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Abstract—This paper has dual aims. First is to develop
practical universal coding methods for unlabeled graphs. Second
is to use these for graph anomaly detection. The paper develops
two coding methods for unlabeled graphs: one based on the
degree distribution, the second based on the triangle distribution.
It is shown that these are efficient for different types of random
graphs, and on real-world graphs. These coding methods is then
used for detecting anomalous graphs, based on structure alone.
It is shown that anomalous graphs can be detected with high
probability.

I. INTRODUCTION

A popular research problem in data mining is graph anomaly
detection, which has applications in areas ranging from finance
to power grid operation to detecting social trends [1], [2],
[3]. In this paper we explore using description length for
graph anomaly detection; that is, we encode the graph using a
lossless source coder, and use the resulting codelength as the
decision criteria. While minimum description length (MDL)
has been used in the connection with graph anomaly detection,
the application has only been for model selection in time-series
analysis. As far as we know, this paper is the first to consider
using description length directly for anomaly detection.

Reference [4] was the first paper to develop practical
source coding algorithms for graphs. To use source coding
for description length analysis, the codelength has to reflect
the information in the graph, and the only information [4]
reflects really is the edge probability p (see discussion later).
This paper therefore develops new practical (universal) source
coding algorithms based on more informative statistics. This
focus is different than other recent papers in graph coding [5],
[6], [7], [8] that are aimed more at entropy analysis.

A. Graphs

The structure of a graph is defined by the set of vertices
(also called nodes) V , and the set of edges, E . Usually, the
ordering of the vertices are irrelevant, and in that case we
call the graph unlabeled; we will only consider unweighted,
unlabeled, undirected graphs in this paper. A graph, G(V, E),
is often represented by the adjacency matrix, A = [Aij ], a
|V| × |V| matrix where Aij = 1 if (i, j) ∈ E . The degree of a
vertex is the number of edges emanating from the vertex. The
degree distribution is the collection of the degrees of all the
nodes in the graph and is an often used statistics to differentiate
between different classes of random graphs such as Erdös-
Rényi Barabási-Albert or Watts-Strogatz graphs [9]. There
is a one-to-one correspondence between binary, symmetric

matrices and unweighted, undirected graphs, and coding of
graphs is therefore equivalent to coding binary, symmetric
matrices.

B. Description Length

The description length of the data is the number of bits
required to describe the data exactly: the data is turned into
a stream of bits, and from this the data should be able to be
recovered exactly by a decoder. We are only concerned with
the length of the encoding, i.e., the number of bits output be
encoder.

The central idea here is that the description length has some
relationship with the "meaning" of data. For example, Rissanen
considered "useful information" in [10]. More concretely,
description length can be used for data analysis. A traditional
application, in particular in terms of minimum description
length (MDL) [11], has been for model selection in data
analysis. The methodology we will develop for graph coding
can also be used for model selection for more general data
sets. However, we are more interested in description length as
a general data processing tool beyond simple model selection.
One example is atypicality which is described in Section III.

A central principle of description length is the constraint
that a decoder should be able to reconstruct the original data
from an (infinite) stream of bits. One manifestation is of
course the Kraft inequality [12], but the principle is more
general. Since most source coding algorithms are sequential,
decodability then means that the decoder can only use past
decoded information to decode future data. For graphs, this
is much more complicated to satisfy than for sequences.
Decodability now becomes an algorithmic constraint rather
than a probabilistic one, moving description length theory
closer to Kolmogorov complexity [13], [12].

II. CODING

We will base graph coding on the adjacency matrix – due
to symmetry, only the lower triangular part has to be coded.
However, usually the numbering of nodes is irrelevant. The
resulting graph modulo automorphisms is called the structure
[4]. Using this in encoding can lead to smaller codelength.
Importantly, for data analysis, clearly the structure is more
relevant, and description length therefore should be based on
the structure.

The adjacency matrix is a binary matrix, and coding this is
therefore similar to the problem considered by Steinruecken
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1 1 1 · · ·
1 1 1 · · ·
1 1 0 · · ·
1 0 1 · · ·
1 0 0 · · ·
0 1 1 · · ·
0 1 0 · · ·
0 0 1 · · ·
0 0 0 · · ·

Table I
THE FIRST COLUMN HAS ONE GROUP, THE SECOND TWO (BLUE/GREEN),

THE THIRD FOUR (RED/CYAN/PURPLE/PINK).

in [14], on which we will base our coding. Steinruecken
considered coding of unordered iid sequences, which we will
think of as a matrix. We can state the approach more abstractly
as follows: we first sort the rows according to some criterion
(e.g., lexicographically). The coding is done on the sorted
matrix, and only the sorted matrix is reproduced (exactly) at
the receiver. The trick is to sort in such a way that coding
of the sorted matrix is more efficient than coding the original
matrix. The procedure in [14] is to first sort the sequences
lexicographically (with 1 coming before 0). We say that the
sequences are grouped: the first group is all sequences, the
next two groups are sequences that start with 1/0, which is
then subgrouped into sequences starting with 11/10/01/00, see
Table I. An efficient code is as follows: we first transmit the
number of ones in the first column (the first group). The next
column is divided into two groups: those rows that has 1 in the
first column, and those that have 0. We transmit the number of
ones in each group. When the sequences are iid, the number of
ones is binomially distributed, which can be used for encoding.
We continue this way (with empty groups not encoded).

This approach can also be applied to adjacency matrices,
with the modification that when we permute the rows during
sorting, we have to do the same permutation of columns to
preserve symmetry. This turns out to be equivalent to the
algorithm in [4], but describing it this way reveals that the
approach in [4] is strongly aimed at Erdös-Rényi graphs.
From a data analysis point of view this is problematic. The
only parameter the algorithm in [4] is sensitive to is the
average node degree k̄ (equivalently p). Consider anomalous
graph detection in terms of atypicality (this is described in
more detail in Section III-A): We compare the codelength of
encoding the graph with a given learned coder and a universal
coder. Since the only parameter [4] is sensitive to is p, this
corresponds to a hypothesis test of p = p0 versus p 6= p0. This
is not irrelevant, but it is far from what we do with sequences,
where we can test a given FSM against the whole class of
alternative FSM. Thus, to be effective for data analysis, we
need much more effective coders. In the following we will
describe two such coders.

A. Coding Using Degree Distribution

Assume we know the degree distribution P (k), either from
a model, from learning, or from the given graph. How can
we take this into account in coding? Consider coding of a
given column of the sorted adjacency matrix, as outlined
above. Important here is what the decoder already knows,

from previous columns: it knows the number of ones above
the diagonal, it knows the number of groups g, and it knows
the size si of each group; let s =

∑g
i=1 si. We first encode

the (total) degree of the node. Call the number of ones above
the diagonal k̄. We can use the coding distribution

P (k|k ≥ k̄) =
P (k)∑∞
j=k̄ P (j)

(1)

The decoder now has encoded the number of new ones
(or edges) to encode. The encoder needs to encode which
configuration of the k − k̄ is seen; that is, how many ones ki
are in each group, subject to the total count being k − k̄. We
assume that every sequence with k− k̄ ones is equally likely,
so calculating the probability of seeing a specific configuration

is just a counting problem. In total there are
(

s
k − k̄

)
sequences with k− k̄, and there are

(
si
ki

)
ways to arrange

the ki ones in each group. The coding probability of a specific
configuration therefore is

logP =

g∑
i−1

− log

(
si
ki

)
+ log

(
s

k − k̄

)
A central assumption here is that at time of decoding a given

column, the decoder knows the number of ones k̄ above the
diagonal so that it can calculate (1). This is satisfied if the rows
and columns are first sorted lexicographically, which can be
seen as follows. Suppose i columns have been coded/decoded.
The decoder knows the first i columns and rows in the (sorted)
adjacency matrix: this is clearly possible to reconstruct from
the number of ones in each group until column i and the fact
of the sorting. The next row is chosen by the encoder among
those among the remaining n−i columns that has highest sort
order based on the first i columns. No matter which column
is chosen, the decoder knows the first i bits, and therefore the
number of ones above the diagonal.

It is not necessary to explicitly sort the adjacency matrix.
Instead one can use the same partitioning algorithm from [4].
While not very explicit in the paper, they actually sort the
adjacency matrix in the way they choose the next node to
encode. It is seen most clearly from [4, Fig. 3].

B. Coding of Triangles

Edges are the most fundamental building block of graphs. A
more complex building block is triangles, i.e., a cycle graph
with three nodes, which is also a 3-clique. Statistics about
triangles are often used to characterize graphs [9]. One statistic
is the following. Consider three connected nodes i↔ j ↔ k;
we let p4 be the probability that there is also an edge i↔ k.
We can use this for coding as follows. Let the current node to
be coded be node i, and suppose we want to code whether or
not there is an edge to node k. We now look for a common
neighbor j of nodes (i, k) among nodes already coded. If such
a node exists, we encode the edge i↔ k using p4; otherwise,
we use p. This can be used together with the structure encoding
of Table I: Notice that all groups have exactly the same



connections to prior encoded nodes. Thus all the nodes k ∈ G
in a group either has a common previously encoded neighbor
with node i, or none have. Therefore, they can all be encoded
with either p4 or p. That is, the number of ones in the group
can be encoded with a binomial distribution with probability
either p4 or p.

C. Calculation and Encoding of Statistics

We consider encoding in two scenarios: learned coding,
where we are given a set of training graphs and have to learn
the statistics; this statistics is known both by encoder and
decoder. Second, universal coding, where the encoder encodes
a single graph and also has to communicate to the decoder
what is the statistic.

For learned coding, the edge probability p can be estimated
straightforwardly as an average. The degree distribution is
estimated through a histogram. To estimate p4 is more tricky.
We select randomly three connected nodes i ↔ j ↔ k and
calculate p4 as a an average. However, the value of p4
depends on how the nodes are selected. When p4 is used
for coding, the triple of nodes is chosen in a specific way.
The best estimate is therefore found by performing the coding
on the training graphs. Notice that in that case the edges are
divided into those coded with the triangle probability p4 and
those coded with p. However, those edges not (coded) in a
triangle could be special. Instead of using the general p, we
could estimate that p directly; we call this p̌4. In general
p 6= p̌4, but in many cases they are very close.

For universal coding, there are two possible approaches, best
outlined in [12, Section 13.2]: the encoder can estimate the
parameters of the coding distribution and inform the decoder
of the estimate. Or, the coding distribution can be sequentially
calculated. For encoding p for iid coding the two approaches
are essentially equivalent. The number of bits required to
encode the number of ones is about log n(n−1)

2 ≈ 2 log n
bits. For the degree distribution, we calculate the degree
histogram for the whole graph, and use this for coding.
The degree of a node is between 0 and n − 1. We can
therefore think of the degree histogram as putting each of
the n (unlabeled) nodes into one of n buckets, and encoding
this can be done by encoding the counts in the buckets. The
number of possible configurations is a standard problem in

combinatorics:
(

2n− 1
n

)
, which can be transmitted with

log

(
2n− 1
n

)
= nH

(
n

2n−1

)
+ 1

2 log 2n−1
n2 +c ≈ n− 1

2 log n

bits (|c| ≤ 2) . Of course, there is a relationship between
the degrees of nodes in the graph, and if we took this
into consideration, it might be possible to encode the degree
histogram slightly more efficient.

For triangle coding, we use sequential estimation of p4
and p̌4, specifically the KT estimator [15], [16], which is
p̂ =

n1+ 1
2

n1+n0+1 , where n1, n0 is the number of ones and zeros
seen previously. The probabilities p4 and p̌4 are not updated
after each bit, but rather after each group is encoded.

D. Numerical Results

Some results can be seen in Fig. 1-3. In all cases, learning
was done on 50 graphs prior to coding. For Erdös-Rényi
graphs, the iid structure code is most efficient, but all structure
codes give about the same codelength. For Barabási-Albert
graphs, coding using the degree distribution is most efficient,
and for Newman Watts Strogatz graphs [17], using the triangle
probability is most efficient. This shows that there is no single
efficient code for all graph structures.
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Figure 1. Comparison of different codelengths for a ER graph with p =
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Figure 2. Comparison of different codelengths for a BA graph with m = 20.

We also did some experiments on real-world graphs, both
obtained from [18]. For those graphs there is no training,
so the universal coding is needed. For both graphs, using
degree distribution is most efficient. However, transmitting
the degree histogram is expensive, and considering that, the
triangle coding is most efficient. In light of this one could
consider better ways to represent the degree distribution (e.g.,
a parametric representation), but we have not explored that.
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Figure 3. Comparison of different codelengths for a Watts Strogatz graph
[17] with k = 5 and p = 0.1.Codelength ↘ Protein graph Power graph

Labeled iid 20513 81077
Structure iid 8796 32013

Degree distribution 7290 27651
Degree distribution with overhead 8743 32586

Triangle 8369 26507
Table II

REAL-WORLD GRAPHS. THE PROTEIN GRAPH IS THE LARGEST
CONNECTED COMPONENT OF A NETWORK OF PROTEIN INTERACTIONS IN

THE YEAST SACCHAROMYCES CEREVISIAE. THE POWER GRAPH
REPRESENTS THE US WESTERN POWER GRID.

III. ANOMALY DETECTION

For detecting anomalous graphs, we will use atypicality
developed in [19], which is described by

Definition 1. A sequence is atypical if it can be described
(coded) with fewer bits in itself rather than using the (opti-
mum) code for typical sequences.

The papers [19], [20] show that atypicality has many desir-
able theoretical properties and that it works experimentally for
sequences. Specifically for anomaly detection, the paper [20]
shows that atypicality is (asymptotically) optimum for finite
state machine (FSM) We will say that two FSM are distinct
if they have no identical classes. Then

Theorem 2 ([20]). Suppose that the typical model is an FSM.
Let the atypicality detector be given an anomalous sequence
generated by an FSM distinct from the typical FSM. Then as
the length of the sequence l→∞, the probability of detecting
the anomaly converges to 1, while the probability of false
alarm converges to 0.

As far as we know, nothing similar has been proven for any
other anomaly detection methods.

A. Anomalous Graph Detection

In anomalous graph detection, we are given a set of training
graphs G1, . . . , GT , and the problem is then to determine if
a given graph G is anomalous based on the training. We will
apply atypicality to this problem. The methodology follows
directly from Definition 1. We learn coding of typical graphs,

Section II-C, and compare this with applying a universal
source coder to G. In this paper, we consider unweighted,
undirected graphs.

For Erdös-Rényi graphs, atypicality reduces to a hypothesis
test of p̂ = p versus p̂ 6= p, which is of the form |p̂− p| ≥ τ
for some threshold. There is no reason to use coding, and even
coding structure as in [4] does not help: in a test of p̂ = p
versus p̂ 6= p , the structural decomposition would be the same,
only the coding of the resulting bitstreams would be different.

For more complicated classes of random graphs such
Barabási-Albert or Watts Strogatz [17], more information can
be obtained using the coding algorithms developed in Section
II. The general procedure is as follows

1) On the set of training graphs, we run all the coding
algorithms. For each we learn the values of the pa-
rameters (e.g., the histogram) for the algorithm. We
choose the coder that gives the shortest codelength. The
typical coder is now that algorithm with the learned
parameters. Both coder and decoder know the values
of the parameters, so this does not need to be encoded.

2) On the set of test graphs, we run first the typical
coder and obtain the typical code length LT . We then
run all the coding algorithms from Section II; to each
codelength we have to add the overhead of encoding the
parameters (e.g., histogram). The atypical codelength,
LA, is now the minimum of these codelengths, plus
a few bits to tell which coder was the shortest. The
atypicality measure is the difference between the atypi-
cal codelength and the typical codelength, LA − LT . If
LA − LT < 0, or is smaller than some threshold1, then
following Definition 1, the graph is declared atypical
(anomalous).

We tested this procedure by generating various random graphs
with n = 100 nodes.

The typical graphs were generated by using Barabási-
Albert graphs model (m = 10). We trained on 100 randomly
generated graphs. We then generated 500 test graphs each of:

1) Barabási-Albert graphs (m = 10) (i.e., typical graphs)
2) Barabási-Albert graphs (m = 9)
3) Erdös-Rényi graphs (p = 0.182), chosen so that the

graph has the same average degree as the typical graph.
4) Mixture graph: combination of Barabási-Albert graphs

(m = 10) and Erdös-Rényi graphs with p = 0.5; these
are essentially Barabási-Albert graphs with extra edges
added (p) to make more triangles.

We then estimated the probability density function (pdf) of
the atypicality measure: LA − LT . The results are in Fig. 4.
We can see that Erdös-Rényi and Barabási-Albert(m = 9) test
graphs can be easily distinguished from the typical graphs,
Barabási-Albert (m = 10). Identifying mixture graph from
Barabási-Albert (m = 10) is more difficult. However, due to
the law of large numbers, anomaly detection improves as graph
size increases. Figure 5 shows the estimated pdf of atypicality

1The threshold has a coding interpretation: it is the number of bits required
to tell the decoder an atypical coder is used [19]



measures between mixture graph and Barabási-Albert (m =
10) for graphs with n = 400 nodes; if we choose the threshold
to be 305, we get Pfalse alarm = Pmiss = 2.4%.
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Figure 4. Pdf of atypicality measure for different types of graphs (n = 100).
The typical graphs are BA(10), which are used for training.
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Figure 5. Pdf of atypicality measure for different types of graphs (n = 400).
The typical graphs are BA(10), which are used for training.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have developed a number of new universal
graph coding algorithms. The minimum codelength is found
by coding with each algorithm, and then finding the minimum
(or weighting as in [21]). However, this still far from the state
of the art for sequences, where there a single algorithms such
as CTW [16] and Lempel-Ziv [12] that can code sequences
with variable complexity. One possibility is to generalize the
triangle coding to consider structures of variable complexity,
and weight these in an approach similar to CTW.

We have shown that the coding algorithms can be used for
graph anomaly detection based on structure alone. We will

consider a number of extensions. First, in most graph-based
anomaly detection problems, the anomaly is in the data on
the graph. Our idea is to combine graph structure coding with
coding of the data to get a single measure that takes into
account both data and structure. Second, we need to be able
to consider graphs of variable size; the complication here is
that statistics might very well depend on size. Finally, we will
consider detecting anomalous subgraphs.
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