are both positive

(if not reverse signs of all elements of Φ). Further, assume that y2 > x2 and consider positions

i = 2, 3 (if x2 > y2, then the same proof applies but for positions i = 2, 4). We now break up

the proof into two cases:

Case 1: (y3 and x3 of the same sign): Either (a) (y3 − x3)2 ≥ r2 or (b) (y3 − x3)2 < r2. If (a)

then |y3| − |x3| ≥ r and y22 + y23 ≥ x22 + (|x3|+ r)2 ≥ x22 + x23 + r2 ≥ 2r2. Thus r2 ≤ y21 + y24 =
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1− (y22 + y33) ≤ 1− 2r2, hence r2 ≤ 1/3.

If (b) then let (y3 − x3)2 = r2 − ε2 (0 < ε2 ≤ r2/2). Thus |y3| − |x3| =
√
r2 − ε2 and it follows

that y23 ≥ x23 + r2 − ε2. Since (y2 − x2)2 + (y3 − x3)2 ≥ r2 it follows that (y2 − x2)2 ≥ ε2 and

that |y2| ≥ |x2|+ ε and thus y22 ≥ x22 + ε2. Thus y22 + y23 ≥ x22 + ε2 + x23 + r2 − ε2

= x22 + x23 + r2 ≥ 2r2. But then r2 ≤ y21 + y24 = 1− (y22 + y23) ≤ 1− 2r2 and it follows that

r2 ≤ 1/3.

Case 2: (y3 and x3 are of opposite signs): Either (a) (y3 + x3)
2 ≥ r2 or (b) (y3 + x3)

2 < r2.

If (a) then |y3 + x3| ≥ r and due to opposite signs |y3| − |x3| ≥ r from which y23 ≥ x23 + r2. It

follows that y22 + y23 ≥ x22 + x23 + r2 ≥ 2r2. This implies r2 ≤ 1/3. If (b) then let

(y3 + x3)
2 = r2 − ε2. Since y3 and x3 have opposite signs (|y3| − |x3|)2 = r2 − ε2 and thus

y23 ≥ x23 + r2 − ε2. Since (y2 + x2)
2 + (y3 + x3)

2 ≥ r2 it follows that (y2 + x2)
2 + r2 − ε2 ≥ r2

and hence (y2 + x2)
2 ≥ ε2 which implies that y22 ≥ x22 + ε2. Thus

y22 + y23 ≥ x22 + ε2 + x23 + r2 − ε2 ≥ 2r2. Once again this means r2 ≤ 1/3.

C. (4, 3)

It is checked by direct evaluation that for a = 1/2, ΛV = Z3 and

Φt =


a −a −a −a

a a −a a

a −a a a

 , (17)

the four child lattices have Gram matrices
3/4 1/4 1/4

1/4 3/4 −1/4

1/4 −1/4 3/4

 ,


3/4 −1/4 1/4

−1/4 3/4 1/4

1/4 1/4 3/4


3/4 1/4 −1/4

1/4 3/4 1/4

−1/4 1/4 3/4




3/4 −1/4 −1/4

−1/4 3/4 −1/4

−1/4 −1/4 3/4

 .

All child lattices are congruent to the body-centered cubic lattice with packing density π
√

3/8.

This construction achieves the trace bound r2 = 3/4 and is optimal.
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Set ΛV to be the face-centered cubic lattice, the densest lattice packing in R3, packing density

∆V = π/
√

18 = 0.7408, so that det ΛV = 4,

V =


−1 1 0

−1 −1 1

0 0 −1

 , G(ΛV ) =


2 0 1

0 2 1

1 1 2

 . (18)

With Φ such that

Φ ∗ V =


1 0 0

2/3 1 1

−2/3 1 0

1/3 0 1

 , (19)

we get β2/k = (ρmin/ρ(ΛV ))2 = 0.5. Each child lattice has unit determinant and shortest vector

of length equal to unity. All four child lattices have an identical packing density of π/6, which

is the packing density of the cubic lattice Z3. Also observe that the determinant bound (4) holds

with equality, which implies that the selected Φ is optimal among rotations for which all child

lattices achieve the packing density of the cubic lattice.

Let ΛV the body-centered cubic lattice, ∆(ΛV ) = π
√

3/8, ρ2 = 3/4,

V =


1 −1 1

−1 1 1

−1 −1 1

 , G(ΛV ) =


3 −1 −1

−1 3 −1

−1 −1 3

 .

Upon setting a = 1/2, b = a+
√
a, c = a−

√
a and

Φ =


√
a a 0

0 a −
√
a

0 a
√
a

√
a −a 0

 ,Φ ∗ V =


−c c b

−c b c

−b c b

b −b −c


we obtain child lattices with Gram matrices given in terms of d = 2c2 + b2, e = 2b2 + c2,

f = −c2 − 2bc, g = c2 + 2bc, h = 3bc, i = −b2 − 2bc,
d f −g

f d h

−g h e

 ,


d −g f

−g e −h

f −h d

 ,
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e −g i

−g d −h

i −h e

 ,


e −i −g

−i e −h

−g −h d

 . (20)

Each child lattice has determinant 4 and shortest vector with square length d = (9/4−1/
√

2) =

1.5429 and packing density ∆ = πd3/2/12 = 0.5017. This results in β2/k = d/3 = 0.5143.

V. SUMMARY

We considered the design of power-constrained rank-k lattice codes in Rn, with the property

that error free recovery is possible for any k code symbols and the minimum distance for each of

the
(
n
k

)
lattices obtained by projection onto k-dim subspaces spanned by k coordinate vectors are

bounded from below. The potential application is to erasure channels with additive noise. Bounds

on the performance are derived and the performance of specific constructions are investigated

for n = 4.
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