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Abstract—We consider the problem of massive matrix multi-
plication, which underlies many data analytic applications, in
a large-scale distributed system comprising a group of worker
nodes. We target the stragglers’ delay performance bottleneck,
which is due to the unpredictable latency in waiting for slowest
nodes (or stragglers) to finish their tasks. We propose a novel
coding strategy, named entangled polynomial code, for designing
the intermediate computations at the worker nodes in order to
minimize the recovery threshold (i.e., the number of workers that
we need to wait for in order to compute the final output). We
demonstrate the optimality of entangled polynomial code in sev-
eral cases, and show that it provides orderwise improvement over
the conventional schemes for straggler mitigation. Furthermore,
we characterize the optimal recovery threshold among all linear
coding strategies within a factor of 2 using bilinear complexity,
by developing an improved version of the entangled polynomial
code. In particular, while evaluating bilinear complexity is a
well-known challenging problem, we show that optimal recovery
threshold for linear coding strategies can be approximated within
a factor of 2 of this fundamental quantity. On the other hand,
the improved version of the entangled polynomial code enables
further and orderwise reduction in the recovery threshold, com-
pared to its basic version. Finally, we show that the techniques
developed in this paper can also be extended to several other
problems such as coded convolution and fault-tolerant computing,
leading to tight characterizations.

I. INTRODUCTION

Matrix multiplication is one of the key operations underlying
many data analytics applications in various fields such as
machine learning, scientific computing, and graph processing.
Many such applications require processing terabytes or even
petabytes of data, which needs massive computation and storage
resources that cannot be provided by a single machine. Hence,
deploying matrix computation tasks on large-scale distributed
systems has received wide interests [2]–[5].
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There is, however, a major performance bottleneck that arises
as we scale out computations across many distributed nodes:
stragglers’ delay bottleneck, which is due to the unpredictable
latency in waiting for slowest nodes (or stragglers) to finish their
tasks [6]. The conventional approach for mitigating straggler
effects involves injecting some form of “computation redun-
dancy" such as repetition (e.g., [7]). Interestingly, it has been
shown recently that coding theoretic concepts can also play a
transformational role in this problem, by efficiently creating
“computational redundancy” to mitigate the stragglers [8]–[14].

. . . 

Fig. 1: Overview of the distributed matrix multiplication problem. Each
worker computes the product of the two stored encoded submatrices
(Ãi and B̃i) and returns the result to the master. By carefully designing
the coding strategy, the master can decode the multiplication result of
the input matrices from a subset of workers, without having to wait
for stragglers (worker 1 in this example).

In this paper, we consider a general formulation of distributed
matrix multiplication, study information-theoretic limits, and
develop optimal coding designs for straggler effect mitigation.
We consider a standard master-worker distributed setting, where
a group of N workers aim to collaboratively compute the
product of two large matrices A and B, and return the result
C = AᵀB to the master. As shown in Figure 1, the two input
matrices are partitioned (arbitrarily) into p-by-m and p-by-
n blocks of submatrices respectively, where all submatrices
within the same input are of equal size. Each worker has a
local memory that can be used to store any coded function
of each matrix, denoted by Ãi’s and B̃i’s, each with a size
equal to that of the corresponding submatrices. The workers
then multiply their two stored (coded) submatrices and return
the results to the master. By carefully designing the coding
functions, the master can decode the final result without having
to wait for the slowest workers, which provides robustness
against stragglers.

Note that by allowing different values of parameters p, m,
and n, we allow flexible partitioning of input matrices, which
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in return enables different utilization of system resources (e.g.,
the required amount of storage at each worker and the amount
of communication from worker to master).1 Hence, considering
the system constraints on available storage and communication
resources, one can choose p, m, and n accordingly. We aim to
find optimal coding and computation designs for any choice
of parameters p, m and n, to provide optimum straggler effect
mitigation for various situations.

With a careful design of the coded submatrices Ãi and B̃i
at each worker, the master only needs results from the fastest
workers before it can recover the final output, which effectively
mitigates straggler issues. To measure the robustness against
straggler effects of a given coding strategy, we use the metric
recovery threshold, defined previously in [11], which is equal to
the minimum number of workers that the master needs to wait
for in order to compute the output C. Given this terminology,
our main problem is as follows: What is the minimum possible
recovery threshold and the corresponding coding scheme, for
any choice of parameters p, m, n, and N?

We propose a novel coding technique, referred to as entan-
gled polynomial code, which achieves the recovery threshold of
pmn+p−1 for all possible parameter values. The construction
of the entangled polynomial code is based on the observation
that when multiplying an m-by-p matrix and a p-by-n matrix,
we essentially evaluate a subspace of bilinear functions, spanned
by the pairwise product of the elements from the two matrices.
Although potentially there are a total of p2mn pairs of elements,
at most pmn pairs are directly related to the matrix product,
which is an order of p less. The particular structure of the
proposed code entangles the input matrices to the output such
that the system almost avoids unnecessary multiplications
and achieves a recovery threshold in the order of pmn,
while allowing robust straggler mitigation for arbitrarily large
systems. This allows orderwise improvement upon conventional
uncoded approaches, random linear codes, and MDS-coding
type approaches for straggler mitigation [8], [9].

Entangled polynomial code generalizes our previously
proposed polynomial code for distributed matrix multiplica-
tion [11], which was designed for the special case of p = 1
(i.e., allowing only column-wise partitioning of matrices A
and B). However, as we move to arbitrary partitioning of the
input matrices (i.e., arbitrary values of m, n, and p), a key
challenge is to design the coding strategy at each worker such
that its computation best aligns with the final computation
C. In particular, to recover the product C, the master needs
mn components that each involve summing p products of
submatrices of A and B. Entangled polynomial code effectively
aligns the workers’ computations with the master’s need, which
is its key distinguishing feature from polynomial code.

We show that entangled polynomial code achieves the
optimal recovery threshold among all linear coding strategies
in the cases of m = 1 or n = 1. It also achieves the optimal
recovery threshold among all possible schemes within a factor
of 2 when m = 1 or n = 1.

Furthermore, for all partitionings of input matrices (i.e.,
all values of p, m, n, and N ), we characterize the optimal

1A more detailed discussion is provided in Remark 3

recovery threshold among all linear coding strategies within
a factor of 2 of R(p,m, n), which denotes the bilinear
complexity of multiplying an m-by-p matrix to a p-by-n
matrix (see Definition 3 later in the paper). While evaluating
bilinear complexity is a well-known challenging problem in
the computer science literature (see [15]), we show that the
optimal recovery threshold for linear coding strategies can be
approximated within a factor of 2 of this fundamental quantity.

We establish this result by developing an improved version
of the entangled polynomial code, which achieves a recovery
threshold of 2R(p,m, n)−1. Specifically, this coding construc-
tion exploits the fact that any matrix multiplication problem
can be converted into a problem of computing the element-wise
product of two arrays of length R(p,m, n). Then we show
that this augmented computing task can be optimally handled
using a variation of the entangled polynomial code, and the
corresponding optimal code achieves the recovery threshold
2R(p,m, n)− 1.

Finally, we show that the coding construction and converse
bounding techniques developed for proving the above results
can also be directly extended to several other problems. For
example, we show that the converse bounding technique can
be extended to the problem of coded convolution, which was
originally considered in [16]. We prove that the state-of-the-art
scheme we proposed in [11] for this problem is in fact optimal
among all linear coding schemes. These techniques can also
be applied in the context of fault-tolerant computing, which
was first studied in [17] for matrix multiplication. We provide
tight characterizations on the maximum number of detectable
or correctable errors.

We note that recently, another computation design named
PolyDot was also proposed for distributed matrix multiplication,
achieving a recovery threshold of m2(2p− 1) for m = n [18].
Both entangled polynomial code and PolyDot are developed
by extending the polynomial codes proposed in [11] to allow
arbitrary partitioning of input matrices. Compared with PolyDot,
entangled polynomial code achieves a strictly smaller recovery
threshold of pmn+ p− 1, by a factor of 2. More importantly,
in this paper we have developed a converse bounding technique
that proves the optimality of the entangled polynomial code in
several cases. We have also proposed an improved version of
the entangled polynomial code and characterized the optimum
recovery threshold within a factor of 2 for all parameter values.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a problem of matrix multiplication with two
input matrices A ∈ Fs×r and B ∈ Fs×t, for some integers
r, s, t and a sufficiently large field F.2 We are interested in
computing the product C , AᵀB in a distributed computing
environment with a master node and N worker nodes, where
each worker can store 1

pm fraction of A and 1
pn fraction of B,

based on some integer parameters p, m, and n (see Fig. 1).
Specifically, each worker i can store two coded matrices

Ãi ∈ F
s
p×

r
m and B̃i ∈ F

s
p×

t
n , computed based on A and B

2Here we consider the general class of fields, which includes finite fields,
the field of real numbers, and the field of complex numbers.
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respectively. Each worker can compute the product C̃i , Ãᵀ
i B̃i,

and return it to the master. The master waits only for the results
from a subset of workers before proceeding to recover the final
output C using certain decoding functions.

Given the above system model, we formulate the distributed
matrix multiplication problem based on the following termi-
nology: We define the computation strategy as a collection of
2N encoding functions, denoted by

f = (f0, f1, ..., fN−1), g = (g0, g1, ..., gN−1), (1)

that are used by the workers to compute each Ãi and B̃i, and
a class of decoding functions, denoted by

d = {dK}K⊆{0,1,...,N−1}, (2)

that are used by the master to recover C given results from
any subset K of the workers. Each worker i stores matrices

Ãi = fi(A), B̃i = gi(B), (3)

and the master can compute an estimate Ĉ of matrix C using
results from a subset K of the workers by computing

Ĉ = dK

(
{C̃i}i∈K

)
. (4)

For any integer k, we say a computation strategy is k-
recoverable if the master can recover C given the computing
results from any k workers. Specifically, a computation strategy
is k-recoverable if for any subset K of k users, the final output
Ĉ from the master equals C for all possible input values.
We define the recovery threshold of a computation strategy,
denoted by K(f , g,d), as the minimum integer k such that
computation strategy (f , g,d) is k-recoverable.

We aim to find a computation strategy that requires the
minimum possible recovery threshold and allows efficient
decoding at the master. Among all possible computation
strategies, we are particularly interested in a certain class of
designs, referred to as the linear codes and defined as follows:
Definition 1. For a distributed matrix multiplication problem
of computing AᵀB using N workers, we say a computation
strategy is a linear code given parameters p, m, and n, if there
is a partitioning of the input matrices A and B where each
matrix is divided into the following submatrices of equal sizes

A =


A0,0 A0,1 · · · A0,m−1
A1,0 A1,1 · · · A1,m−1

...
...

. . .
...

Ap−1,0 Ap−1,1 · · · Ap−1,m−1

 , (5)

B =


B0,0 B0,1 · · · B0,n−1
B1,0 B1,1 · · · B1,n−1

...
...

. . .
...

Bp−1,0 Bp−1,1 · · · Bp−1,n−1

 , (6)

such that the encoding functions of each worker i can be
written as

Ãi =
∑
j,k

Aj,kaijk, B̃i =
∑
j,k

Bj,kbijk, (7)

for some tensors a and b, and the decoding function given
each subset K can be written as3

Ĉj,k =
∑
i∈K

C̃icijk, (8)

for some tensor c. For brevity, we denote the set of linear
codes as L.

The major advantage of linear codes is that they guarantee
that both the encoding and the decoding complexities of the
scheme scale linearly with respect to the size of the input
matrices. Furthermore, as we have proved in [11], linear codes
are optimal for p = 1. Given the above terminology, we define
the following concept.
Definition 2. For a distributed matrix multiplication problem of
computing AᵀB using N workers, we define the optimum lin-
ear recovery threshold as a function of the problem parameters
p, m, n, and N , denoted by K∗linear, as the minimum achievable
recovery threshold among all linear codes. Specifically,

K∗linear , min
(f ,g,d)∈L

K(f , g,d). (9)

Our goal is to characterize the optimum linear recovery
threshold K∗linear, and to find computation strategies to achieve
such optimum threshold. Note that if the number of workers
N is too small, obviously no valid computation strategy exists
even without requiring straggler tolerance. Hence, in the rest
of the paper, we only consider the meaningful case where
N is large enough to support at least one valid computation
strategy. More concretely, we show that the minimum possible
number of workers is given by a fundamental quantity: the
bilinear complexity of multiplying an m-by-p matrix and a
p-by-n matrix, which is formally introduced in Section III.

We are also interested in characterizing the minimum
recovery threshold achievable using general coding strategies
(including non-linear codes). Similar to [11], we define this
value as the optimum recovery threshold and denote it by K∗.

III. MAIN RESULTS

We state our main results in the following theorems:
Theorem 1. For a distributed matrix multiplication problem
of computing AᵀB using N workers, with parameters p, m,
and n, the following recovery threshold can be achieved by a
linear code, referred to as the entangled polynomial code.4

Kentangled-poly , pmn+ p− 1. (10)

Remark 1. Compared to some other possible approaches,
our proposed entangled polynomial code provides orderwise
improvement in the recovery threshold (see Fig. 2). One conven-
tional approach (referred to as the uncoded repetition scheme)
is to let each worker store and multiply uncoded submatrices.
With the additional computation redundancy through repetition,
the scheme can robustly tolerate some stragglers. However, its
recovery threshold, Kuncoded , N −b N

pmnc+ 1, grows linearly
with respect to the number of workers. Another approach

3Here Ĉj,k denotes the master’s estimate of the subblock of C that
corresponds to

∑
` A`,jB`,k .

4For N < pmn+ p− 1, we define Kentangled-poly , N .
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is to let each worker store two random linear combinations
of the input submatrices (referred to as the random linear
code). With high probability, this achieves recovery threshold
KRL , p2mn,5 which does not scale with N . However, to
calculate C, we need the result of at most pmn sub-matrix
multiplications. Indeed, the lack of structure in the random
coding forces the system to wait for p times more than what
is essentially needed. One surprising aspect of the proposed
entangled polynomial code is that, due to its particular structure
which aligns the workers’ computations with the master’s need,
it avoids unnecessary multiplications of submatrices. As a
result, it achieves a recovery threshold that does not scale with
N , and is orderwise smaller than that of the random linear
code. Furthermore, it allows efficient decoding at the master,
which requires at most an almost linear complexity.
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Fig. 2: Comparison of the recovery thresholds achieved by the uncoded
repetition scheme, the random linear code, the short-MDS (or short-
dot) [8], [9] and our proposed entangled polynomial code, given
problem parameters p = m = 3, n = 1. The entangled polynomial
code orderwise improves upon all other approaches. It also achieves
the optimum linear recovery threshold in this scenario.

Remark 2. There have been several works in prior literature
investigating the p = 1 case [8], [11], [19]. For this special
case, the entangled polynomial code reduces to our previously
proposed polynomial code, which achieves the optimum
recovery threshold mn and orderwise improves upon other
designs. On the other hand, there has been some investigation
on matrix-by-vector type multiplication [8], [9], which can be
viewed as the special case of m = 1 or n = 1 in our proposed
problem. The short-MDS code (or short-dot) has been proposed,
achieving a recovery threshold of N −bNp c+m, which scales
linearly with N . Our proposed entangled polynomial code also
strictly and orderwise improves upon that (see Fig. 2).
Remark 3. By selecting different values of parameters p, m, and
n, the entangled polynomial code enables different utilization
of the system resources, which allows for balancing the costs
due to storage and communication. In particular, one can show
that a distributed implementation for multiplying Aᵀ ∈ Fr×s
and B ∈ Fs×t with parameters p, m, and n requires:
• Computation load at each worker (normalized by the cost

of a single field operation): O( srt
pmn ),

5Intuitively, because each worker returns a random linear combination of
all p2mn possible pairwise products, with high probability, the final output
can be recovered from any subset of p2mn results.

• Communication required from each worker (normalized
by the size of C): L , 1

mn ,
• Storage allocated for storing each coded matrix (nor-

malized by the sizes of A, B, respectively): µA , 1
pm ,

µB , 1
pn .

If we roughly fix the computation load (specifically, fixing pmn
for the cubic matrix multiplication algorithm), the computing
scheme requires the following trade-off between storage and
communication:

LµAµB ∼ constant. (11)

By designing the values of p, m, and n, we can operate at
different locations on this trade-off to account for the system’s
requirement6, while the entangled polynomial code maintains
almost the same recovery threshold.

Our second result is the optimality of the entangled polyno-
mial code when m = 1 or n = 1. Specifically, we prove that
entangled polynomial code is optimal in this scenario among
all linear codes. Furthermore, if the base field F is finite, it also
achieves the optimum recovery threshold K∗ within a factor
of 2, with non-linear coding strategies taken into account.
Theorem 2. For a distributed matrix multiplication problem
of computing AᵀB using N workers, with parameters p, m,
and n, if m = 1 or n = 1, we have

K∗linear = Kentangled-poly. (12)

Moreover, if the base field F is finite,

1

2
Kentangled-poly <K

∗ ≤ Kentangled-poly. (13)

Remark 4. We prove Theorem 2 by first exploiting the
algebraic structure of matrix multiplication to develop a linear
algebraic converse for equation (12), and then constructing
an information theoretic converse to prove inequality (13).
The linear algebraic converse only relies on two properties
of the matrix multiplication operation: 1) bilinearity, and 2)
uniqueness of zero element. This technique can be extended to
any other bilinear operations with similar properties, such as
convolution, as mentioned later (see Theorem 4). On the other
hand, the information theoretic converse is obtained through
a cut-set type argument, which allows a lower bound on the
recovery thresholds even for non-linear codes.

Our final result on the main problem is characterizing the
optimum linear recovery threshold K∗linear within a factor of 2
for all possible p, m, n, and N , by developing an improved
version of the entangled polynomial code. This characterization
involves the fundamental concept of bilinear complexity [15]:
Definition 3. The bilinear complexity of multiplying an m-by-
p matrix and a p-by-n matrix, denoted by R(p,m, n), is defined

6 For example, letting p = 1 minimizes the communication load L, and
letting n = 1 or m = 1 minimizes the storage cost for storing matrix A
or matrix B, respectively. Our proposed entangled polynomial code achieves
the optimum linear recovery threshold in all these cases. More generally,
adjusting the value of p trades communication by storage; then adjusting the
ratio between m and n allows for minimizing the overall storage cost, to
account for the scenario where the sizes of input matrices are unbalanced.
Finally, by scaling p, m, and n without taking the computational constraint
into account, we enable the flexibility in terms of level of distribution.
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as the minimum number of element-wise multiplications
required to complete such an operation. Rigorously, R(p,m, n)
denotes the minimum integer R, such that we can find tensors
a ∈ FR×p×m, b ∈ FR×p×n, and c ∈ FR×m×n, satisfying

∑
i

cijk

∑
j′,k′

Aj′k′aij′k′

∑
j′′,k′′

Bj′′k′′bij′′k′′


=
∑
`

A`jB`k. (14)

for any input matrices A ∈ Fp×m, B ∈ Fp×n.
Using this concept, we state our result as follows.

Theorem 3. For a distributed matrix multiplication problem
of computing AᵀB using N workers, with parameters p, m,
and n, the optimum linear recovery threshold is characterized
by

R(p,m, n) ≤ K∗linear ≤ 2R(p,m, n)− 1, (15)

where R(p,m, n) denotes the bilinear complexity of multiplying
an m-by-p matrix and a p-by-n matrix.
Remark 5. The key proof idea of Theorem 3 is twofold.
We first demonstrate a one-to-one correspondence between
linear computation strategies and upper bound constructions7

for bilinear complexity, which enables converting a matrix
multiplication problem into computing the element-wise prod-
uct of two vectors of length R(p,m, n). Then we show
that an optimal computation strategy can be developed for
this augmented problem, which achieves the stated recovery
threshold. Similarly to this result, factor-of-2 characterization
can also be obtained for non-linear codes, as discussed in
Section VI.
Remark 6. The coding construction we developed for proving
Theorem 3 provides an improved version of the entangled poly-
nomial code. Explicitly, given any upper bound construction for
R(p,m, n) with rank R, the coding scheme achieves a recovery
threshold of 2R−1, while tolerating arbitrarily many stragglers.
This improved version further and orderwise reduces the needed
recovery threshold on top of its basic version. For example,
by simply applying the well-know Strassen’s construction
[20], which provides an upper bound R(2k, 2k, 2k) ≤ 7k

for any k ∈ N, the proposed coding scheme achieves a
recovery threshold of 2 · 7k − 1, which orderwise improves
upon Kentangled-poly = 8k + 2k − 1 achieved by the entangled
polynomial code. Further improvements can be achieved by
applying constructions with lower ranks, up to 2R(p,m, n)−1.
Remark 7. In parallel to this work, the Generalized PolyDot
scheme was proposed in [21] to extend the PolyDot construction
[18] to asymmetric matrix-vector multiplication. Generalized
PolyDot can be applied to achieve the same recovery threshold
of the entangled polynomial code for special case of m =
1 or n = 1. However, entangled polynomial codes achieve
(unboundedly) better recovery thresholds for general values of
p, m, and n.

The techniques we developed in this paper can also be
extended to several other problems, such as coded convolution

7Formally defined in Section VI.

[16] and fault-tolerant computing [17], [22], leading to tight
characterizations. For coded convolution, we present our result
in the following theorem.
Theorem 4. For the distributed convolution problem of com-
puting a ∗ b using N workers that can each store 1

m fraction
of a and 1

n fraction of b, the optimum recovery threshold that
can be achieved using linear codes, denoted by K∗conv-linear , is
exactly characterized by the following equation

K∗conv-linear = Kconv-poly , m+ n− 1. (16)

Remark 8. Theorem 4 is proved based on our previously
developed coded computing scheme for convolution, which
is a variation of the polynomial code [11]. As mentioned
before, we extend the proof idea of Theorem 2 to prove the
matching converse. This theorem proves the optimality of the
computation scheme in [11] among all computation strategies
where the encoding functions are linear. For detailed problem
formulation and proof, see Appendix A.

Our second extension is in the fault-tolerant computing
setting, which was first discussed in [17] for matrix multipli-
cation. Unlike the straggler effects we studied in this paper,
fault tolerance considers scenarios where arbitrary errors can be
injected into the computation, and the master has no information
about which subset of workers are returning errors. We show
that the techniques we developed for straggler mitigation can
also be applied in this setting to improve robustness against
computing failures, and the optimality of any encoding function
in terms of recovery threshold also preserves when applied in
the fault-tolerant computing setting. As an example, we present
the following theorem, demonstrating this connection.
Theorem 5. For a distributed matrix multiplication problem
of computing AᵀB using N workers, with parameters p, m,
and n, if m = 1 or n = 1, the entangled polynomial code can
detect up to

E∗detect = N −Kentangled-poly (17)

errors, and correct up to

E∗correct =

⌊
N −Kentangled-poly

2

⌋
(18)

errors. This can not be improved using any other linear
encoding strategies.

Remark 9. The proof idea for Theorem 5 is to connect the
straggler mitigation problem and the fault tolerance problem
by extending the concept of Hamming distance to coded
computing. Specifically, we map the straggler mitigation
problem to the problem of correcting erasure errors, and the
fault tolerance problem to the problem of correcting arbitrary
errors. The solution to these two communication problems
are deeply connected by the Hamming distance, and we show
that this result extends to coded computing (see Lemma 3
in Appendix B). Since the concept of Hamming distance is
not exclusively defined for linear codes, this connection also
holds for arbitrary computation strategies. Furthermore, this
approach can be easily extended to the hybrid settings where
both stragglers and computing errors exist, and similar results
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can be proved. The detailed formulation and proof can be
found in Appendix B.

In Section IV, we prove Theorem 1 by describing the
entangled polynomial code. Then in Section V, we prove
Theorem 2 by deriving the converses. Finally, we present
the coding construction and converse for proving Theorem 3
in Section VI.

IV. ENTANGLED POLYNOMIAL CODE

In this section, we prove Theorem 1 by formally describing
the entangled polynomial code and its decoding procedure. We
start with an illustrating example.

A. Illustrating Example

Consider a distributed matrix multiplication task of comput-
ing AᵀB using N = 5 workers that can each store half of the
rows (i.e., p = 2 and m = n = 1). We evenly divide each
input matrix along the row side into 2 submatrices:

A =

[
A0

A1

]
, B =

[
B0

B1

]
, (19)

Given this notation, we essentially want to compute

C = AᵀB =
[
Aᵀ

0B0 +Aᵀ
1B1

]
. (20)

A naive computation strategy is to let the 5 workers compute
each Aᵀ

iBi uncodedly with repetition. Specifically we can
let 3 workers compute Aᵀ

0B0 and 2 workers compute Aᵀ
1B1.

However, this approach can only robustly tolerate 1 straggler,
achieving a recovery threshold of 4. Another naive approach is
to use random linear codes, i.e., let each worker store a random
linear combination of A0, A1, and a combination of B0, B1.
However, the resulting computation result of each worker is a
random linear combination of 4 variables Aᵀ

0B0, Aᵀ
0B1, Aᵀ

1B0,
and Aᵀ

1B1, which also results in a recovery threshold of 4.
Surprisingly, there is a simple computation strategy for this

example that achieves the optimum linear recovery threshold
of 3. The main idea is to instead inject structured redundancy
tailored to the matrix multiplication operation. We present this
proposed strategy as follows:

Fig. 3: Example using entangled polynomial code, with 5 workers that
can each store half of each input matrix. (a) Computation strategy:
each worker i stores A0 + iA1 and iB0 + B1, and computes their
product. (b) Decoding: master waits for results from any 3 workers,
and decodes the output using polynomial interpolation.

Suppose elements of A,B are in R. Let each worker i ∈
{0, 1, ..., 4} store the following two coded submatrices:

Ãi = A0 + iA1, B̃i = iB0 +B1. (21)

To prove that this design gives a recovery threshold of 3, we
need to find a valid decoding function for any subset of 3
workers. We demonstrate this decodability through a repre-
sentative scenario, where the master receives the computation
results from workers 1, 2, and 4, as shown in Figure 3. The
decodability for the other 9 possible scenarios can be proved
similarly.

According to the designed computation strategy, we haveC̃1

C̃2

C̃4

 =

10 11 12

20 21 22

40 41 42

 Aᵀ
0B1

Aᵀ
0B0 +Aᵀ

1B1

Aᵀ
1B0

 . (22)

The coefficient matrix in the above equation is a Vandermonde
matrix, which is invertible because its parameters 1, 2, 4 are
distinct in R. So one decoding approach is to directly invert
equation (22), of which the returned result includes the needed
matrix C = Aᵀ

0B0 +Aᵀ
1B1. This proves the decodability.

However, as we will explain in the general coding design,
directly computing this inverse problem using the classical
inversion algorithm might be expensive in some more general
cases. Quite interestingly, because of the algebraic structure we
designed for the computation strategy (i.e., equation (21)), the
decoding process can be viewed as a polynomial interpolation
problem (or equivalently, decoding a Reed-Solomon code).

Specifically, in this example each worker i returns

C̃i = Ãᵀ
i B̃i = Aᵀ

0B1 + i(Aᵀ
0B0 +Aᵀ

1B1) + i2Aᵀ
1B0, (23)

which is essentially the value of the following polynomial at
point x = i:

h(x) , Ãᵀ
i B̃i = Aᵀ

0B1 + x(Aᵀ
0B0 +Aᵀ

1B1) + x2Aᵀ
1B0.

(24)

Hence, recovering C using computation results from 3 workers
is equivalent to recovering the linear term coefficient of a
quadratic function given its values at 3 points. Later in this
section, we will show that by mapping the decoding process
to polynomial interpolation, we can achieve almost-linear
decoding complexity even for arbitrary parameter values.

B. General Coding Design

Now we present the entangled polynomial code, which
achieves a recovery threshold pmn+p−1 for any p, m, n and
N as stated in Theorem 1.8 First of all, we evenly divide each
input matrix into pm and pn submatrices according to equations
(5) and (6). We then assign each worker i ∈ {0, 1, ..., N − 1}
an element in F, denoted by xi, and make sure that all xi’s
are distinct. Under this setting, we define the following class
of computation strategies.

8For N < pmn + p − 1, a recovery threshold of N is achievable by
definition. Hence we focus on the case where N ≥ pmn+ p− 1.
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Definition 4. Given parameters α, β, θ ∈ N, we define the
(α, β, θ)-polynomial code as

Ãi =

p−1∑
j=0

m−1∑
k=0

Aj,kx
jα+kβ
i ,

B̃i =

p−1∑
j=0

n−1∑
k=0

Bj,kx
(p−1−j)α+kθ
i , ∀ i ∈ {0, 1, ..., N − 1}.

(25)

In an (α, β, θ)-polynomial code, each worker essentially
evaluates a polynomial whose coefficients are fixed linear
combinations of the products Aᵀ

j,kBj′,k′ . Specifically, each
worker i returns

C̃i = Ãᵀ
i B̃i

=

p−1∑
j=0

m−1∑
k=0

p−1∑
j′=0

n−1∑
k′=0

Aᵀ
j,kBj′,k′x

(p−1+j−j′)α+kβ+k′θ
i .

(26)

Consequently, when the master receives results from enough
workers, it can recover all these linear combinations using
polynomial interpolation. Recall that we aim to recover

C =


C0,0 C0,1 · · · C0,n−1
C1,0 C1,1 · · · C1,n−1

...
...

. . .
...

Cm−1,0 Cm−1,1 · · · Cm−1,n−1

 , (27)

where each submatrix Ck,k′ ,
∑p−1
j=0 A

ᵀ
j,kBj,k′ is also a fixed

linear combination of these products. We design the values
of parameters (α, β, θ) such that all these linear combinations
appear in (26) separately as coefficients of terms of different
degrees. Furthermore, we want to minimize the degree of the
polynomial C̃i, in order to reduce the recovery threshold.

One design satisfying these properties is (α, β, θ) =
(1, p, pm), i.e,

Ãi =

p−1∑
j=0

m−1∑
k=0

Aj,kx
j+kp
i ,

B̃i =

p−1∑
j=0

n−1∑
k=0

Bj,kx
p−1−j+kpm
i . (28)

Hence, each worker returns the value of the following degree
pmn+ p− 2 polynomial at point x = xi:

hi(x) , Ãᵀ
i B̃i

=

p−1∑
j=0

m−1∑
k=0

p−1∑
j′=0

n−1∑
k′=0

Aᵀ
j,kBj′,k′x

(p−1+j−j′)+kp+k′pm
i ,

(29)

where each Ck,k′ is exactly the coefficient of the (p−1 +kp+
k′pm)-th degree term. Since all xi’s are selected to be distinct,
recovering C given results from any pmn + p − 1 workers
is essentially interpolating h(x) using pmn + p − 1 distinct
points. Because the degree of h(x) is pmn+ p− 2, the output
C can always be uniquely decoded.

C. Computational complexities

In terms of complexity, the decoding process of entangled
polynomial code can be viewed as interpolating a degree
pmn + p − 2 polynomial for rt

mn times. It is well known
that polynomial interpolation of degree k has a complexity
of O(k log2 k log log k) [23].9 Therefore, decoding entangled
polynomial code only requires at most a complexity of
O(prt log2(pmn) log log(pmn)), which is almost linear to the
input size of the decoder (Θ(prt) elements). This complexity
can be reduced by simply swapping in any faster polynomial
interpolation algorithm or Reed-Solomon decoding algorithm.
In addition, this decoding complexity can also be further
improved by exploiting the fact that only a subset of the
coefficients are needed for recovering the output matrix.

Note that given the presented computation framework, each
worker is assigned to multiply two coded matrices with sizes of
r
m ×

s
p and s

p ×
t
n , which requires a complexity of O( srt

pmn ).10

This complexity is independent of the coding design, indicating
that the entangled polynomial code strictly improves other
designs without requiring extra computation at the workers.
Recall that the decoding complexity of entangled polynomial
code grows linearly with respect to the size of the output
matrix. The decoding overhead becomes negligible compared
to workers’ computational load in practical scenarios where the
sizes of coded matrices assigned to the workers are sufficiently
large. Moreover, the fast decoding algorithms enabled by the
Polynomial coding approach further reduces this overhead,
compared to general linear coding designs.

Entangled polynomial code also enables improved perfor-
mances for systems where the data has to encoded online. For
instance, if the input matrices are broadcast to the workers and
are encoded distributedly, the linearity of entangled polynomial
code allows for an in-place algorithm, which does not require
addition storage or time complexity. Alternatively, if centralized
encoding is required, almost-linear-time algorithms can also
be developed similar to decoding: at most a complexity of
O(( srpm log2(pm) log log(pm)+ st

pn log2(pn) log log(pn))N) is
required using fast polynomial evaluation, which is almost
linear with respect to the output size of the encoder (Θ(( srpm +
st
pn )N) elements).

V. CONVERSES

In this section, we provide the proof of Theorem 2. We first
prove equation (12) by developing a linear algebraic converse.
Then we prove inequality (13) through an information theoretic
lower bound.

A. Maching Converses for Linear Codes

To prove equation (12), we start by developing a converse
bound on recovery threshold for general parameter values, then

9When the base field supports FFT, this complexity bound can be improved
to O(k log2 k).

10More precisely, the commonly used cubic algorithm achieves a complexity
of θ( srt

pmn
) for the general case. Improved algorithms has been found in certain

cases (e.g., [20], [24]–[32]), however, all known approaches requires a super-
quadratic complexity.
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we specialize it to the settings where m = 1 or n = 1. We
state this converse bound in the following lemma:
Lemma 1. For a distributed matrix multiplication problem
with parameters p, m, n, and N , we have

K∗linear ≥ min{N, pm+ pn− 1}. (30)

When m = 1 or n = 1, the RHS of inequality (30) is
exactly Kentangled-poly. Hence equation (12) directly follows
from Lemma 1. So it only suffices to prove Lemma 1, and we
prove it as follows:

Proof. To prove Lemma 1, we only need to consider the
following two scenarios:

(1) If K∗linear = N , then (30) is trivial.
(2) If K∗linear < N , then we essentially need to show that for

any parameter values p, m, n, and N satisfying this condition,
we have K∗linear ≥ pm+ pn− 1. By definition, if such a linear
recovery threshold is achievable, we can find a computation
strategy, i.e., tensors a, b, and a class of decoding functions
d , {dK}, such that

dK


∑
j′,k′

Aᵀ
j′,k′aij′k′

∑
j′′,k′′

Bj′′,k′′bij′′k′′


i∈K


= AᵀB (31)

for any input matrices A and B, and for any subset K of K∗linear
workers.

We choose the values of A and B, such that each Aj,k and
Bj,k satisfies

Aj,k = αjkAc, (32)
Bj,k = βjkBc, (33)

for some matrices α ∈ Fp×m, β ∈ Fp×n, and constants Ac ∈
F

s
p×

r
m , Bc ∈ F

s
p×

t
n satisfying Aᵀ

cBc 6= 0. Consequently, we
have

dK


∑
j′,k′

αj′k′aij′k′

∑
j′′,k′′

βj′′k′′bij′′k′′

Aᵀ
cBc


i∈K


= AᵀB

(34)

for all possible values of α, β, and K.
Fixing the value i, we can view each subtensor aijk as a

vector of length pm, and each subtensor bijk as a vector of
length pn. For brevity, we denote each such vector by ai and
bi respectively. Similarly, we can also view matrices α and β
as vectors of length pm and pn, and we denote these vectors
by α and β. Furthermore, we can define dot products within
these vector spaces following the conventions. Using these
notations, (34) can be written as

dK
(
{(α · ai) (β · bi)Aᵀ

cBc}i∈K
)

= AᵀB. (35)

Given the above definitions, we now prove that within each
subset K of size K∗linear, the vectors {ai}i∈K span the space
Fpm. Essentially, we need to prove that for any such given
subset K, there does not exist a non-zero α ∈ Fp×m such that
the corresponding vector α ∈ Fpm satisfies α · ai = 0 for

all i ∈ K. Assume the opposite that such an α exists, so that
α ·ai is always 0, then the LHS of (35) becomes a fixed value.
On the other hand, since α is non-zero, we can always find
different values of β such that αᵀβ is variable. Recalling (32)
and (33), the RHS of (35) cannot be fixed if αᵀβ is variable,
which results in a contradiction.

Now we use this conclusion to prove (30). For any fixed K
with size K∗linear, let B be a subset of indices in K such that
{ai}i∈B form a basis. Recall that we are considering the case
where K∗linear < N , meaning that we can find a worker k̃ 6∈ K.
For convenience, we define K+ = K∪{k̃}, and K− , K+\B.
Obviously, |B| = pm, and |K−| = |K+| − |B| = K∗linear + 1−
pm. Hence, it suffices to prove that |K−| ≥ pn, which only
requires that {bi}i∈K− forms a basis of Fpn. Equivalently, we
only need to prove that any β ∈ Fp×n such that its vectorized
version β ∈ Fpn satisfies β · bi = 0 for any i ∈ K− must be
zero. For brevity, we let B denotes the subspace that contains
all values of β satisfying this condition.

To prove this statement, we first construct a list of matrices
as follows, denoted by {αi}i∈B. Recall that {ai}i∈B forms a
basis. We can find a matrix αi ∈ Fp×m for each i ∈ B such
that their vectorized version {αi}i∈B satisfies αi ·ai′ = δi,i′ .11

From elementary linear algebra, the vectors {αi}i∈B also form
a basis of Fpm. Correspondingly, their matrix version {αi}i∈B
form a basis of Fp×m.

For any k ∈ B, we define Kk = K+\{k}. Note that |Kk| =
K∗linear, equation (35) should also hold for Kk instead of K.
Moreover, note that if we fix α = αk, then the corresponding
LHS of (35) remains fixed for any β ∈ B. As a result, AᵀB
must also be fixed. Similar to the above discussion, this requires
that the value of αᵀ

kβ be fixed. This value has to be 0 because
β = 0 satisfies our stated condition.

Now we have proved that any β ∈ B must also satisfy
αᵀ
kβ = 0 for any k ∈ B. Because {αk}k∈B form a basis of

Fp×m, such β acting on Fp×m through matrix product has
to be the zero operator, so β = 0. As mentioned above, this
results in K∗linear ≥ pm+ pn− 1, which completes the proof
of Lemma 1 and equation (12).

Remark 10. Note that in the above proof, we never used the
condition that the decoding functions are linear. Hence, the
converse does not require the linearity of the decoder. This fact
will be used later in our discussion regarding the fault-tolerant
computing in Appendix B.

B. Information Theoretic Converse for Nonlinear Codes

Now we prove inequality (13) through an information
theoretic converse bound. Similar to the proof of equation
(12), we start by proving a general converse.
Lemma 2. For a distributed matrix multiplication problem
with parameters p, m, n, and N , if the base field F is finite,
we have

K∗ ≥ max{pm, pn}. (36)

11Here δi,j denotes the discrete delta function, i.e., δi,i = 1, and δi,j = 0
for i 6= j.
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When m = 1 or n = 1, the RHS of inequality (36) is greater
than 1

2Kentangled-poly. Hence inequality (13) directly results from
Lemma 2, which we prove as follows.

Proof. Without loss of generality, we assume m ≥ n, and aim
to prove K∗ ≥ pm. Specifically, we need to show that any
computation strategy has a recovery threshold of at least pm, for
any possible parameter values. Recall the definition of recovery
threshold. It suffices to prove that for any computation strategy
(f , g,d) and any subset K of workers, if the master can recover
C given results from workers in K (i.e., the decoding function
dK returns C for any possible values of A and B), then we
must have |K| ≥ pm.

Suppose the condition in the above statement holds. Given
each input A, the workers can compute {Ãi}i∈K using the
encoding functions. On the other hand, for any fixed possible
value of B, the workers can compute {C̃i}i∈K based on
{Ãi}i∈K. Hence, let C̃i,func be a function that returns C̃i given
B as input, {C̃i,func}i∈K is completely determined by {Ãi}i∈K,
without requiring additional information on the value of A.
If we view A as a random variable, we have the following
Markov chain:

A→ {Ãi}i∈K → {C̃i,func}i∈K. (37)

Because the master can decode C as a function of {C̃i}i∈K,
if we define Cfunc similarly as a function that returns C given B
as input, Cfunc is also completely determined by {C̃i,func}i∈K,
with no direct dependency on any other variables. Consequently,
we have the following extended Markov chain

A→ {Ãi}i∈K → {C̃i}i∈K → Cfunc. (38)

Note that by definition, Cfunc has to satisfy Cfunc(B) = AᵀB
for any A ∈ Fs×r and B ∈ Fs×t. Hence, Cfunc is essentially
a linear operator uniquely determined by A, defined as
multiplication by Aᵀ. Conversely, one can show that distinct
values of A leads to distinct operators, which directly follows
from the definition of matrix multiplication. Therefore, the
input matrix A can be exactly determined from Cfunc, i.e.,
H(A|Cfunc) = 0. Using the data processing inequality, we have
H(A|{Ãi}i∈K) = 0.

Now let A be uniformly randomly sampled from Fs×r, and
we have H(A) = sr log2 |F| bits. On the other hand, each Ãi
consists of sr

pm elements, which has an entropy of at most
sr
pm log2 |F| bits. Consequently, we have

|K| ≥ H(A)

max
i∈K

H(Ãi)
≥ pm. (39)

This concludes the proof of Lemma 2 and inequality (13).

VI. FACTOR OF 2 CHARACTERIZATION OF OPTIMUM
LINEAR RECOVERY THRESHOLD

In this section, we provide the proof of Theorem 3. Specifi-
cally, we need to provide a computation strategy that achieves
a recovery threshold of at most 2R(p,m, n)−1 for all possible
values of p, m, n, and N , as well as a converse result
showing that any linear computation strategy requires at least
N ≥ R(p,m, n) workers for any p, m, and n.

The proof is accomplished in 2 steps. In Step 1, we show
that any linear code for matrix multiplication is equivalently an
upper bound construction of the bilinear complexity R(p,m, n),
and vice versa. This result indicates the equality between
R(p,m, n) and the minimum required number of workers,
which proves the needed converse. It also converts any matrix
multiplication into the computation of element-wise products
given two vectors of length R(p,m, n). Then in Step 2, we
show that we can find an optimal computation strategy for
this augmented computing task. We develop a variation of
the entangled polynomial code, which achieves a recovery
threshold of 2R(p,m, n)− 1.

For Step 1, we first formally define upper bound construc-
tions for bilinear complexity.
Definition 5. Given parameters p, m, n, an upper bound
construction for bilinear complexity R(p,m, n) with rank
R is a tuple of tensors a ∈ FR×p×m, b ∈ FR×p×n, and
c ∈ FR×m×n such that for any matrices A ∈ Fp×m,
B ∈ Fp×n,

∑
i

cijk

∑
j′,k′

Aj′k′aij′k′

∑
j′′,k′′

Bj′′k′′bij′′k′′


=
∑
`

A`jB`k. (40)

Recall the definition of linear codes. One can verify that any
upper bound construction with rank R is equivalently a linear
computing design using R workers when the sizes of input
matrices are given by A ∈ Fp×m, B ∈ Fp×n. Note that matrix
multiplication follows the same rules for any block matrices,
this equivalence holds true for any input sizes.12 Specifically,
given an upper bound construction (a, b, c) with rank R, and
for general inputs A ∈ Fs×r, B ∈ Fs×t, any block of the final
output C can be computed as

Cj,k =
∑
i

cijkÃ
ᵀ
i,vecB̃i,vec, (41)

where Ãi,vec and B̃i,vec are linearly encoded matrices stored
by R workers, defined as

Ãi,vec ,
∑
j,k

Aj,kaijk, B̃i,vec ,
∑
j,k

Bj,kbijk. (42)

Conversely, one can also show that any linear code using
N workers is equivalently an upper bound construction with
rank N . This equivalence relationship provides a one-to-one
mapping between linear codes and upper bound constructions.

Recall the definition of bilinear complexity (provided
in Section III), which essentially states that the minimum
achievable rank R equals R(p,m, n). We have shown that
the minimum number of workers required for any linear
code is given by the same quantity, which proves the co-
verse. In terms of achievability, we have also proved the
existence of a linear computing design using R(p,m, n)
workers, where the encoding and decoding are characterized
by some tensors a ∈ FR(p,m,n)×p×m, b ∈ FR(p,m,n)×p×n,

12Rigorously, it also requires the linear independence of the Aᵀ
iBj ’s, which

can be easily proved.
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and c ∈ FR(p,m,n)×m×n satisfying equation (14), following
equations (41) and (42). This achievability scheme essentially
converts matrix multiplication into a problem of computing
the element-wise product of two “vectors” Ãi,vec and B̃i,vec,
each of length R(p,m, n). Specifically, the master only needs
Ãᵀ
i,vecB̃i,vec for decoding the final output.
Now in Step 2, we develop the optimal computation strategy

for this augmented computation task. Given two arbitrary
vectors Ãi,vec and B̃i,vec of length R(p,m, n), we want to
achieve a recovery threshold of 2R(p,m, n)−1 for computing
their element-wise product using N workers, each of which
can multiply two coded vectors of length 1. As we have
explained in Section IV-B, a recovery threshold of N is always
achievable, so we only need to focus on the scenario where
N ≥ 2R(p,m, n)− 1.

The main coding idea is to first view the elements in
each vector as values of a degree R(p,m, n) − 1 poly-
nomial at R(p,m, n) different points. Specifically, given
R(p,m, n) distinct elements in the field F, denoted by
x0, x1, . . . , xR(p,m,n)−1, we find polynomials f̃ and g̃ of
degree R(p,m, n)− 1, whose coefficients are matrices, such
that

f̃(xi) = Ãi,vec (43)

g̃(xi) = B̃i,vec. (44)

Recall that we want to recover Ãᵀ
i,vecB̃i,vec, which is essentially

recovering the values of the degree 2R(p,m, n)−2 polynomial
h̃ , f̃ᵀg̃ at these R(p,m, n) points. Earlier in this paper,
we already developed a coding structure that allows us to
recover polynomials of this form. We now reuse the idea in
this construction.

Let y0, y1, ..., yN−1 be distinct elements of F. We let each
worker i store

Ãi = f̃(yi), (45)

B̃i = g̃(yi), (46)

which are linear combinations of the input submatrices. More
Specifically,

Ãi =
∑
j

Ãj,vec ·
∏
k 6=j

(yi − xk)

(xj − xk)
, (47)

B̃i =
∑
j

B̃j,vec ·
∏
k 6=j

(yi − xk)

(xj − xk)
. (48)

After computing the product, each worker essentially eval-
uates the polynomial h̃ at yi. Hence, from the results of any
2R(p,m, n)− 1 workers, the master can recover h̃, which has
degree 2R(p,m, n)− 2, and proceed with decoding the output
matrix C. This construction achieves a recovery threshold of
2R(p,m, n)− 1, which proves the upper bound in Theorem 3.
Remark 11. The computation strategy we developed in Step
2 provides a tight upper bound on the characterization of the
optimum linear recovery threshold for computing element-
wise product of two arbitrary vectors using N machines.
Its optimality naturally follows from Theorem 2, given that
the element-wise product of two vectors contains all the
information needed to compute the dot-product, which is a

special case of matrix multiplication. We formally state this
result in the following corollary.
Corollary 1. Consider the problem of computing the element-
wise product of two vectors of length R using N workers, each
of which can store a linearly coded element of each vector and
return their product to the master. The optimum linear recovery
threshold, denoted as K∗e-prod-linear, is given by the following
equation:13

K∗e-prod-linear = min{N, 2R− 1}. (49)

Remark 12. Note that Step 2 of this proof does not require
the computation strategy to be linear. Hence, using exactly the
same coding approach, we can easily extend this result to non-
linear codes, and prove a similar factor-of-2 characterization
for the optimum recovery threshold K∗, formally stated in the
following corollary.
Corollary 2. For a distributed matrix multiplication problem
with parameters p, m, and n, let N∗(p,m, n) denotes the
minimum number of workers such that a valid (possibly non-
linear) computation strategy exists. Then for all possible values
of N , we have

N∗(p,m, n) ≤ K∗ ≤ 2N∗(p,m, n)− 1. (50)

Remark 13. Finally, note that the computing design provided
in this section can be applied any upper bound construction
with rank R, achieving a recovery threshold of 2R − 1, its
significance is two-fold. Using constructions that achieves
bilinear complexity, it proves the existence of a factor-of-2
optimal computing scheme, which achieves the same recovery
threshold while tolerating arbitrarily many stragglers. On the
other hand, for cases where R(p,m, n) is not yet known,
explicit coding constructions can still be obtained (e.g., using
the well know Strassen’s result [20], as well as any other
known constructions, such as ones presented in [24]–[38]),
which enables further improvements upon the basic entangled
polynomial code.

A. Computational complexities

Algorithmically, decoding the improved version of en-
tangled polynomial code can be completed in two
steps. In step 1, the master can first recover the
element-wise products {Ãᵀ

i,vecB̃i,vec}R(p,m,n)
i=1 , by Lagrange-

interpolating a degree 2R(p,m, n) − 1 polynomial at
R(p,m, n) points, for rt

mn times. Similar to the entan-
gled polynomial code, it requires a complexity of at
most O( rt

mnR(p,m, n) log2(R(p,m, n)) log log(R(p,m, n))),
which is almost linear to the input size of the decoder
(Θ( rt

mnR(p,m, n)) elements). Then in Step 2, the master
can recover the final results by linearly combining these
products, following equation (41). Note that without even
exploiting any algebraic properties of the tensor construction,
the natural computing approach achieves a complexity of
Θ(rtR(p,m, n)) for computing the second step. This already
achieves a strictly smaller decoding complexity compared

13Obviously, we need N ≥ R to guarantee the existence of a valid
computation strategy.
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with a general linear computing design, which could requires
inverting an R(p,m, n)-by-R(p,m, n) matrix.14

Moreover, note that most commonly used upper bound con-
structions are based on the sub-multiplicativity of R(p,m, n),
further improved decoding algorithms can be designed when
these constructions are used instead. As an example, consider
Strassen’s construction, which achieves a rank of R = 7k ≥
R(2k, 2k, 2k). The final outputs can essentially be recovered
given the intermediate products {Ãᵀ

i,vecB̃i,vec}Ri=1 by following
the last few iterations of Strassen’s Algorithm, requiring only a
linear complexity Θ( rt

mnR). This approach achieves an overall
decoding complexity of O( rt

mnR log2R log logR), which is
almost linear to the input size of the decoder.

Similar to the discussion in Section IV-C, the computational
complexity at each worker is O( srt

pmn ), which is independent of
the coding design. Hence, the improved version of the entangled
polynomial code also does not require extra computation at
the workers, and the decoding overhead becomes negligible
when sizes of the coded submatrices are sufficiently large.
Improved performances can also be obtained for systems that
requires online encoding, following similar approaches used
in decoding.

VII. CONCLUDING REMARKS

In this paper, we studied the coded distributed matrix
multiplication problem and proposed entangled polynomial
codes, which allows optimal straggler mitigation and orderwise
improves upon the prior arts. Based on our proposed coding
idea, we proved a fundamental connection between the optimum
linear recovery threshold and the bilinear complexity, which
characterizes the optimum linear recovery threshold within a
factor of 2 for all possible parameter values. The techniques
developed in this paper can be directly applied to many
other problems, including coded convolution and fault-tolerant
computing, providing matching characterizations. By directly
extending entangled polynomial codes to secure [39]–[53], pri-
vate [45], [47], [52], [54], and batch [50], [55], [56] distributed
matrix multiplication, we can also unboundedly improve all
other block-partitioning based schemes [43], [44], [52], [55],
[56], achieving subcubic recovery threshold while enabling
flexible resource tradeoffs.15 Entangled polynomial codes has
also inspired recent development of coded computing schemes
for general polynomial computations [58], secure/private com-
puting [59], and secure sharding in blockchain systems [60].

One interesting follow-up direction is to find better charac-
terization of the optimum linear recovery threshold. Although
this problem is completely solved for cases including m = 1,
n = 1, or p = 1, there is room for improvement in general
cases. Another interesting question is whether there exist non-
linear coding strategies that strictly out-perform linear codes,
especially for the important case where the input matrices are
large (s, r, t� p,m, n), while allowing for efficient decoding
algorithms with almost linear complexity. Finally, the main

14Similar to matrix multiplication, inverting a k-by-k matrix requires a
complexity of O(k3). Faster algorithms has been developed, however, all
known results requires super-quadratic complexity.

15For details, see [57].

focus of this paper is to provide optimal algorithmic solutions
for matrix multiplication on general fields. Although, when the
base field is infinite, one can instead embed the computation
into finite fields to avoid practical issues such as numerical
error and computation overheads (see discussions in [11], [61]).
It is an interesting following direction to find new quantization
and computation schemes to study optimal tradeoffs between
these measures.

APPENDIX A
THE OPTIMUM LINEAR RECOVERY THRESHOLD FOR

CODED CONVOLUTION

In this appendix, we first provide the problem formulation
for coded convolution, then we prove Theorem 4, which shows
the optimality of Polynomial Code for Coded Convolution.

A. System Model and Problem Formulation

Consider a convolution task with two input vectors

a = [a0 a1 ... am−1], b = [b0 b1 ... bn−1], (51)

where all ai’s and bi’s are vectors of length s over a sufficiently
large field F. We want to compute c , a ∗ b using a master
and N workers. Each worker can store two vectors of length
s, which are functions of a and b respectively. We refer to
these functions as the encoding functions, denoted by (f , g)
similar to the matrix multiplication problem.

Each worker computes the convolution of its stored vectors,
and returns it to the master. The master only waits for the fastest
subset of workers, before proceeding to decode c. Similar
to the matrix multiplication problem, we define the recovery
threshold given the encoding functions, denoted by K(f , g), as
the minimum number of workers that the master needs to wait
that guarantees the existence of valid decoding functions. We
aim to characterize the optimum recovery threshold achievable
by any linear encoding functions, denoted by K∗conv-linear, and
identify an optimal computation strategy that achieves this
optimum threshold.

B. Proof of Theorem 4

Now we prove Theorem 4, which completely solves the
above problem. As we have shown in [11], the recovery
threshold stated in Theorem 4 is achievable using a variation
of polynomial code. This result proves an upperbound of
K∗conv-linear. It also identifies an optimal computation strategy.
Hence, in this section we focus on proving the matching
converse.

Specifically, we aim to prove that given any problem
parameters m, n, and N , for any computation strategy, if the
encoding functions (f , g) are linear, then its recovery threshold
is at least m+ n− 1. We prove it by contradiction.

Assume the opposite, then the master can recover c using
results from a subset of at most m+n−2 workers. We denote
this subset by K. Obviously, we can find a partition of K into
two subsets, denoted by Ka and Kb, such that |Ka| ≤ m− 1
and |Kb| ≤ n− 1. Note that the encoding functions of workers
in Ka collaboratively and linearly maps Fms to F(m−1)s, which
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has a non-zero kernel. Hence, we can find a non-zero input
vector a such that all workers in Ka returns 0. Similarly, we
can find a non-zero b such that all workers in Kb returns 0.
Recall that Ka ∪ Kb = K. Consequently, when the master
receives 0 from all workers in K, the decoding function returns
a ∗ b.

This convolution product must be the 0 vector, given that
the workers return the same results under zero inputs. However,
note that the convolution operator has no zero-divisor. Either a
or b has to be zero, which contradicts the non-zero assumptions.
Hence, we have K(f , g) ≥ m + n − 1. This concludes the
proof of Theorem 4.

APPENDIX B
AN EQUIVALENCE BETWEEN FAULT TOLERANCE AND

STRAGGLER MITIGATION

In this appendix, we start by formulating a fault-tolerant
computing problem for matrix multiplication, then we prove
Theorem 5 by building a connection between straggler mitiga-
tion and fault tolerance, by extending the concept of Hamming
distance to coded computing.

A. Problem Formulation

We consider a matrix multiplication problem with two input
matrices A ∈ Fs×r and B ∈ Fs×t, and we are interested in
computing C , AᵀB using a master node and N worker
nodes, where each worker can store 1

pm fraction of A and
1
pn fraction of B. Similar to the straggler mitigation problem,
each worker i can store two coded matrices Ãi ∈ F

s
p×

r
m and

B̃i ∈ F
s
p×

t
n , computed based on A and B respectively. Each

worker can compute the product C̃i , Ãᵀ
i B̃i, and return it to

the master. Unlike the straggler setting, the master waits for
all workers before proceeding to recover the final output C.
However, a subset of workers can return error results, and the
master has no information on which subset of results are false.
Under this setting, the master wants to: (1) determine if there
is an error in the workers’ outputs, and (2) try to recover the
final output C using the possibly false computing results from
the workers.

Given the above system model, we formulate this fault-
tolerant computing problem based on the following terminology.
Similar to our main problem in this paper, we define the
encoding functions and denote them by (f , g). We also define
the decoding function for the master, however in this problem it
can either return an estimate of C, or report an error. We only
consider the valid decoding functions, which always correctly
decodes C when no worker is making mistakes.

For any integer E, we say the encoding functions can detect
E errors if we can find a decoding function that either returns
the correct value of C or reports an error, when no more than E
workers are making mistakes. Moreover, we say the encoding
functions can correct E errors, if the decoding function always
correctly decodes C. We denote the maximum possible integer
E given these two criteria by Edetect(f , g) and Ecorrect(f , g)
respectively.

We aim to find encoding functions that allows detecting and
correcting the maximum possible number of errors. Among all

possible computation strategies, we are particularly interested
in linear encoding functions, as defined in Section II. Given
the above terminology, we define the following concepts.
Definition 6. For a distributed matrix multiplication problem
of computing AᵀB using N workers, we define the maximum
detectable errors and the maximum detectable errors, denoted
by E∗detect and E∗correct respectively, as the maximum possible
values of Edetect(f , g) and Ecorrect(f , g) over the set of all
encoding functions that are linear.

Our goal is to characterize the values of E∗detect and E∗correct,
and to find optimal computation strategies to achieve these val-
ues. We are also interested in extending these characterizations
to non-linear codes.

B. Proof of Theorem 5

We start by defining some concepts, which allows connecting
the fault-tolerant computing problem to the straggler mitigation
problem.
Definition 7. We define the Hamming distance of any encoding
functions (f , g), denoted by d(f , g), as the maximum integer
d such that for any two pairs of input matrices whose products
C are different, at least d workers compute different values of
C̃i.
Definition 8. We define the Recovery threshold of any encod-
ing functions (f , g), denoted by K(f , g), as the minimum
possible recovery threshold given any decoding functions.

We prove that all these three mentioned criteria for designing
encoding functions are directly connected by the Hamming
distance, which is formally stated as follows.
Lemma 3. For any (possibly non-linear) computation strategy,
we have

K(f , g) = N − d(f , g) + 1, (52)
Edetect(f , g) = d(f , g)− 1, (53)

Ecorrect(f , g) =

⌊
d(f , g)− 1

2

⌋
. (54)

Remark 14. Lemma 3 essentially indicates that optimizing the
straggler mitigation performance over any class of encoding
designs is equivalently optimizing its performance in the fault
tolerance setting. Furthermore, all these previously mentioned
metrics can be simultaneously optimized by the codes with
the maximum possible Hamming distance. Hence, there is
no tension among these metrics. This result bridges the rich
literature of coding theory and distributed computing.
Remark 15. In terms of achievability, Lemma 3 also provides
a large class of coding designs for fault-tolerant computing.
Specifically, it indicates that given any computing scheme (e.g.,
the entangled polynomial code, or its improved version) that
achieves a certain recovery threshold, denoted by K. Using the
same encoding functions, we can obtain a fault-tolerant scheme
that detects up to N−K errors, or correct up to bN−K2 c errors.

Proof of Lemma 3. Lemma 3 is a direct consequence of the
classical coding theory, given that mitigating straggler effects is
essentially correcting erasure errors, and tolerating false results
in computing is essentially correcting arbitrary error. Hence,
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we only provide the proof of (52), where equations (53) and
(54) can be proved using similar approaches.

Specifically, we want to prove that for any integer K, a
recovery threshold of K is achievable by some encoding
functions if and only if their Hamming distance is greater
or equal to N − K + 1. If K is achievable, it means that
we can find decoding functions that uniquely determines the
value of C given results from any K workers. Equivalently,
for distinct values of C, at least N −K + 1 workers has to
return distinct results. Recall that the recovery threshold is the
minimum of such integer K, and the Hamming distance is the
maximum integer that corresponds to N −K + 1. We have
K(f , g) = N − d(f , g) + 1.

Now we continue to prove Theorem 5 using Lemma 3. As
mentioned in Remark 10, the proof of Theorem 2 essentially
completely characterizes the optimum recovery threshold over
all linear encoding functions for m = 1 or n = 1, which is
given by Kentangled-poly. Hence, using Lemma 3, we directly
obtain that if m = 1 or n = 1, we have

E∗detect = N −Kentangled-poly, (55)

E∗correct =

⌊
N −Kentangled-poly

2

⌋
. (56)

This concludes the proof of Theorem 5.
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