
Coding over Sets for DNA Storage
Andreas Lenz∗, Paul H. Siegel†, Antonia Wachter-Zeh∗, and Eitan Yaakobi‡
∗Institute for Communications Engineering, Technical University of Munich, Germany

†Department of Electrical and Computer Engineering, CMRR, University of California, San Diego, California
‡Computer Science Department, Technion – Israel Institute of Technology, Haifa, Israel

Emails: andreas.lenz@mytum.de, psiegel@ucsd.edu, antonia.wachter-zeh@tum.de, yaakobi@cs.technion.ac.il

Abstract—In this paper, we study error-correcting codes for
the storage of data in synthetic deoxyribonucleic acid (DNA).
We investigate a storage model where data is represented by an
unordered set of M sequences, each of length L. Errors within
that model are losses of whole sequences and point errors inside
the sequences, such as substitutions, insertions and deletions. We
propose code constructions which can correct these errors with
efficient encoders and decoders. By deriving upper bounds on
the cardinalities of these codes using sphere packing arguments,
we show that many of our codes are close to optimal.

I. INTRODUCTION

DNA-based storage has attracted significant attention due
to recent demonstrations of the viability of storing informa-
tion in macromolecules. This recent increased interest was
paved by significant progress in synthesis and sequencing
technologies. The main advantages of DNA-based storages
over classical storage technologies are very high data densi-
ties and long-term reliability without electrical supply. Given
the trends in cost decreases of DNA synthesis and sequencing,
it is now acknowledged that within the next 10–15 years
DNA storage may become a highly competitive archiving
technology.

A DNA storage system consists of three important entities
(see Fig. 1): (1) a DNA synthesizer that produces the strands
that encode the data to be stored in DNA. In order to
produce strands with acceptable error rate the length of the
strands is typically limited to no more than 250 nucleotides;
(2) a storage container with compartments that store the
DNA strands, although in an unordered manner; (3) a DNA
sequencer that reads the strands and transfers them back to
digital data. The encoding and decoding stages are external
processes to the storage system which convert the binary user
data into strands of DNA in such a way that even in the
presence of errors, it is possible to reconstruct the original
data.

The first large scale experiments that demonstrated the
potential of in vitro DNA storage were reported by Church et
al. who recovered 643 KB of data [3] and Goldman et al. who
accomplished the same task for a 739 KB message [5]. Later,
in [6], Grass et al. stored and recovered successfully an 81 KB
message by using error-correcting codes. Since then, several
groups have built similar systems, storing ever larger amounts
of data. Among these, Erlich and Zielinski [4] stored 2.11MB
of data with high storage rate, Blawat et al. [1] successfully
stored 22MB, and more recently Organick et al. [13] stored
200MB. Yazdi et al. [19] developed a method that offers both
random access and rewritable storage.

DNA as a storage system has several attributes which
distinguish it from any other storage system. The most

User Binary Data
100100011110101
101000111110100

Storage Container

DNA strands
ACTGGGTGCATGCA
CGATGCAGTGAGTG

DNA Synthesizer

DNA strands
ACTGAGTGCATGCA

CGATGCTGTGAGTCG

DNA Sequencer

EncodingDecoding

Fig. 1. Illustration of a DNA-based storage system.

prominent one is that the strands are not ordered in the
memory and thus it is not possible to know the order in
which they were stored. One way to address this problem is
using block addresses, also called indices, that are stored as
part of the strand. Errors in DNA are typically substitutions,
insertions, and deletions, where most published studies report
that either substitutions or deletions are the most common
ones, depending upon the specific technology for synthesis
and sequencing [1], [4], [9], [13], [14], [20]. While codes
correcting substitution errors were widely studied, much less
is known for codes correcting insertions and deletions. The
task of error correction becomes even more challenging
taking into account the lack of ordering of the strands. The
goal of this work is to study and to design error-correcting
codes which are specifically targeted towards the special
structure of DNA storage systems.

II. DNA CHANNEL MODEL

We consider the storage of data in synthetic DNA and build
upon the analysis of [7] and [8]. In such a system, data is
stored as an unordered set

S = {x1,x2, . . . ,xM} ⊆ ZL2 ,

with distinct sequences xi. The parameter M denotes the
number of stored sequences and L is the length of each
sequence xi. The set of all possible data sets is therefore

XLM = {S ⊆ ZL2 : |S| =M},

and note that |XLM | =
(
2L

M

)
. Representing data words as

unordered sets is inherently natural, as any information about
ordering of the data sequences is lost during the storage.

When a data set S ∈ XLM is read from the storage
medium, a subset of M − s sequences is obtained, of which
additionally t are erroneous. This received data set S ′ is

1

ar
X

iv
:1

80
1.

04
88

2v
3

 [
cs

.I
T

]
 9

 M
ay

 2
01

8

considered to be the output of a pre-processing algorithm,
which produces estimates of the stored sequences with a
reconstruction algorithm.

Denote by (U ,L,F) a partition of S such that:
• the set U corresponds to the M − t − s sequences that

have been received without errors,
• L is the set of s sequences that have not been read at

all,
• F is the set of t sequences that are read with errors.

Hence, the channel output is S ′ = U ∪ F ′, where F ′ =
{x′f1 , . . . ,x

′
ft
} is the set of received sequences that are in

error. In each erroneous sequence x′fi , there are at most ε
substitution or insertion and deletion errors. Note that in
contrast to [10], where the storage of multisets with full
sequence errors (ε = L) are discussed, we consider unordered
sets with point errors (ε ≤ L). Since the erroneous sequences
x′fi are not necessarily distinct from each other or from
the sequences in U , the size of the received set satisfies
M − t − s ≤ |S ′| ≤ M − s. In view of our channel model,
we will refer to the following definition of an error-correcting
code for a DNA storage system.

Definition 1. A code C ⊆ XLM is called an (s, t, ε)H error-
correcting code, if it can correct s (or fewer) losses of se-
quences and ε (or fewer) substitutions in each of t (or fewer)
sequences. Similarly, an (s, t, ε)L error-correcting code is
defined for insertion/deletion errors, where the erroneous
sequences have at most ε insertions and deletions.

Here, the subscripts H,L abbreviate the underlying Ham-
ming, respectively Levenshtein metric. With this definition
a code C is a set of codewords, where each codeword is
itself a set of M sequences of length L. One of the main
challenges associated with errors in such codewords is the
loss of ordering of the code sequences. Throughout the paper
we will use the following definition for the redundancy of a
code.

Definition 2. The redundancy of a code C ⊆ XLM is

r(C) = log |XLM | − log |C| = log

(
2L

M

)
− log |C|.

Here and in the rest of the paper, we take the logarithm
to the base 2. We summarize several comments on the DNA
storage model in the following remark.

Remark 1. 1) We choose to work here with sets and not
multisets of sequences because sequences are assumed to
be replicated prior to reading, and the reading process
does not necessarily recover all of the copies. Thus it is
not possible to distinguish how many times each sequence
was stored. For more details, see [7].

2) Even though there is no order of the sequences in the
set S = {x1,x2, . . . ,xM}, for notational purposes we
assume they are listed in lexicographic order in the set
representation of S. However, this ordering information
is not available when reading the sequences. A common
and efficient solution to combat the lack of ordering of the
sequences is to add an index for each sequence [19], [7].
This requires an index of dlogMe bits in each sequence,
which limits the maximum number of information bits to

be M(L− dlogMe). While this solution is attractive for
its simplicity, it introduces already a redundancy of

log

(
2L

M

)
−M(L− dlogMe) = cMM,

where cM = (dlogMe− logM)+log e−ν with ν = o(1)
and ν ≤ 1+log e. Hence, every solution which uses index-
ing already incurs a redundancy of at best roughly M log e
bits. However, the indexing construction is asymptotically
optimal with increasing L [7]. Note that the suboptimality
of indexing for multiset codes has been shown in [10].

3) While the value of L is moderate, e.g., in the order of a
few hundreds, M is significantly larger. In this work we
assume that L = o(M) and usually M can be polynomial
in L or exponential in βL for some 0 < β < 1. In any
event we require M ≤ 2L.

4) We present the results in this work for binary sequences,
however most or all of them can be extended to the non-
binary case (and, in particular, the quaternary case).

The results about the redundancy of the proposed construc-
tions and their lower bounds are summarized in Table I.

TABLE I
REDUNDANCY OF CONSTRUCTIONS AND BOUNDS

Error correction Construction approx. Bound

(s, t, L)H or
cMM + (s+ 2t)(L− dlogMe)

(s+ t)L+
(s, t, L)L

(s+ 2t)L
t logMMc(s+ 2t)(L− logM + log e) +

M1−c log
(
eM

c
2
)
− (s+ 2t) log e

(0, 1, 1)L log(L+ 1) log(L)− 1
(0, 1, 1)H 2L logL
(0,M, 1)L M log(L+ 1) M(logL− 1)
(0,M, ε)H MεdlogLe Mε log(L/ε)

III. CODE CONSTRUCTIONS

A. An Index-Based Construction

The following construction is based on adding an index
in front of all sequences xi and using a maximum distance
separable (MDS) code over the M sequences. For all n and k,
where k ≤ n we denote by MDS[n, k] an MDS code over
any field of size at least n − 1. For all 1 ≤ i ≤ M we will
use I(i) ∈ ZdlogMe2 to denote the binary representation of the
index i with dlogMe bits.

In Construction 1, the sequences xi = (I(i),ui) of
each codeword set are constructed by writing a binary
representation of the index, I(i), of length dlogMe in the
first part of each sequence. Then, the remaining part ui is
viewed as a symbol over the extension field F2L−dlogMe , and
(u1, . . . ,uM) will form a codeword in some MDS code1.
In this construction and in the rest of the paper whenever we
write the set S we assume it is a set of M sequences denoted
by S = {x1, . . . ,xM} ∈ XLM . The following construction is
based on the findings in [7], where index-based constructions
are analyzed for the correction of losses only.

Construction 1. For all M,L, and a positive integer δ, let
C1(M,L, δ) be the code defined by

C1(M,L, δ) = {S ∈ XLM :xi = (I(i),ui),

(u1, . . . ,uM) ∈ MDS[M,M − δ]}.
1Note that we assume M ≤

√
2L in this section to guarantee the existence

of the MDS code. However, the case M >
√
2L can always be addressed

by employing non-MDS codes.

2

Lemma 1. For all M,L, δ, the code C1(M,L, δ) is an
(s, t, L)H error-correcting code for all s+ 2t ≤ δ.

Proof. To begin with, we observe that if we can recover the
MDS codeword U = (u1,u2, . . . ,uM), we can also recover
S. Given S ′, we create the received word U′ by declaring
position j to be an erasure if the index I(j) does not appear
or appears more than once in S ′. The remaining positions
in U′ are filled with the corresponding symbols u′j . We will
show that the number of erasures s′ and the number of errors
t′ in U′ satisfy s′+2t′ ≤ δ. Denote by UI ,LI ,FI the sets of
indices (first dlogMe bits) of sequences in S corresponding
to U , L, or F , respectively. Further, F ′I is the set of indices of
received sequences in S ′ that are the erroneous outcomes of
the sequences in F . First, we have s′ ≤ s+ t− t′+ |F ′I ∩UI |
where |F ′I ∩UI | accounts for the situation when an erroneous
sequence has the same index as an error-free one. Secondly,
the number of errors satisfies t′ ≤ |F ′I ∩ (FI ∪ LI)|. Hence,
s′ + 2t′ ≤ s+ t+ t′ + |F ′I ∩ UI | ≤ s+ 2t ≤ δ.

Similarly we obtain the error-correction capability of Con-
struction 1 with respect to insertion and deletion errors.

Lemma 2. For all M,L, δ, the code C1(M,L, δ) is an
(s, t, L)L error-correcting code for all s+ 2t ≤ δ.

Note that for the practically important case of losses and
combinations of substitution and deletion errors, C1(M,L, δ)
is error-correcting, if s + 2tH + tD ≤ δ, where tH is the
number of sequences suffering from substitution errors only
and tD is the number of sequences with deletion errors.
The same also holds for combinations of substitution and
insertion errors. For all M,L, δ, the redundancy of the code
C1(M,L, δ) is

r(C1(M,L, δ)) = cMM + δ(L− dlogMe).

B. A Construction Based On Constant Weight Codes

Imposing an ordering (e.g., lexicographic) onto the se-
quences in ZL2 , every data set S ∈ XLM can be represented by
a binary vector v(S) of length 2L, where each non-zero entry
in v(S) indicates that a specific sequence is contained in the
set S. The possible data sets can therefore be represented2

by the set of constant-weight binary vectors of length 2L,

VLM = {v ∈ {0, 1}2
L

: wt(v) =M},

where wt(v) denotes the Hamming weight of v, i.e., the
number of non-zero entries inside the vector v. Using this
representation, a sequence loss corresponds to an asymmetric
1→ 0 error inside v(S). Errors inside a sequence are either
single errors in the Johnson graph, see e.g. [2], or single
asymmetric 1→ 0 errors, if the erroneous sequence coincides
with an already present sequence in S . This suggests the
following construction.

Construction 2. For all M,L and positive integers s, t, let
CLM (s, t) ⊆ VLM be an M -constant-weight code of length 2L,
which corrects s asymmetric 1 → 0 errors and t errors in
the Johnson graph. We then define the following code

C2(M,L, s, t) = {S ∈ XLM : v(S) ∈ CLM (s, t)}.
2This representation has been used as a proof technique in [7].

Lemma 3. For all M,L and positive integers s, t, the code
C2(M,L, s, t) is an (s, t, L)H error-correcting code.

Proof. Denote by S ′ the received set after at most s losses
of sequences and errors in at most t sequences. Let s′ be
the number of asymmetric errors and t′ be the number of
errors in v(S) with s′ + t′ ≤ s + t and t′ ≤ t. Note that
s′ =M − wt(v(S ′)) is detectable by the decoder. If s′ ≤ s,
then the decoder can directly decode s′ ≤ s losses and t′ ≤ t
errors in the Johnson graph. If s′ > s, the decoder adds s′−s
(arbitrarily placed) ones to v(S ′), resulting in exactly s losses
and at most t′ + s′ − s ≤ t errors in the Johnson graph.

Since asymmetric and Johnson graph errors can be rep-
resented by one, respectively two substitutions, we can use
an M -constant-weight subset of any standard error correcting
code, which corrects τ = s + 2t errors for CLM (s, t). In [15,
ch. 5.5] it is shown that a τ -error-correcting binary alternant
code code of length 2L has dimension at least 2L− τL. Due
to the pigeonhole principle, there is one coset of the alternant
code that contains at least

(
2L

M

)/
2τL words with constant

weight M . Hence, there exists a code CLM (s, t), such that

r(C2(M,L, s, t)) ≤ (s+ 2t)L.

This redundancy is smaller than the redundancy of Construc-
tion 1, especially for the case L = o(M).

C. An Improved Indexed-Based Construction

Construction 1, which uses indexing, is beneficial for its
simplicity in the encoding and decoding procedure, however
its redundancy is larger than that of Construction 2. On the
other hand, Construction 2 does not provide an efficient en-
coder and decoder. In this section, we present a construction
which introduces ideas from both of these methods.

The main idea of this construction is to reduce the number
of bits allocated for indexing each sequence. This allows a
trade-off in redundancy with respect to L and M . To simplify
notation, we assume here that M = 2z for some z ∈ N.

Construction 3. Denote by Ic(i) ∈ Z(1−c) logM
2 the (1 −

c) logM most significant bits of the binary representation
I(i) of i, where 0 ≤ c < 1 and c logM ∈ N0. Further, for
0 ≤ i ≤M1−c−1, let Ui = {uiMc+1, . . . ,u(i+1)Mc} denote
a set of distinct sequences with the same index Ic(i), which
are ordered lexicographically and form a symbol over a field.
For δ ≥ 0, let C3(M,L, c, δ) be the code defined by

C3(M,L, c, δ) = {S ∈ XLM : xi = (Ic(i),ui),

(U1, . . . ,UM1−c) ∈ MDS[M1−c,M1−c − δ]}.

Note that there are M1−c groups of sequences which use
the same index. 3

Lemma 4. For all M,L, c, δ, the code C3(M,L, c, δ) is an
(s, t, L) error-correcting code for all s+ 2t ≤ δ.

Lemma 1 is proven similiar to Lemma 4. The redundancy
of C3 can be shown to be approximately

r(C3) ≈M cδ(L−logM+log e)+M1−c log
(
eM

c
2

)
−δ log e.

3The symbols of the MDS code are symbols of a finite field with size(2LMc−1

Mc

)
and we therefore require M1−c ≤

(2LMc−1

Mc

)
.

3

D. Special Constructions

We begin with an observation about the equivalence of
(0, t, ε)L codes for the case where there are either only
insertion or only deletion errors inside the sequences.

Lemma 5. A code C ⊆ XLM is (0, t, ε) insertion-only
correcting if and only if it is (0, t, ε) deletion-only correcting.

Note that a (0, t, ε)L deletion-only (or insertion-only)
code, with ε ≥ 2, is in general not insertion and
deletion correcting. A counterexample is the code C =
{{0000, 1111, 1000}, {0000, 1111, 0111}}, which is both
(0, 1, 2) insertion-only and deletion-only correcting, but not
(0, 1, 2)L insertion and deletion correcting.

The following construction is based on Varshamov-
Tenengolts (VT) codes [17], [11] that correct a single in-
sertion/deletion in one of the M sequences. This code can
be extended to an arbitrary alphabet size q by applying non-
binary VT codes [16]. The construction employs the idea of
using single-erasure-correcting code over the checksums. The
insertion/deletion can then be corrected using the correspond-
ing checksum. Note that this idea is similar to the concept of
tensor product codes [18].

Definition 3. The checksum sL(x) of x ∈ ZL2 is defined by

sL(x) =

L∑
i=1

ixi mod (L+ 1).

Construction 4. For an integer a, with 0 ≤ a ≤ L, the code
construction C4(M,L, a) is given by

C4(M,L, a) =

{
S ∈ XLM :

M∑
i=1

sL(xi) ≡ a mod (L+ 1)

}
.

Lemma 6. For all M,L, a, the code C4(M,L, a) is a
(0, 1, 1)L error-correcting code.

Proof. Assume there has been a single insertion or deletion in
the k-th sequence. After the reading process, the M−1 error-
free sequences can be identified as they have length exactly
L. The checksum deficiency is given by

a−
∑
i∈U

sL(xi) mod (L+ 1) = sL(xk).

The error in xk is corrected by decoding into the VT code
with checksum sL(xk).

Based on the pigeonhole principle there exists 0 ≤ a ≤ L
such that the redundancy of the code C4(M,L, a) satisfies

r(C4(M,L, a)) ≤ log(L+ 1).

As we will show in Theorem 2, the redundancy of any
(0, 1, 1)L error-correcting code is at least log(L + 2) − 1,
and thus Construction 4 is close to optimal.

Using VT codes, we propose another construction of
(0,M, 1)L error-correcting codes. That is, the code can
correct a single deletion or insertion in every sequence.

Construction 5. Let a ∈ N0, with 0 ≤ a ≤ L. Then,

C5(M,L, a)= {S ∈XLM : sL(xi)≡ a mod (L+1),∀ 1≤ i≤M}.

Lemma 7. The code C5(M,L, a) is a (0,M, 1)L error-
correcting code.

By Construction 5, all sequences xi have the same check-
sum a, which allows to correct single insertions or deletions
in each sequence. It is known [11] that the number of words
satisfying sL(x) = 0 mod (L + 1) is at least 2L/(L + 1).
Therefore the redundancy of Construction 5 is at most

r(C5(M,L, 0)) ≤M
(
log(L+ 1) +

M log e

2L/(L+ 1)−M

)
.

With our assumption M = 2βL, we obtain a redundancy of
r(C5(M,L, 0)) ≈ M log(L + 1). The next construction can
be used to correct ε substitution errors in each sequence. Let
C[L, ε] a binary ε-error-correcting code of length L.

Construction 6. For all M,L, and ε we define the code

C6(M,L, ε) = {S ∈ XLM : S ⊆ C[L, ε]},

Lemma 8. The code C6(M,L, ε) is a (0,M, ε)H error-
correcting code.

The proof is immediate, since every sequence is a code-
word of a code that can correct ε errors. For C[L, ε] we use
a binary ε-error correcting alternant code of length L, which
has redundancy at most εdlogLe [15, ch. 5.5] and thus obtain
a code C6(M,L, ε) with redundancy at most

r(C6(M,L, ε)) ≤M
(
εdlogLe+ M log e

2L−εdlogLe −M

)
,

if M ≤ 2L−εdlogLe. With our assumption M = 2βL, the
redundancy is roughly r(C6(M,L, ε)) ≈MεdlogLe.

IV. UPPER BOUNDS

In this section we derive non-asymptotic sphere packing
upper bounds on codes within the presented storage model.

Definition 4. The error ball BHt,ε(S) [BLt,ε(S)] is defined to
be the set of all possible received sets S ′ = U ∪ F ′ after t
(or fewer) sequences of S ∈ XLM have been distorted by ε
(or fewer) substitution [insertion/deletion] errors each.

Definition 5. The error ball BHε (x) [BLε (x)] around x ∈ ZL2
is defined to be the set of all possible received vectors x′ 6= x,
after ε (or fewer) substitutions [insertions/deletions].

Theorem 1. The cardinality of any (0, t, ε)H error-correcting
code C ⊆ XLM satisfies

|C| ≤
∑M
i=M−t

(
2L

i

)
(BHε − (t− 1)NHε)t

,

where BHε =
∑ε
i=1

(
L
i

)
is the size of the ε-error ball and

NHε =
∑ε−1
i=0

(
L−1
i

)
is the maximum intersection size of two

ε-error balls around two distinct words.

Proof. We derive a lower bound on |BHt,ε(S)|. To each of the t
erroneous sequences we can associate a unique set of at least
BHε − (t−1)NHε distinct words in the substitution error ball.
This is because there are BHε elements in the substitution
ball and there are at most NHε elements in common with
each of the t − 1 other erroneous sequences. Therefore, we
get (BHε − (t − 1)NHε)t possible unique received sets. The
nominator counts all possible received sets of size M − t to
M , which yields the bound by a sphere packing argument.
The value for NHε is known from [12].

4

Using this bound yields for small t and ε = 1 a minimum
redundancy of approximately t log(L).

Theorem 2. The cardinality of any (0, t, ε)L error-correcting
code C ⊆ XLM satisfies

|C| ≤
(

2L

M−t
)(

2L+ε

t

)(
M
t

)
(SIε − (t− 1)NIε)

t
,

where SIε =
∑ε
i=0

(
L+ε
i

)
is the size of the ε-insertion

sphere and NIε =
∑ε−1
i=0

(
L+ε
i

)
(1−(−1)ε−i) is the maximum

intersection of two ε-insertion spheres of two distinct words.

The proof of Theorem 2 follows the same idea as the proof
of Theorem 1. For small t and ε = 1, this bound implies a
minimum redundancy of approximately t(log(L+ 2)− 1).

A. Asymptotic bounds

We now derive asymptotic bounds for large L on the
redundancy for (0,M, ε)H and (0,M, ε)L error-correcting
codes.

Lemma 9. Denote by Y ⊆ S ∈ XLM the largest set such that
Y is an ε-substitution correcting code. Then,

|BHt,ε(S)| ≥

{ (
BHε
)|Y|

, if |Y| ≤ t(|Y|
t

) (
BHε
)t
, else

where BHε =
∑ε
i=1

(
L
i

)
.

Proof. In each of the distinct error balls BHε (x), x ∈ Y we
have at least BHε = |BHε (x)| possible patterns of unique
outcomes for BHt,ε(S) by either adding an error to x such
that a sequence in BHε (x) \ S is obtained or by adding an
error to a sequence in BHε (x)∩S such that x is obtained.

Theorem 3. The redundancy of any (0,M, ε)H error-
correcting code C ⊆ XLM satisfies asymptotically

r(C) & cM log(BHε),

for any 0 ≤ c < 1, when L→∞ and M = 2βL, 0 < β < 1.

Proof. Denote by D(c) the number of data words S ∈ XLM
which have a ball size |BHM,ε(S)| < (BHε)cM , where 0 ≤
c < 1. By Lemma 9, D(c) is at most the number of data
sets, which do not contain an ε-error correcting code Y ⊆ S
of size at least ct. By a sphere packing argument, it follows
that any (0,M, ε)H correcting code C ⊆ XLM satisfies

|C| ≤
∑M
i=cM

(
2L

i

)
(BHε)cM

+D(c).

It can be shown that the first term in this sum dominates the
bound for all 0 ≤ c < 1, when M = 2βL, with 0 < β <
1.

Theorem 4. The redundancy of any (0,M, ε)L error-
correcting code C ⊆ XLM satisfies asymptotically

r(C) & cM(log(SIε)− ε),

for any 0 ≤ c < 1, when L→∞ and M = 2βL, 0 < β < 1.

Theorem 4 can be shown by noting that most balls
BLM,ε(S) have size at least (SIε)

cM , similar to the proof of
Theorem 3.

B. Bound for losses and errors

Theorem 5. The redundancy of any (s, t, L)H or (s, t, L)L
correcting code C ⊆ XLM satisfies

r(C) ≥ (s+t) log(2L−M−t)+t log(M−s−t)−log(t!(s+t)!).

Proof. Choosing s+ t sequences to be erroneous and letting
each of the t erroneous ones be one of the 2L−M sequences
in XLM\S, we can use a sphere-packing argument to show that
any (s, t, L)H or (s, t, L)L correcting code C ⊆ XLM satisfies
|C| ≤

(
2L

M−s
)/((

M
t+s

)(
2L−M
t

))
.

REFERENCES

[1] M. Blawat, K. Gaedke, I. Hütter, X. M. Chen, B. Turczyk, S. Inverso,
B. W. Pruitt, and G. M. Church, “Forward error correction for DNA
data storage,” in Int. Conf. Computational Science, San Diego, Jun.
2016, pp. 1011–1022.

[2] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A
new table of constant weight codes,” IEEE Trans. Inf. Theory, vol. 36,
no. 6, pp. 1334–1380, Nov. 1990.

[3] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, no. 6102, pp. 1628–1628, Sep. 2012.

[4] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient
storage architecture,” Science, no. 6328, pp. 950–954, Mar. 2017.

[5] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, no.
7435, pp. 77–80, Jan. 2013.

[6] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark,
“Robust chemical preservation of digital information on DNA in silica
with error-correcting codes,” Angewandte Chemie Int. Edition, no. 8,
pp. 2552–2555, Feb. 2015.

[7] R. Heckel, I. Shomorony, K. Ramchandran, and D. N. C. Tse, “Fun-
damental limits of DNA storage systems,” in IEEE Int. Symp. Inform.
Theory, Aachen, Germany, Jun. 2017, pp. 3130–3134.

[8] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146, Jun.
2016.

[9] S. Kosuri and G. Church, “Large-scale de novo DNA synthesis:
technologies and applications,” Nature Methods, no. 5, pp. 499–507,
May 2014.

[10] M. Kovačević and V. Y. F. Tan, “Codes in the space of multisets –
coding for permutation channels with impairments,” IEEE Trans. Inf.
Theory, Jan. 2018, (early access).

[11] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp.
707–710, Feb. 1966.

[12] ——, “Efficient reconstruction of sequences,” IEEE Trans. Inf. Theory,
vol. 47, no. 1, pp. 2–22, Jan. 2001.

[13] L. Organick, S. D. Ang, Y. J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen,
C. Takahashi, S. Newman, H. Y. Parker, C. Rashtchian, G. G. K. Stew-
art, R. Carlson, J. Mulligan, D. Carmean, G. Seelig, L. Ceze, , and
K. Strauss, “Scaling up DNA data storage and random access retrieval,”
bioRxiv, Mar. 2017.

[14] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. Lennon, R. Hegarty,
N. Nusbaum, and D. Jaffe, “Characterizing and measuring bias in
sequence data,” Genome Biol., no. 5, May 2013.

[15] R. M. Roth, Introduction to Coding Theory. New York: Cambridge
University Press, 2006.

[16] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion,” IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 766–769, 1984.

[17] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Automation Remote Control, vol. 26, no. 2, pp.
286–290, 1965.

[18] J. K. Wolf, “An introduction to tensor product codes and applications to
digital storage systems,” in IEEE Inform. Theory Workshop, Chengdu,
China, Oct. 2006, pp. 6–10.

[19] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic,
“A rewritable, random-access DNA-based storage system,” Nature
Scientific Reports, no. 14138, Aug. 2015.

[20] A. K. Yim, A. C. S. Yu, J. W. Li, A. I. C. Wong, J. F. C. Loo, K. Chan,
S. K. Kong, and T. F. Chan, “The essential component in DNA-based
information storage system: Robust error-tolerating module,” Frontiers
in Bioengineering and Biotechnology, no. 49, pp. 1–5, Nov. 2014.

5

	I Introduction
	II DNA Channel Model
	III Code Constructions
	III-A An Index-Based Construction
	III-B A Construction Based On Constant Weight Codes
	III-C An Improved Indexed-Based Construction
	III-D Special Constructions

	IV Upper Bounds
	IV-A Asymptotic bounds
	IV-B Bound for losses and errors

	References

