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Abstract—A lattice is a set of all the integer linear combi-
nations of certain linearly independent vectors. One of the most
important concepts on lattice is the successive minima which is of
vital importance from both theoretical and practical applications
points of view. In this paper, we first study some properties of
successive minima and then employ some of them to improve the
suboptimal algorithm for solving an optimization problem about
maximizing the achievable rate of the integer-forcing strategy for
cloud radio access networks in [1].

Index Terms—Successive minima, integer-forcing, C-RAN.

I. INTRODUCTION

A lattice is a set of all the integer linear combinations of

certain linearly independent vectors. Specifically, for any full

column rank matrix A ∈ R
m×n (m ≥ n), the lattice L(A)

generated by A is defined by

L(A) = {Ax|x ∈ Z
n}, (1)

and A is called as the basis matrix of L(A), whose dimension

is defined as the rank of A.

One of the most important concepts on lattice is the suc-

cessive minima. Specifically, for any n-dimensional L(A), its

i-th (1 ≤ i ≤ n) successive minimum λi(A) is defined as the

smallest r such that the closed n-dimensional ball B(0, r) of

radius r centered at the origin contains i linearly independent

lattice vectors.

Finding a vector whose length equals to a certain successive

minimum is needed in a variety of applications. For example,

in communications (see, e.g., [2]) and cryptography (see, e.g.,

[3]), one frequently needs to solve the following shortest

vector problem (SVP) on L(A):

min
x∈Zn\{0}

‖Ax‖2,

whose solution x satisfies ‖Ax‖2 = λ1(A). In some other

applications, such as, integer-forcing (IF) linear receiver design

[4], (after some transformations) one needs to solve a Shortest

Independent Vector Problem (SIVP) on lattice L(A), i.e.,

finding an invertible matrix X = [x1, . . . ,xn] ∈ Z
n×n such

that

max
1≤i≤n

‖Axi‖2 ≤ λn(A). (2)

A closely related problem to the SIVP is a Successive Min-

ima Probem (SMP), i.e., finding an invertible matrix X =
[x1, . . . ,xn] ∈ Z

n×n such that

‖Axi‖2 = λi(A), i = 1, 2, . . . , n. (3)

Solving an SMP is needed in some practical applications, such

as physical-layer network coding [5], the expanded compute-

and-forward framework [6] and IF source coding [7].

Cloud radio access networks (C-RANs) is a promising

framework for 5G wireless communication systems. Recently,

an IF framework with two architectures for uplink C-RANs has

been proposed in [1]. Simulations in [1] indicate that for the

scenario where channel state is available to the receivers only,

the two architectures can nearly match and often outperforms

Wyner-Ziv-based strategies, respectively.

Successive minima is of vital importance from both theo-

retical and application points of view. Thus, this paper aims to

develop some properties of successive minima. Some of them

are useful for IF design for uplink C-RANs.

The rest of the paper is organized as follows. We develop

some properties of successive minima in Section II, and use

some of them to improve the suboptimal algorithm for IF

design for C-RAN in [1] in Section III. Finally, conclusions

are given in Section IV.

Notation. Let Rm×n and Z
m×n respectively stand for the

space of the m× n real and integer matrices. Let Rn and Z
n

denote the space of the n-dimensional real and integer column

vectors, respectively. For a symmetric positive definite (SPD)

matrix G ∈ R
n×n, we use chol(G) to denote the Cholesky

factor of G. For a matrix A, let aij denote its element at row

i and column j, ai be its i-th column. For a vector x, let xi

be its i-th element.

II. SOME PROPERTIES OF SUCCESSIVE MINIMUM

In this section, we first develop the monotonic property of

successive minima. Then, we propose a lower and an upper

bound on them. Some of these properties will be used in the

next section for IF design for C-RAN.

To prove our proposed properties of successive minima,

we need to introduce the following well-known property of

successive minima:

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) (4)
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for any full column rank matrix A ∈ R
m×n. In fact, (4) can

be easily seen from the definition of successive minima.

A. Monotonic property of successive minima

In the following, we develop some properties of successive

minima. Since in communications, it is often that one needs to

solve an SMP on a lattice whose basis matrix is not explicitly

given, but is the Cholesky factor of an SPD matrix, in the

sequel, we develop some properties of successive minima of

some lattices whose bases matrices are the Cholesky factors

of some SPD matrices.

Theorem 1. Suppose that G1,G2 ∈ R
n×n are SPD matrices.

Denote

R1 = chol(G1),R2 = chol(G2),R3 = chol(G1 +G2).

Then, for i = 1, 2, . . . , n, we have

λi(R3) ≥ max{
√

λ2
i (R1) + λ2

1(R2),
√

λ2
i (R2) + λ2

1(R1)}.
(5)

Proof. Since both G1 and G2 are SPD matrices, G1 + G2

is also an SPD matrix. Hence, R3 = chol(G1 + G2) is an

invertible matrix, implying that L(R3) is well-defined.

To show (5), it is equivalent to show

λi(R3) ≥
√

λ2
i (R1) + λ2

1(R2) (6)

and

λi(R3) ≥
√

λ2
i (R2) + λ2

1(R1). (7)

In the following, we only prove (6) since (7) can be similarly

proved.

Since the solution of the SMP on L(R3) (see (3)) always ex-

ists [8], there exists an invertible matrix X = [x1, . . . ,xn] ∈
Z
n×n such that

‖R3xi‖2 = λi(R3), i = 1, 2, . . . , n,

which combing with R3 =chol(G1 +G2) implies that

x
⊤
i (G1 +G2)xi = λ2

i (R3), i = 1, 2, . . . , n.

Let

j = argmax
1≤k≤i

x
⊤
k G1xk. (8)

Then, according to (4), we have

λ2
i (R3) ≥ λ2

j (R3) = x
⊤
j G1xj + x

⊤
j G2xj .

Since X is invertible, x1, · · · ,xi are linearly independent,

so are Rx1, · · · ,Rxi. Then, by (8) and the definition of

successive minima, one can see that

x
⊤
j G1xj = ‖R1xj‖22 ≥ λ2

i (R1).

Since G2 is an SPD matrix, R2 is invertible. Then by the

definition of successive minima and the fact that xj is a

nonzero integer vector, we can see that

x
⊤
j G2xj = ‖R2xj‖22 ≥ λ2

1(R2).

Hence, (6) follows from the above three equations.

Remark 1. Note that it is not necessary that both G1 and G2

are SPD matrices in Theorem 1. In fact, one of them is an SPD

matrix and the other one is a non-invertible symmetric positive

semidefinite matrix is enough. More specifically, if G1 is an

SPD matrix and G2 is a non-invertible symmetric positive

semidefinite matrix, then (5) is reduced to λi(R3) ≥ λi(R1).
Similarly, if G2 is an SPD matrix and G1 is a non-invertible

symmetric positive semidefinite matrix, then (5) is reduced to

λi(R3) ≥ λi(R2).

We would like to point out that the equality in (5) is

achievable. For more details, see the following example.

Example 1. Suppose that α1, α2, · · · , αn satisfy

0 < α1 ≤ α2 ≤ · · · ≤ αn. (9)

Let G1 be a diagonal matrix with its diagonal entries being

α1, α2, · · · , αn, i.e., G1 = diag(α1, α2, · · · , αn), G2 = βI

for some β > 0. Then

R1 = diag(
√
α1,

√
α2, · · · ,

√
αn), R2 =

√

βI,

R3 = diag(
√

α1 + β,
√

α2 + β, · · · ,
√

αn + β)

which combing with (9) implies that

λi(R1) =
√
αi, λi(R2) =

√

β, λi(R3) =
√

αi + β

for i = 1, 2, . . . , n. Hence,

√

λ2
i (R1) + λ2

1(R2) =
√

αi + β

≥
√

α1 + β =
√

λ2
i (R2) + λ2

1(R1).

Thus, the equality in (5) is reached.

By using Theorem 1, we can prove the following theorem

which provides an upper bound on the successive minima of

a lattice whose basis matrix is given by the Cholesky factor

of the inverse of the sum of two SPD matrices.

Theorem 2. Suppose that G1,G2 ∈ R
n×n are SPD ma-

trices. Denote R̂1 =chol(G−1
1 ), R̂2 = chol(G−1

2 ), R̂3 =
chol((G1 +G2)

−1) and

R̂4 = chol(G−1
1 (G−1

1 +G
−1
2 )−1

G
−1
1 ),

R̂5 = chol(G−1
2 (G−1

1 +G
−1
2 )−1

G
−1
2 ).

Then, for i = 1, 2, . . . , n, we have

λi(R̂1) ≥ max{
√

λ2
i (R̂3) + λ2

1(R̂4),

√

λ2
i (R̂4) + λ2

1(R̂3)},
(10)

λi(R̂2) ≥ max{
√

λ2
i (R̂3) + λ2

1(R̂5),

√

λ2
i (R̂5) + λ2

1(R̂3)}.
(11)

Proof. By the Woodbury matrix identity, we have

(G1 +G2)
−1 = G

−1
1 −G

−1
1 (G−1

1 +G
−1
2 )−1

G
−1
1 ,

(G1 +G2)
−1 = G

−1
2 −G

−1
2 (G−1

1 +G
−1
2 )−1

G
−1
2 .



Then

G
−1
1 = (G1 +G2)

−1 +G
−1
1 (G−1

1 +G
−1
2 )−1

G
−1
1 , (12)

G
−1
2 = (G1 +G2)

−1 +G
−1
2 (G−1

1 +G
−1
2 )−1

G
−1
2 .

Since both G1 and G2 are SPD matrices, so are

G
−1
1 ,G−1

2 , (G1 + G2)
−1, G

−1
1 (G−1

1 + G
−1
2 )−1G

−1
1 and

G
−1
2 (G−1

1 +G
−1
2 )−1G

−1
2 . Hence, (10) and (11) follow from

(5).

We would like to point out that the equalities in (10)

and (11) are achievable. For more details, see the following

example.

Example 2. Let G1 = diag(α1, α2, · · · , αn) for

α1, α2, · · · , αn satisfying (9), G2 = βI − G1 for some

β > αn. In the following, we show that both the equalities

in (10) and (11) are achievable. By some direct calculations,

we have

R̂1 = diag

(

1√
α1

,
1√
α2

, · · · , 1√
αn

)

, R̂3 =
1√
β
I,

R̂2 = diag

(

1√
β − α1

,
1√

β − α2
, · · · , 1√

β − αn

)

,

R̂4 = diag

(
√

1

α1
− 1

β
,

√

1

α2
− 1

β
, · · · ,

√

1

αn
− 1

β

)

,

R̂5 =
1√
β
diag

( √
α1√

β − α1

,

√
α2√

β − α2

, · · · ,
√
αn√

β − αn

)

.

Then, by (9), for i = 1, 2, . . . , n, we have

λi(R̂1) =
1

√
αn−i+1

, λi(R̂2) =
1√

β − αi

, λi(R̂3) =
1√
β
,

λi(R̂4) =

√

1

αn−i+1
− 1

β
, λi(R̂5) =

√

1

β − αi
− 1

β
.

By some simple calculations, one can easily show that both

the equalities in (10) and (11) are reached.

Remark 2. It is worth pointing out that (5), (10) and (11)

cannot be generalized to i > 1, i.e., none of the following

inequalities

λi(R3) ≥
√

λ2
i (R1) + λ2

i (R2),

λi(R̂1) ≥
√

λ2
i (R̂3) + λ2

i (R̂4),

λi(R̂2) ≥
√

λ2
i (R̂3) + λ2

i (R̂5).

always hold. Indeed, the following example shows this.

Example 3. Let

G1 =

[

3 0
0 1

]

, G2 =

[

1 0
0 8

]

.

Then

R1 =

[√
3 0
0 1

]

, R2 =

[

1 0

0
√
8

]

, R3 =

[

2 0
0 3

]

which implies that

λ2(R1) =
√
3, λ2(R2) =

√
8, λ2(R3) = 3.

Then, one can see that

λ2(R3) <
√

λ2
2(R1) + λ2

2(R2).

Furthermore, by some simple calculations, one can easily

show that

λ2(R̂1) <

√

λ2
2(R̂3) + λ2

2(R̂4),

λ2(R̂2) <

√

λ2
2(R̂3) + λ2

2(R̂5).

From Theorems 1 and 2, one immediately obtains the

following monotonic property of successive minima.

Corollary 1. Let G1,G2 ∈ R
n×n be SPD matrices such that

G1 −G2 is also an SPD matrix. Let R1,R2 and R̂1, R̂2 be

defined as in Theorems 1 and 2, then for i = 1, 2, . . . , n, we

have

λi(R1) > λi(R2), λi(R̂1) < λi(R̂2). (13)

From Corollary 1, we have the following result which

shows that the monotonic property of successive minima keeps

unchanged by adding a symmetric positive semidefinite matrix

and/or left multiplying a full column rank matrix followed by

right multiplying the transpose of this matrix.

Corollary 2. Let G1,G2 ∈ R
n×n be SPD matrices such that

G1 −G2 is also SPD. Let G ∈ R
m×m be an arbitrary sym-

metric positive semidefinite and B ∈ R
n×m be an arbitrary

full column rank matrix. Denote

R1 = chol(G +B
⊤
G1B), R2 = chol(G+B

⊤
G2B),

R3 = chol(G +B
⊤
G

−1
1 B), R4 = chol(G+B

⊤
G

−1
2 B)

and

R̂1 = chol((G +B
⊤
G1B)−1),

R̂2 = chol((G +B
⊤
G2B)−1),

R̂3 = chol((G +B
⊤
G

−1
1 B)−1),

R̂4 = chol((G +B
⊤
G

−1
2 B)−1).

Then

λi(R1) > λi(R2), λi(R̂1) < λi(R̂2), (14)

λi(R3) < λi(R4), λi(R̂3) > λi(R̂4). (15)

Proof. Since both G1 and G2 are SPD, G is symmetric

positive semidefinite and B is a full column rank matrix, one

can see that both G +B
⊤
G1B and G +B

⊤
G2B are also

SPD. Moreover, G1 −G2 is SPD, implying that

G+B
⊤
G1B − (G +B

⊤
G2B) = B

⊤(G1 −G2)B

is also SPD. Thus, (14) follows from (13).

In the following, we show (15). By (14), we only need to

show that G−1
2 −G

−1
1 is an SPD matrix. Let G3 = G1−G2,

then by the assumption, G3 is an SPD matrix. Then, by (12),

we have

G
−1
2 = (G2 +G3)

−1 +G
−1
2 (G−1

2 +G
−1
3 )−1

G
−1
2

= G
−1
1 +G

−1
2 (G−1

2 +G
−1
3 )−1

G
−1
2 ,

which implies that G−1
2 −G

−1
1 is an SPD matrix and hence

(15) holds.



B. Approximating the successive minima

In this subsection, we propose a lower and an upper bound

on the successive minima.

Let R ∈ R
n×n be the R-factor of the QR factorization of

a full column rank matrix A or a Cholesky factor of an SPD

matrix G, then we have the following result which gives a

lower and an upper bound on the successive minima of L(R)

Proposition 1. For i = 1, 2, . . . , n, we have

min
1≤j≤n

|rjj | ≤ λi(R) ≤ max
1≤j≤i

‖R1:j,j‖2. (16)

Proof. The second inequality is well-known and can be seen

from the definition of successive minima.

The first inequality follows from (4) and the fact that

λ1(R) ≥ min
1≤j≤n

|rjj | [9]. For the sake of readability, in the

following, we recall its proof from [9]. Let x ∈ Z
n such

that λ1(R) = ‖Rx‖2 and suppose that the last nonzero entry

of x is xi, then clearly λ1(R) ≥ |riixi| ≥ |rii|. Hence

λ1(R) ≥ min
1≤j≤n

|rjj | holds.

Remark 3. Note that both of the inequalities in (16) are

achievable. For example, if R = αI for some α > 0, then

one can easily see that for i = 1, 2, . . . , n,

α = min
1≤j≤n

|rjj | = λi(R) = max
1≤j≤i

‖R1:j,j‖2.

Remark 4. The first inequality in (16) can be slightly

improved when i = n. Specifically, we have λn(R) ≥
n

√

| det(R)|. In fact, by [7, Proposition 2], we have
∏n

i=1 λi(R) ≥ | det(R)|. which combing with (4) implies the

above inequality.

Note that the bounds given by (16) will became sharper if

we use the information of R̄ to give the upper bound, where

R̄ is a lattice reduced upper triangular matrix of R. Some of

the commonly used lattice reduction strategies to achieve this

purpose include the LLL reduction [9], KZ reduction [10] [11]

and Minkowski reduction [12].

By Theorem 1, Proposition 1 and Remark 4, one can easily

obtain the following result:

Corollary 3. Let G1,G2 ∈ R
n×n be SPD matrices such that

G1 −G2 is also an SPD matrix. Let R1,R2,R3 be defined

as in Theorem 1, then for i = 1, 2, . . . , n− 1, we have

λi(R3) ≥ max{
√

min
1≤j≤n

(r
(1)
jj )2 + λ2

1(R2),

√

min
1≤j≤n

(r
(2)
jj )2 + λ2

1(R1)}

and

λn(R3) ≥ max{
√

| det(R1)|2/n + λ2
1(R2),

√

| det(R2)|2/n + λ2
1(R1)},

where r
(1)
jj and r

(2)
jj are the j-th diagonal entries of R1 and

R2, respectively.

III. IMPROVING IF DESIGN FOR C-RAN

An algorithm for suboptimally solving an optimization

problem about maximizing the achievable symmetric rate for

the IF strategy with parallel channel decoding and parallel

decompression for C-RAN has been proposed in [1]. In this

section, we will use some properties of successive minima,

that were developed in Sec. II, to improve its efficiency.

C-RAN is a promising framework for 5G wireless com-

munication systems. An end-to-end IF architecture for C-

RAN has recently been proposed in [1]. Its main idea is

to employ an IF source coding [7], which can be either

symmetric or asymmetric, to send the channel observations to

the central processor. Then, IF channel coding [4] is utilized

to decode the channel codewords. By [1, Theorem 1], the

achievable symmetric rate of the IF strategy with parallel

channel decoding and parallel decompression is

R = max
d>0,X∈Zn×n,det(X) 6=0

min
1≤i≤n

1

2
log+

(

P

‖F (d)xi‖22

)

(17)

subject to

min
X̄∈Zn×n,det(X̄) 6=0

max
1≤i≤m

1

2
log+(‖F̄ (d)x̄i‖22) ≤ C, (18)

with

F (d) = chol((P−1
I + (BH)⊤(BB

⊤ + dI)−1
BH)−1),

(19)

F̄ (d) = chol(d−1(PBH(HB)⊤ +BB
⊤) + I), (20)

where H ∈ R
m×n is the channel matrix from n users to the

L base stations, B ∈ R
m×m is block diagonal matrix which

has L blocks with each of them being a linear equalizer, P is

a constant about the power constraint on the codeword, C is

a capacity and log+(x) , max (log(x), 0).
By (17)-(20), one can see that to find a matrix X̂ which

maximizes R, one needs to find d satisfying (18) to explicitly

form F (d) (see (19)). Suppose that d is found, then finding

X̂ is equivalent to solving the following problem:

X̂ = argmin
X∈Zn×n,det(X) 6=0

max
1≤i≤n

‖F (d)xi‖22. (21)

By the definition of successive minima and (2), one can see

that (21) is actually a SIVP problem which is suppose to be

NP-hard. Moreover, finding d’s satisfying (18) is also time

consuming, Hence a suboptimal algorithm is proposed to solve

(17) in [1].

In the following, we briefly recall the suboptimal algorithm

in [1]. It is claimed that λn(F (d)) (see (19)) is monotonically

increasing in d without proof (in fact this can be seen from

Corollary 2 and (19)), thus the smallest d satisfies

min
X̄∈Zn×n,det(X̄) 6=0

max
1≤i≤m

1

2
log+(‖F̄ (d)x̄i‖22) = C (22)

is the desired d. In fact, by the definition of successive minima,

(18) is equivalent to λn(F̄ (d)) ≤ exp(2C). By Corollary 2

and (20), one can see that λn(F̄ (d)) is decreasing with d.



Thus, the desired d is the one satisfies (22). After finding

d and explicitly forming F (d), the LLL reduction is used

to find a suboptimal X̂ . A bisection search method coupled

with the LLL reduction on F̄ (d) has been proposed in [1] to

find an approximation solution of (22) to get a suboptimal d.

The bisection method is initialized by setting dmin = 0 and

dmax large enough such that (18) holds (dmax is not explicitly

given).

In the following, we improve this suboptimal algorithm.

First, instead of using the LLL reduction, for efficiency, we

use the PLLL reduction which was proposed in [13] followed

by size reduction. The latter has the same performance as

the former in this application, but it is around O(n) times

faster than the former. Second, instead of setting dmin = 0
and dmax large enough such that (18) holds as in [1], we use

a larger dmin and explicitly giving dmax. More details on this

are giving as follows.

By the above analysis, finding the smallest d is equivalent to

solving λn(F̄ (d)) = exp(2C). Since λn(F̄ (d)) is decreasing

with d, to use the bisection method to find the desired d, we

need to find dmin and dmax such that λn(F̄ (dmin)) ≥ exp(2C)
and λn(F̄ (dmax)) ≤ exp(2C), respectively. To this end, we

denote

G = chol(PBH(HB)⊤ +BB
⊤), F̂ = chol(G). (23)

Then, by (20), (23) and Corollary 3, we have

λn(F̄ (d)) ≥
√

| det(d−1/2F̂ )|2/n + 1

=

√

d−1| det(F̂ )|2/n + 1. (24)

Let dmin be the solution of

√

d−1| det(F̂ )|2/n + 1 = exp(2C),

then by (24), dmin satisfies λn(F̄ (dmin)) ≥ exp(2C).

By performing the PLLL reduction (see [13]) followed by

size reduction on F̂ to find an unimodula matrix Z (i.e., Z ∈
Z
n×n such that | det(Z)| = 1) such that F̂Z is LLL reduced,

then d−1/2
F̂Z is also LLL reduced for any d > 0. Let dmax

be the solution of
√

max
1≤i≤n

Z
⊤
i (d

−1G+ I)Zi = exp(2C).

then by the definition of λn, one can see that λn(F̄ (dmax)) ≤
exp(2C).

IV. CONCLUSION

The successive minima of a lattice is important in both com-

munications and cryptography. In this paper, we investigated

some properties of successive minima and then employed

some of them to improve the efficiency of the suboptimal algo-

rithm for solving an optimization problem about maximizing

the achievable rate of the IF for C-RANs in [1].
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